
Convolutional Neural Network Architecture Seach with Q-Learning

Mike Phulsuksombati 1

Abstract
We seeks to automate the process of design-
ing the architecture of the convolutional neural
network using reinforcemnet learning. The Q-
learning agent is trained to sequentially select
the CNN layers to achieve maximum accuracy
on the validation set. We limited the layers that
the agent can select the convolutional layers, the
maximum pooling layers, and the softmax layer
with pre-defined hyperparameters such as num-
ber of filters and kernel size. We experiment the
Q-learning agent on three datasets. First, to test
that the agent can converge and select the opti-
mal architecture. We run the Q-learning agent
on the randomply generated data from the prese-
lected CNN architecture. The agent is tested on
the two standard classification datasets, namely
ProstateX and CIFAR-10. The agent is able to
find the CNN architecture that achieves better
test accuracy than the state-of-the-art model on
the ProstateX dataset.

1. Introduction
Convolutional neural networks (CNNs) have achieved
many success in computer vision related task. The archi-
tecture of the convolutional network becomes more com-
plex with more dept and variation as we can observe from
the large scale visual recognition challenge (LSVRC) (Rus-
sakovsky et al., 2015) over the past years. Although imple-
menting the CNNs become much easier due to many ex-
isting library such as Caffe (Jia et al., 2014) or Tensorflow
(Abadi et al., 2015), designing a good architecture for a
specific problem still require a lot of insights and trials and
errors in tuning.

The convolutional architecture mainly consists of the con-
volutional layers, the pooling layers, the fully-connected
layers, and the softmax layer. Each of this layers has spe-
cific roles and contribution to the overall network. More-
over, each types of layers contains its own specific hyperpa-
rameters. For example, the convolutional layer has number
of output filters, kernel size, stride, and type of padding.
Therefore, there are many design choice just when to pick
a particular layer. The decision for the neural network de-

signer is not only to string these layers together, but also
to adjust these hyperparameters in the way that such archi-
tecture performs well on the given task. Therefore, there
are combinatorially large CNN architectures that one can
select for a specific problem.

There is not many intuition of how to design a good CNN
architecture. For a new task, human tends to design the
CNN architecture based on their experiences of seeing an
architecture that works well on other problems. However,
such designs are not guarantee to work well for the task.
This leads to an idea of using an algorithm to automate the
process of designing the CNN architecture without human
intervention. We construct a Q-learning agent that learn
how to select the types of layers and layer parameters to
achieve good result on the validation set. We scope the
types of layer in this projec to the convolutional layer, the
maximum pooling layer, and the softmax layers where the
layer parameters are commonly used in practice.

2. Background/Related Work
Automatic selection of network architecture without hu-
man intervention is an important research area in machine
learning. The traditional approach is based on using ge-
netic algorithms to artificially evolve the neural network on
both architecture and weights such as NeuroEvolution of
Augmenting Topologies (NEAT) (Stanley & Miikkulainen,
2002), which achieve a good performance on classical re-
inforcement learning tasks. The method is also adpated
to solve a more complex environment such as the Super
Mario World (Baldominos et al., 2015) without looking at
the state of the game. However, although the genetic based
algorithms are good in discover new model with flexible
parameter choices, the limitations are the large number of
population and the number of generation required to pro-
duce a competitive result. Threfore, it cannot be used for a
large scale problem.

Recently, reinforcement learning has been used to speed
up and simplify the neural network architecture search.
One approach the we followed in this work is based on
Q-Learning called MetaQNN (Baker et al., 2016). The al-
gorithm is iteratively learn to select a layer from a finite
set of layers and connect them together to produce a com-
petitive neural network architecture in the comparable level

Convolutional Neural Network Architecture Seach with Q-Learning

to several hand-picked architecture in the standard dataset
such as CIFAR-100 and MNIST. However, the method is
still limited in term of flexibility since it can only generate
the network from a pre-selected pool of layers and the with
fixed length. Therefore, it cannot generate a novel archi-
tecture in similar fashion to those generated by the genetic
algorithm.

To combine the best of both approachs together, a Q-value
table is replaced by a recurrent neural network to allow
more flexibility in generating the architecture (Zoph & Le,
2016). The recurrent network generates the architecture
similar to generating a sequence of tokens. The reccurent
network is trained with a policy gradient method to achieve
the best validation accuracy. The model generates by this
method is able to achieve a better accuracy and less num-
berf of model parameters than the state-of-the-art model
on the CIFAR-10 and Penn Treebank dataset. However,
the method requires many more number of model to learn
from than the standard Q-learning method and require huge
computation resources on large dataset.

3. Approach
In the following setion, we will describe how to use the Q-
learning agent to generate the convolutionl architectures.
The main objective is to find the convolutional architec-
tures that maximize the validation accuracy. Our approach
follows the work of (Baker et al., 2016) with some mod-
ification on the transition of the Markov Decision process
and the set of layers that the agent can select.

3.1. Markov Decision Process

We model the process of generating the convolutional ar-
chitectures as the finite horizon Markov Decision Process
(MDP). The time horizon represents the maximum number
of layers that the agent allows to select. We limit the state
space and action space to be finite by limiting the types
and hyperparameter configuration of the layer. The layers
that the agent can select is shown in Table 1. There is total
of 16 layers that the agent can select. All configuration of
the layers are adjust such that they can connect to all other
layers via padding.

The overview of the architecture selection process is rep-
resented in Figure 1. The agent starts with the initial input
layer and, at each step, takes the action to select the next
layer of the network. The actions are deterministic and al-
ways succeed. The process is stopped when the agent se-
lect the termination state or reach the maximum number of
layers. Note that although the numbers of permitted layers
are finite, the search space for the architecture is still large,Pn

i=0 16
i where n is the maximum number of layers.

After the agent successfully select the network architecture,

Type Parameter Total

Convolution

number of output filters
2 {32, 36, 48, 64}
kernel size 2 {1, 3, 5}
stride is 1
apply padding
follow with ReLU

12

Max Pooling
(kernel size, stride)
2 {(2, 2), (3, 2), (5, 3)}
apply padding

3

Softmax
(Termination) Output class 1

Table 1. Configuration of CNNs layers that agent can select

the network is trained and tested on validation set to get the
accuracy. The reward is defined as the validation accuracy.
There is no immediate reward for each action, but rather
the delayed reward after complete the episode (when the
network is selected and trained.) Note that the reward is
stochastic since the network is trained with the stochastic
gradient descent; however, if the network is resampled, we
assume that it has the same validation accuracy for sim-
plicity. Therefore, the reward can be considered to be de-
terministic in this setting.

3.2. Q-learning

Q-learning is popular model-free reinforcement learning
algorithm that has a great success on modern reinforcement
learning benchmark such as Atari (Mnih et al., 2013). The
main idea is to learn the action-value function Q by itera-
tively update the estimate of Bellman equation as

Q(St, At) = (1�↵)Q(St, At)+↵(Rt+1+�max

a
Q(St+1, a))

where ↵ is the Q-learning rate and � is the discounted fac-
tor for reward. The above iterative method is shown to con-
verge to the optimal Q⇤ with probability 1 (Sutton & Barto,
1998).

The Q-learning approach is suitable for the CNN architec-
ture search problem because, although the search space is
limited by finite state and action assumption, our search
space is still combinatorially large. Hence, breaking the
problem down to smaller subproblem with Q-learning will
helps find the high-performing architecture faster. More-
over, our MDP is difficult to learn due to its size and lim-
ited amount of episode the agent is allow to observe (due to
training time), thus a model free approach is more appro-
priate than the model-based approach for such problem.

3.3. ✏-greedy exploration

The exploration is necessay for the Q function to con-
verge. We use the ✏-greedy exploration in this project. The

Convolutional Neural Network Architecture Seach with Q-Learning

Figure 1. a nice plot

strategy is to take a random action with probability ✏ and
the greedy action according to the argmaxa Q(St, a) with
probability 1 � ✏. We set the ✏ to decay overtime so that
the the agent learn to explore the environment early and
gradually exploit the knowledge to achieve the maximum
reward. We have tried with both linear and exponentially
decay to schedule the ✏ for the project; however, we find
that the agent needs very large exploration phase before we
can exploit for the reward. That is the agent needs to learn
many number of architectures before it can decide which
to use. This is due to the delayed reward, which is specific
to our problem. We use the ✏ schedule described in (Baker
et al., 2016) in Table 2, which we find our agent to converge
in all of our experiment.

Table 2. ✏ reduction schedule
✏ 1.0 0.9 - 0.7 0.6 - 0.1

Models Trained 1500 100 150

3.4. Experience Replay

Experience replay is an important technique that speed up
the converge rate for the agent to learn the environment.
The main idea is to store the experience in the replay buffer
and the experiences are sampled from this buffer to update
the Q-table. The experience replay helps break the simi-
larity of the sequential data that we get from observation,
which makes training the agent similar to supervised learn-
ing. Once the ✏ is small, the agent will observe the similar
data since the action is taken greedily. Therefore, agent
will learn less about the environment. The experience re-
play helps the agent to learn from the data in the previous
state, which stabilizes the training process.

4. Experiment Result
We test our approach on three datasets. The first data is
randomly generated dataset from a fixed CNN. This is to
show that our approach yields an optimal model if it is
able to converge to the fixed CNN. The second and third
datasets are the ProstateX challenge and CIFAR-10. The
aim for these experiments are to test the application of our
approach on the real dataset. The randomized dataset and
the ProstateX dataset take around 1-2 days to complete and
the CIFAR-10 took around 5 day to complete. All models
is run on Google Cloud.

4.1. Experiment Setup

The neural networks are constructed using Tensorflow
(Abadi et al., 2015) and run with GPU setup. Each model
is trained for 10 epochs using the Adam optimizer (Kingma
& Ba, 2014) with �1 = 0.9, �2 = 0.999, and ✏ = 10

�8.
We set the batch size to 128 and fixed learning rate at 10�4.
All weigth is initialized with Xavier initalization (Glorot &
Bengio). We limit the maximum number of layers that the
agent can pick to 4 layers. Note that the number of possi-
ble architecture in this setup is

P4
i=0 16

i
= 69, 905 which

is fairly large to perform brute force search. If the model
is resampled, the model will not be trained and is assigned
the previous validation accuracy as the reward. This is to
speed up the training process.

For the Q-learning setup, we set Q-learning rate ↵ = 0.1
and the discount factor � = 1. This is to not prioritize
short term reward from each selection of layer, but rather a
contribution of the whole architecture. At the end of every
episode, we sample 100 experiences from the experience

Convolutional Neural Network Architecture Seach with Q-Learning

buffer to perform an experience replay and update Q-table.
For the exploration strategy, we decay the ✏ according to
the Table 2.

To simplified our notation for architecture, we represent
the convolutional layers as Conv(number of filters, ker-
nel size, stride) and the max pooling layer as Pool(kernel
size, stride), and the sofmax layer as Softmax(number of
classes).

4.2. Randomly Generate Dataset

The goal of this experiment is to show that the proposed
Q-learning agent will eventually select the optimal network
architecture. We first construct the optimal network N⇤ ex-
clusively from the layers in Table 1 to generate the dataset.
We draw a random input image Xi where each entries is
sample from the standard gaussian distribution. Then, we
feed-forward Xi to get the output and add a Gaussian noise
with variance 0.1 to the output and obtain the final yi. The
Q-leaning agent is trained to select the best architecture NA

based on the randomly generated {Xi, yi} dataset.

We created 5,100 random image of size 32 ⇥ 32 ⇥ 3 and
feeded forward through a fixed neural network N⇤ with ar-
chitecture Conv(64, 3, 1), Conv(32, 3, 1), Pool(3, 2) and
Softmax(4) to get the labels of 4 classes. Then, the data
is splitted in to 5,000 training set and 100 validation set.
We trained in total of 2, 700 models with the ✏ schedule in
Table XXX. The performance for the randomly generated
data is shown in Figure 2.

Figure 2. Q-Learning performance on randomly generated data.
The red line shows a running average reward and the green bar
show the average reward during an ✏ period.

We can see that as ✏ decrease, the running average reward
increases because the agent learns to select the CNN archi-
tectures with better validation accuracy. The increasing is
small because the full exploration period, ✏ = 1.0, is long
(1, 500 models) in comparison to the exploitation periods
(1, 200 models). However, from the green bars, we can see
that the average reward per ✏ phase is constantly increasing,
which suggests that the training is stable.

Network Architecture Validation
Accuracy

Original model:
Conv(64, 3, 1), Conv(32, 3, 1), Pool(3, 2),
Softmax(4)

72%

Pool(2, 2), Conv(48, 3, 1), Conv(36, 3, 1),
Softmax(4) 73%

Pool(2, 2), Conv(48, 3, 1), Conv(32, 3, 1),
Softmax(4) 73%

Conv(36, 4, 1), Pool(2, 2), Conv(36, 3, 1),
Softmax(4) 73%

Table 3. The top 3 architectures found by Q-learning agent for the
randomly generated data.

Now, we observe the top 3 models sampled from the Q-
learning agent in Table 4.2. Note that the top model is not
necessary the model that the agent found in the last ✏ phase,
but overall phases. The high-performing models are more
likely to be found toward the end of ✏ schedule.

From Table 4.2, we observe that the agent is able to find
the original architecture N⇤; however, the top 3 models are
not such architecture. We observe that the validation accu-
racy for the top 3 models are higher than that of the original
model. The agent is able to find an original model; how-
ever, it cannot converge to the model because of the vali-
dation accuracy of the original model is lower than that of
the top models. We suspect that this is because the reward
is stochastic due to the stochasticity in training the model,
specifically from stochastic gradient descent.

Moreover, we suspect that another cause that the agent does
not converge may be from that we added too much Gaus-
sian noise when we generate the data. Hence, we generate
the new data set by reducing the variance of the noise to
0.01. We observe that now majority of the models achieve
the validation accuracy of 1. This means that the model
is able to fit the data perfectly. Hence, Q-learning is defi-
nitely not converge to a single model. However, we belive
that with right amount of noise the Q-learning agent should
converge to the original architecture.

4.3. ProstateX

Now, we apply the approach on the real data set to see
whether it can discover the CNN architectures that are
on the same par with the hand-picked architecture. We
obtained the data set from the SPIE-AAPM-NCI Prostate
MR Classification Challenge (ProstateX), which is prepro-
cessed by the Radiology Department, Stanford University
School of Medicine. The data consists of multiparamet-
ric MRI exams of 197 patients: 134 patients with non-
aggressive prostate cancer and 59 patients with agressive
prostate cancer. The task is to classify the 3 channels MR

Convolutional Neural Network Architecture Seach with Q-Learning

images of prostate cancer into two classes: agressive and
non-aggressive prostate cancer. The sample data is shown
in Figure 3. We cropped the images to size 50 x 50 pixels,
with the center being the point annotated by the radiologist.

Figure 3. Sample MR images from the ProstateX

We separate the data into 157 samples for training set and
40 samples into validation set. To increase the size of train-
ing data, the MR images are augmented by rotation, reflec-
tion, scaling and adding Gaussian noise, which yield the
total of around 2500 samples.

The state-of-the-art result for machine learning algo-
rithm on the ProstateX data set is 73% accuracy using
Elastic Net (Banerjee et al., 2016). The official test
set is available online at http://spiechallenges.
cloudapp.net/. Our goal to use Q-learning agent to
search for a CNN architecture that has higher accuracy
on the test data than the state-of-the-art benchmark. The
performance of the Q-learning algorithm of the ProstateX
dataset is shown in Figure 4.

Figure 4. Q-Learning performance on ProstateX.

We can see that as ✏ decrease, the running average reward
slightly increases, which suggests that our training is stable
and agent learn to select the high-performing architectures.
Since there is no published benchmark on the problem us-
ing CNNs, we have tried to hand-picked several architec-
tures for the problem and the best we found achieve the
accuracy of around 70 � 71% on the test set. From Figure
4, we can see that the average performance when ✏ = 0.1 is
around 70% which suggests that the agent is able to pickthe
architecture at the same level as human.

The top 3 models found by our Q-learning agent are pre-
sented in the Table 4.3. We can see that the top model

Network Architecture Accuracy
(val, test)

Conv(64, 5, 1), Conv(32, 3, 1), Pool(3, 2),
Softmax(2) (83%, 76%)

Conv(36, 4, 1), Conv(32, 5, 1),
Conv(32, 3, 1), Softmax(2) (80%, 73%)

Conv(32, 3, 1), Conv(36, 3, 1), Pool(3, 2)
Softmax(4) (80%, 71%)

Table 4. The top 3 architectures found by Q-learning agent for the
ProstateX.

found, which has the best validation accuracy, is able to
achive better result than the current state-of-the-art model
on the test set.

This top models found here are rather interesting that they
incorporate the Pool(3,2), which is not as commonly use as
Pool(2, 2). Moreover in the thrid network there is an up-
sampling from 32 filters to 36 filters, which is also not as
common as the downsampling. This shows the effective-
ness of the Q-learning method as there is no human bias
in selecting the architecture. The algorithm simply learns
from the experience and selecting the layers based only its
experience with the samples with no prior bias.

4.4. CIFAR-10

We experiment on the standard CIFAR-10 image classifi-
cation problem. The task is to classify color images of size
32 ⇥ 32 into 10 classes. The state-of-the-art model using
fractional max-pooling (Graham, 2014) achieved an accu-
racy of 96.53% on the official test data set. However, there
is no official benchmark for the network with limited depth
to 5 layers. Therefore, we only show the accuracy that our
top three model from our Q-learning agent with no bench-
mark result.

Figure 5. Q-Learning performance on CIFAR-10.

We sample the CIFAR-10 dataset into 10, 000 training data,
1, 000 validation data, and 1, 000 training data. We can see
from 5 that Q-learning training is stable since the running

http://spiechallenges.cloudapp.net/
http://spiechallenges.cloudapp.net/

Convolutional Neural Network Architecture Seach with Q-Learning

average reward is constantly increase. However, we ob-
serve that for the ✏ = (0.9, 0.2) the average reward per ✏ is
slightly increase from when the agent always explore. This
shows that our problem requires the agent to sample a lot
of model before it can learn and exploit for the reward.

Network Architecture Accuracy
(val, test)

Conv(48, 5, 1), Conv(32, 3, 1),
Conv(36, 3, 1), Softmax(10) (78%, 73%)

Conv(32, 3, 1), Conv(36, 3, 1),
Conv(48, 5, 1), Pool(2, 2), Softmax(10) (75%, 77%)

Conv(32, 3, 1), Conv(36, 3, 1),
Conv(32, 5, 1), Conv(48, 5, 1), Softmax(10) (75%, 70%)

Table 5. The top 3 architectures found by Q-learning agent for the
CIFAR-10.

The top three models trained so far is in Table 4.4. As
expected, we did not see very high accuracy from the Q-
learning agent. However, the best model achive the test
accuracy of 77%, which is on par with the best desgin shal-
low network from (McDonnell & Vladusich, 2015). We
believe that this is due to the limited representation of the
shallow network.

We also observe that from the top three models the agent
always pick the Conv(32, 3, 1) following with Conv(36,
3, 1), which is a upsampling. This is similar to what we
observe in the ProstateX dataset. There is no intuition on
why this help the CNN to achieve good result; however,
the same phenomenon is also observed in the RNN agent
trained with policy gradient (Zoph & Le, 2016). This also
second the advantages of using the reinforcement learning
to find the best architectures since there is no biased in layer
selection.

5. Conclusion
In this project, we show the effectiveness of using Q-
learning in discovering the novel CNN architectures that on
par with the human picked approach. Although the agent
is not able to find the optimal architecture in the randomly
generated dataset, the agent is able to find the CNN archi-
tecture that rivals human performance in the ProstateX and
CIFAR-10 dataset.

Although the approach is not as flexible in terms of the ar-
chitectures as the RNN agent, the Q-learning is simple and
able to find a good architecture using less computational
resources. However, it still need ample amount of time to
search for the architectures because the approach requires a
lot of sample architecture until the Q-learning agent is able
to learn and pick the network with high validation accuracy.

The benefit of using reinforcement learning to select the

CNN architecture is that there is no bias involve in the se-
lection process. The process of selection the CNN layers to
achive good performance is not intuitive for human under-
standing and we tend to learn from example of the success-
ful networks. That is, we already have prior of what com-
bination of layers we should connect together to get good
accuracy. However, this is not the case for every problem.
Good architecture is really specific to the problem. For ex-
ample VGG-16 which performs very well on the CIFAR-10
(Simonyan & Zisserman, 2014) can not achieve very low
accuracy on the ProstateX.Overall, automating the CNN
architecture search should help save time in designing and
tuning the CNNs to achieve good result for the particular
dataset.

One question for future work is to figure out how to get the
Q-learning to converge to the fixed network in the random-
ized dataset. We believe that, by adding the right amount
of noise to the randomly generated dataset, the Q-learning
agent should converge. Moreover, due to the slow train-
ing time of Q-learning agent, we believe that the process
can be implemented in the parallel to speed up the training
time. We believe that the RNN architecture should provide
the flexibility to the architecture search process. Our future
work is to combine the advantages of both methods to get
the speed of the Q-learning agent and better accuracy from
the flexibility of the RNN agent.

References
Abadi, Martı́n, Agarwal, Ashish, Barham, Paul, Brevdo,

Eugene, Chen, Zhifeng, Citro, Craig, Corrado, Greg S.,
Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghe-
mawat, Sanjay, Goodfellow, Ian, Harp, Andrew, Irv-
ing, Geoffrey, Isard, Michael, Jia, Yangqing, Jozefowicz,
Rafal, Kaiser, Lukasz, Kudlur, Manjunath, Levenberg,
Josh, Mané, Dan, Monga, Rajat, Moore, Sherry, Murray,
Derek, Olah, Chris, Schuster, Mike, Shlens, Jonathon,
Steiner, Benoit, Sutskever, Ilya, Talwar, Kunal, Tucker,
Paul, Vanhoucke, Vincent, Vasudevan, Vijay, Viégas,
Fernanda, Vinyals, Oriol, Warden, Pete, Wattenberg,
Martin, Wicke, Martin, Yu, Yuan, and Zheng, Xiaoqiang.
TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. URL http://tensorflow.

org/. Software available from tensorflow.org.

Baker, Bowen, Gupta, Otkrist, Naik, Nikhil, and
Raskar, Ramesh. Designing neural network archi-
tectures using reinforcement learning. arXiv preprint

arXiv:1611.02167, 2016.

Baldominos, Alejandro, Saez, Yago, Recio, Gustavo, and
Calle, Javier. Learning Levels of Mario AI Using Ge-

netic Algorithms, pp. 267–277. Springer International
Publishing, Cham, 2015. ISBN 978-3-319-24598-0. doi:

http://tensorflow.org/
http://tensorflow.org/

Convolutional Neural Network Architecture Seach with Q-Learning

10.1007/978-3-319-24598-0 24. URL http://dx.

doi.org/10.1007/978-3-319-24598-0_24.

Banerjee, Imon, Hahn, Lewis, Sonn, Geoffrey, Fan,
Richard, and Rubin, Daniel L. Computerized
multiparametric mr image analysis for prostate
cancer aggressiveness-assessment. arXiv preprint

arXiv:1612.00408, 2016.

Glorot, Xavier and Bengio, Yoshua. Understanding the dif-
ficulty of training deep feedforward neural networks.

Graham, Benjamin. Fractional max-pooling. arXiv

preprint arXiv:1412.6071, 2014.

Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev,
Sergey, Long, Jonathan, Girshick, Ross, Guadarrama,
Sergio, and Darrell, Trevor. Caffe: Convolutional ar-
chitecture for fast feature embedding. In Proceedings of

the 22nd ACM international conference on Multimedia,
pp. 675–678. ACM, 2014.

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

McDonnell, Mark D and Vladusich, Tony. Enhanced image
classification with a fast-learning shallow convolutional
neural network. In Neural Networks (IJCNN), 2015 In-

ternational Joint Conference on, pp. 1–7. IEEE, 2015.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Graves, Alex, Antonoglou, Ioannis, Wierstra, Daan, and
Riedmiller, Martin. Playing atari with deep reinforce-
ment learning. arXiv preprint arXiv:1312.5602, 2013.

Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan,
Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpa-
thy, Andrej, Khosla, Aditya, Bernstein, Michael, et al.
Imagenet large scale visual recognition challenge. Inter-

national Journal of Computer Vision, 115(3):211–252,
2015.

Simonyan, Karen and Zisserman, Andrew. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Stanley, Kenneth O and Miikkulainen, Risto. Evolving
neural networks through augmenting topologies. Evo-

lutionary computation, 10(2):99–127, 2002.

Sutton, Richard S and Barto, Andrew G. Reinforcement

learning: An introduction, volume 1. MIT press Cam-
bridge, 1998.

Zoph, Barret and Le, Quoc V. Neural architecture
search with reinforcement learning. arXiv preprint

arXiv:1611.01578, 2016.

http://dx.doi.org/10.1007/978-3-319-24598-0_24
http://dx.doi.org/10.1007/978-3-319-24598-0_24

Convolutional	Neural	Network	Architecture	Design	with	Q-Learning
Mike	Phulsuksombati

Background
• Convolutional	neural	networks	(CNNs)	have	achieved	many	success	

in	computer	vision	related	task.

• Although	implementing	the	CNNs	becomes	easier	due	to	library	
like	Tensorflow	or	PyTorch,	designing	architectures	for	CNNs	still	
requires	a	lot	of	experience	and	many	trials	and	errors	to	get	a	
good	architecture	for	a	particular	machine	learning	task.	

• There	are	many	design	choices	to	consider	such	as	layer	types	and	
layer	parameters.	Even	if	we	limit	the	choices	to	be	finite,	the	
search	space	is	still	to	large.			

• We	seek	to	automate	the	process	of	designing	the	CNN	
architecture	with	Q-Learning.	We	construct	an	agent	that	learn	to	
select	the	types	of	layer	and	layer	parameter	to	achieve	high	
validation	accuracy	of	a	specific	machine	learning	task.

Markov Decision Process

Q-Learning

Randomized	dataset

Problem Statement

Type Parameter Total

Convolution	+	ReLU

Number of	output	filter	 32,	36,	48,	64
12Kernel	size 3,	4,	5

Stride 1
Max Pooling (kernel	size, stride) (2,	2),	(3,	2),	(5,	3) 3
Softmax

(Termination)
Output	classes

(depend	on	the	task) 1

Total 16

• The	process	of	designing	the	CNN	architectures	is	modeled	as	the	
finite	horizon	Markov	Decision	Process	(MDP).	

• By	limiting	the	types	and	layer	parameters,	the	state	and	action	
space	for	such	MDP	are	finite.

• The	layers	that	the	agent	allows	to	select	are	

• The	actions	are	deterministic	and	always	succeed.
• The	reward	is	validation	accuracy,	which	is	stochastic.	
• The	process	terminates	once	the	agent	selects	the	softmax	layer.

• The	agent	can	select	up	to	4	layers	until	it	is	forced	to	terminate.			
A	softmax	layer	is	then	added	to	the	architecture.	

• It	is	difficult	to	learn	the	model because,	although	the	transition	of	our	MDP		
is	deterministic,	the	reward	is	stochastic.	

• Hence,	we	consider	using	a	model-free	reinforcement	learning	algorithm,	
namely	Q-learning.	

• The	main	idea	is	to	learn	the	action-value	function	Q	by	iteratively	update	the	
Bellman	equation	using	the	experience	learned	from	the	environment	as

• The	experience	replay	is	used	to	speed	up	the	convergence	rate	of	Q-learning.	
Each	episode	(a	CNN	is	trained),	the	agent	sample	100	experiences	from	the	
replay	buffer	to	update	the	Q	function.	

where		" is	the	Q-learning	rate	and		# is	the	discounted	factor	for	reward.		

$- Greedy Exploration

• The	exploration	is	necessary	for	the	Q	function	to	converge.

• Take	action	according	to with	probability	1 − ' and														
take	a	random	action	with	probability	'.

• We	use	a	step	function	decay	in	the	table	above.

$ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Total
# of	model	
trained 1,500 100 100 100 150 150 150 150 150 150 2,700

Experiment Result

ProstateX

Model Validation	
Accuracy

CONV(64,	3, 1),	CONV(32,	3,	1), POOL(3,	2),	
Softmax	[Original	Network] 72	%

POOL(2,	2), CONV(48,	3,	1),	COV(36,	3,	1),	
Softmax 73 %

POOL(2,	2), CONV(48,	3,	1),	COV(32,	3,	1),	
Softmax 73 %

CONV(36,	4,	1),	POOL(2,	2)	COV(36,	3,	1),	
Softmax 73 %

• We	randomly	generate	the	data	set	with	a	particular	CNN	and	observe	
whether	the	Q-learning	agent	is	able	to	recover	the	true	CNN	
architecture.

• The	data	consists	of	5,000	training	and	100	validation	of	32	x	32	x	3	
images	randomly	sampled	from	Gaussian	distribution	with	4	classes.

• The	Q-Learning	agent	is	not	able	to	recover	the	original	network.	This	
is	due	to	the	stochasticity	of	the	validation	accuracy	and	the	noise	we	
added	to	the	data.	(The	reward	is	lower	than	those	from	top	CNNs.)

• The	data	set	consists	of	197	patients	MR	images	obtained	from	the	
Radiology	Department,	Stanford	Medical	School.	The	data	is	
augmented	to	increase	the	sample	size.	

• We	separate	the	data	into	157	training	(�2,500	after	augmented)	and	
40	validation	of	50	x	50	x	3	MRI.	The	CNN	needs	to	classify	the	MRI	
into	two	classes:	aggressive	and	benign.				

Aggressive Benign

Model Validation	
Accuracy

CONV(64,	5,	1),	COV(32,	3,	1),	POOL(3,2),	
Softmax 82.5 %

CONV(36,	4,	1),	COV(32,	5,	1),	COV(32,	3,	1),	
Softmax 80	%

CONV(32,	3,	1),	CONV(36,	3,	1),	POOL(3,	2),	
CONV(36,	5,	1), Softmax 80 %

• The	architectures	found	exceed	the	state-of-the-art	performance	of	
73%	(ElasticNet)	on	the	same	dataset.

Next Step
• Show	that	the	Q-learning	agent	is	able	to	converge	to	the	original														

network.

• Try	the	method	on	the	larger	standard	image	classification	dataset	like	
CIFAR-100	or	MNIST.

