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Abstract

A key strength of magnetic resonance imaging (MRI) is
its ability to measure different tissue contrasts. However,
each contrast is typically collected in series, making clin-
ical MRI a slow and expensive procedure. In this paper,
we present a novel approach for learning transformations
from one MRI contrast to another. We train a fully convo-
lutional neural network that takes T1-weighted MRI images
as input, and generates the corresponding T2-weighted im-
ages as output. To evaluate our results, we compare differ-
ent network depths, input features, and numbers of training
subjects. We find that a nine-layer 2D convolutional neural
network (CNN) using T1-intensity with eight tissue masks
as input generates the best output images with lowest L2 er-
ror. Furthermore, the results can continue to improve with
even larger training datasets. These results confirm the fea-
sibility of using deep learning to predict one MRI contrast
from another and accelerate clinical MRI acquisition.

1. Introduction
Magnetic resonance images can represent many differ-

ent tissue contrasts depending on the specific acquisition
paradigm that is used. For example, two of the most com-
mon MRI contrasts are T1-relaxation and T2-relaxation.
T1-weighted images are acquired using short echo and rep-
etition times, while T2-weighted images are acquired using
long echo and repetition times. Each contrast conveys spe-
cific information about the local tissue and its physical prop-
erties. Because T1- and T2-relaxation values differ across
various tissue types, radiologists and scientists must use the
information conveyed in both contrasts to make informed
decisions. For example, in T2-weighted images, areas of the
brain filled with water appear bright and tissues with high

fat content appear dark. This can aid in localizing pathol-
ogy since many brain lesions are associated with an increase
in water content. Similarly, in T1-weighted images, tissues
with high fat content appear bright and compartments filled
with water appear dark. T1-weighted images are therefore
useful for looking at detailed anatomical images. Examples
of these two contrasts are provided in Figure 1.

Figure 1. Example pair of T1-weighted (left) and corresponding
T2-weighted (right) images. The proposed CNN predicts T2-
weighted images from T1-weighted images.

It is important to note that despite the tissue-specific
changes in brightness associated with T1- and T2-weighted
images described above, these two contrasts are not simply
inverted versions of one another. Indeed, they each cor-
respond to distinct tissue properties, and a low T1 value
will not necessarily correspond to a high T2 value (or vice
versa).

Because the information provided by both T1- and T2-
weighted images is important, clinical MRI protocols will
often collect both. However, MRI acquisition is a slow and
costly procedure. Therefore, a significant aim of modern
MRI research is to accelerate the image acquisition pro-
cess. Current approaches focus on both software (e.g. com-
pressed sensing) and hardware (e.g. stronger gradient mag-
nets). Here, we propose the use of convolutional neural net-
works and deep learning to predict one contrast from an-

1



other. If successful, this approach would eliminate the need
for one acquisition altogether and dramatically cut down the
time and costs of clinical MRI.

We formulate the problem of T1-to-T2 mapping as a
standard regression problem. The input to our algorithm
is a two-dimensional T1-weighted image concatenated with
eight additional channels that serve as binary masks to in-
dicate different tissue types. We then use a CNN to out-
put a predicted T2-weighted image. We choose to learn the
mapping of T1-to-T2 transformations rather than vice versa,
since the eight tissue mask channels can be easily computed
from T1-weighted images.

2. Related Work
In the last year, deep learning and CNNs have rapidly

taken over the field of medical imaging and MRI. Re-
searchers in the field have focused on two main problems:
noiseless reconstruction of undersampled data [15, 19, 17,
7, 12], and automated segmentation of different tissue types
[18, 14, 8, 2]. Regarding the former, various deep learning
methods have been developed to reconstruct MRI images
that are undersampled in the frequency (i.e. acquisition)
domain. For example, Schlemper et al. [15] used a cascade
of CNNs with data consistency layers to outperform state-
of-the-art compressed sensing methods for reconstructing
six-fold undersampled cardiac MRI images. In another case
[19], researchers developed a generalized reconstruction al-
gorithm composed of three fully-connected layers followed
by a three-layer convolutional autoencoder. The researchers
show that this approach can be used to noiselessly recon-
struct undersampled and/or corrupted MRI images, inde-
pendent of the sampling trajectory.

Deep learning and CNNs have also been used for au-
tomated segmentation and detection of various pathologies
or tissue types in MRI. For example, CNNs were used to
segment brain tissue into white matter, gray matter, and
cerebrospinal fluid in infant MRIs [18]. The authors used
three modalities of imaging as input - T1, T2, and fractional
anisotropy - and patched each image into 13x13 subimages.
Their architecture included three convolutional layers and
one fully connected layer with a soft-max loss function on
the three different tissue classes. Using this approach, they
were able to achieve results that significantly outperform
previous methods of infant brain tissue segmentation.

Despite the many applications of deep learning to medi-
cal imaging, there have been very few applications for per-
forming image transformations - the problem we address
in this paper. In one application, CNNs were used to pre-
dict computed tomography (CT) images from correspond-
ing MRI images [13]. In another, CNNs were trained to
predict high resolution MRI images acquired with a 7 Tesla
scanner from low resolution images acquired with a 3 Tesla
scanner [3]. Both approaches used relatively straightfor-

ward architectures – three repeated convolutional layers fol-
lowed by a loss function, with no pooling or fully con-
nected layers. Both approaches also used patches to divide
the original images into smaller subimages. Finally, both
used the L2 loss function to learn their respective trans-
formations. The latter network [3] used anatomical tissue
masks as input to improve performance. We believe each
of these features worked well for their respective problems,
and adapt them here. Specifically, we use fully convolu-
tional networks, the L2 loss function, ”small” input patches,
and eight tissue masks to serve as additional input channels.
These methods are described in detail in the following sec-
tions.

3. Dataset and Features
We utilized the Human Connectome Project (HCP) data

release of March 2017, which consists of both raw and
processed 3T MRI imaging data from 1206 healthy young
adults [16]. Each subject includes T1- and T2- weighted im-
age sets collected within the same scanning session. In a mi-
nority of subjects, more than one scanning session was con-
ducted. For these, the image sets were preprocessed, reg-
istered, and averaged within contrast. All image sets were
screened to exclude major neuroanatomical anomalies. Mi-
nor, benign variation such as a cyst is allowed, however,
and is reported in ConnectomeDB, the data management
platform for accessing HCP data. We do not distinguish
between subjects with or without such variations. Below,
we briefly describe preprocessing of the data that is relevant
to the interpretation of our experiments. Further details can
be found in [6]. All files specified below are available via
the ConnectomeDB database.

Separately, the raw T1- and T2- weighted image sets
were corrected for nonlinearities induced by B0 field
image distortions. The T1-weighted images underwent
anterior commissure-posterior commissue (ACPC) align-
ment, and the T2-weighted images were then aligned to
these using rigid body transformation. These steps pro-
duced the images stored in T1w acpc dc.nii.gz and
T2w acpc dc.nii.gz that we use for T1-to-T2 contrast
mapping. Images in both datasets are of size 260 × 311 ×
260 voxels with 0.7 mm isotropic resolution.

The T1 volume was skull stripped and segmented
into different tissue types using HCP-specific Freesurfer
scripts [5]. The segmentation is provided in the out-
put file wmparc.nii.gz and corresponds to a com-
bination of white matter/grey matter cortical parcella-
tion and subcortical segmentation. The brain mask de-
rived from the skull-stripping step is provided in the file
brainmask fs.nii.gz. We aggregate the brain mask
and segmentation into eight label sets: brain, grey mat-
ter, white matter, cerebral spinal fluid, subcortical struc-
ture, vessel, cerebellum, and unknown. Binary masks were
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genereated for each anatomical tissue label, and treated as
a separate input channel in addition to the T1-weighted in-
tensity values. Binary values of -1 and +1 were chosen to
maintain zero-mean input.

In this work, we operate over 2D images and treat each
slice as an independent sample. This results in only 260
samples per subject. Therefore, to increase the size of
our dataset, we split each slice into smaller subimages, or
“patches.” We use a patch size of (128 × 128) and a stride
of 24, giving 12,480 samples per subject – effectively in-
creasing the dataset by a factor of 50. Prior to patching,
the average overall intensity value was calculated across all
training images and subtracted from the complete dataset.

As described below, we ran experiments to explore the
effect of the training set size on model output. We first de-
veloped the model using only a single subject. The 12,480
image patches were split into training, validation, and test
sets, using an 80-1-19% breakdown, respectively. Thus,
n=9,984 samples were used for training, and n=2,371 sam-
ples were used for testing. To determine how well our re-
sults generalized across subjects, we next trained the model
using all samples from either one or fifty subjects, and
used all images from five different subjects as the test set.
In these cases, the total number of training samples was
n=12,480 and n=624,000, respectively, while the total num-
ber of test samples was n=62,400.

4. Methods
4.1. Network Architecture

The network architecture implemented here relies on
three main operations: two dimensional convolution lay-
ers, spatial batch normalization [9], and the rectified linear
unit (ReLU) activation function. The 2D convolution layers
compute the output using the relation shown in Equation 1

y[b, i, j, k] =
∑

di,dj ,q

X[b, si · i+ di, sj · j + dj , q] · f [di, dj , q, k]

(1)

where X and y are the input and output tensors stored in
NHWC format, respectively, f is the 4D tensor that has the
same 2D filter along N and C dimensions, and si and sj are
the strides along H and W dimensions, respectively.

Batch normalization is a recently developed technique
that makes deep neural networks more robust to poor ini-
tialization [9]. Each batch normalization layer serves to
normalize the previous layers activations into a distribution
with learnable mean β and variance γ. Typically these val-
ues are initialized to 0 and 1, respectively, making the pre-
vious layer’s output take on a zero-mean, unit-variance dis-
tribution. A momentum variable also allows these parame-
ters to be updated as a running average. The batch normal-
ization operation has the effect of implicit regularization,

and allows higher learning rates to be used with less con-
cern over initialization parameters [9]. In the model imple-
mented here, batch normalization parameters were chosen
to be the same as those initially described in [9]. There are:
momentum = 0.99, ε = 0.001, β and its moving average ini-
tialized to 0, and γ and its moving average initialized to 1.
The ε parameter is a small float value that is added to the
variance to avoid division by zero, and has negligible im-
pact on results.

The ReLU function takes the form f(x) = max(0, x).
This activation function was favored over other options,
such as the sigmoid and tanh functions, for its computa-
tional simplicity and accelerated convergence properties in
stochastic gradient descent [11].

In the model used here, we pass input patches of size
(128 × 128 × depth) through a nine-layer CNN. The in-
put depth can either take on a value of 1 or 9, depend-
ing on whether tissue labels are used as additional input
features. The first eight convolutional layers conform to
the pattern [Conv2D]-[BatchNormalization]-[ReLU]. Each
Conv2D operation includes 32 (3×3) filters. To collapse the
hidden layer data into the desired output dimensions (i.e.
to force a depth of one), the final convolutional layer has
only one (3×3) filter. We note that no explicit regulariza-
tion techniques were implemented in our model, since over-
fitting did not manifest in preliminary tests. A summary of
the architecture is provided in Figure 2.

Figure 2. Proposed model architecture for T1-to-T2 mapping.
Note that input depth can be either 1 or 9, depending on whether
tissue labels are used as additional features.

4.2. Training

Training is implemented using the mean-square-error
loss function shown in Equation 2

d2(I1, I2) =
1

N

N∑
n=1

(I1[n]− I2[n])2 (2)

where I1 and I2 are flattened images and N is the number
of pixels. The Adam algorithm was used as the optimizer
to minimize this loss [10]. This is a method for performing
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stochastic gradient descent over a high-dimensional, non-
convex landscape. It computes individual adaptive learning
rates for different parameters from estimates of first and sec-
ond moments of the gradients. The full Adam algorithm is
described in Equations 3a through 3c below, where m is a
moving average of the gradient, v is a moving average of
the gradient squared, β1 is the momentum parameter of the
gradients, β2 is the momentum parameter for the gradients
squared, λ is the learning rate, and ε is a small float added
to avoid division by zero. A higher momentum value means
that the current gradient will contribute less to the moving
average. We implemented the Adam algorithm with hyper-
parameters suggested in its original formulation [10]. These
are: β1 = 0.9, β2 = 0.999, and ε = 1e-09.

mt+1 = β1 ·mt + (1− β1) · dx (3a)

vt+1 = β2 · vt + (1− β2) · dx2 (3b)
xt+1 = xt − λ ·mt+1/(

√
vt+1 + ε) (3c)

In our implementation, we anneal the learning rate λ in
equation 3c following a step decay schedule. We reduce λ
by a half every 4 epochs, starting with an initial learning rate
of 0.1. Decaying the learning rate helps improve training
performance by allowing the optimizer to settle down into
the narrower parts of the loss function.

As described in the experiments section below, we train
our models using either data from a single subject or multi-
ple subjects. The models that use a single subject for train-
ing are trained for 20 epochs. Per epoch training time for the
models that use 50 subjects is considerably higher. There-
fore, these models are trained only for 8 epochs.

We use a batch size of 32 for the models trained on a
single subject. In order to take advantage of the parallelism
between CPU based patch extraction and GPU based model
training, we select a batch size of 128 for training the mod-
els using training data from multiple subjects.

4.3. Implementation

To implement our model, we use the Keras [4] API with
a TensorFlow [1] backend. All computations are executed
on Google Cloud using a CPU or NVIDIA Tesla K80 GPU.
Due to the large size of the dataset, it is not possible to load
the patches for all subjects into computer memory at once.
In order to remedy this, Python generators are used to ex-
tract and generate patches for each batch separately. In ad-
dition, the NumPy memmap module is utilized to partially
load data from disk on the fly and reduce memory usage.

5. Experiments, Results, and Discussion
5.1. Experiments

Multiple experiments were run to evaluate the effect of
network depth, training set size, and the addition of input

features providing voxelwise tissue-type labeling. We eval-
uate model performance both by visual inspection and by
using the mean-square-error loss values between the output
T2-weighted images and the ground truth T2-weighted im-
ages. To facilitate comparison between models, we show
the same images from the test set for the across-subject ex-
periment results.

5.2. Results and Discussion

5.2.1 Model Learning

To confirm that the proposed model could learn, we first
trained and tested the model using data from one subject.
This model included nine convolutional layers and nine in-
put channels (i.e. T1-intensity plus eight tissue masks). The
loss curves shown in Figure 3 exhibit a steady decline fol-
lowed by a plateau, indicating that the network could learn
and that network parameters are updating in a proper and
stable manner. The small gap between training and valida-
tion loss also suggest that the models are properly regular-
ized. Having confirmed that the model successfully learned,
we moved on to test the role that input features, network
depth, and training set size have in the accuracy of our re-
sults.

Figure 3. Learning curves for within-subject testing and training.

5.2.2 Effect of input features

We first investigated the effect of using only the T1-
weighted image intensity as input versus using the T1-
weighted image combined with eight additional tissue mask
channels. Visually, the resulting T2-weighted images
looked much more similar to the ground-truth images when
the tissue labels were included. This was true in the case of
both deep (Figure 4c vs. 4d) and shallow (Figure 4e vs. 4f)
networks when using one subject for training and using five
different subjects for testing. It was also true in the case of
a deep network when using 50 subjects for training (Figure
5c vs. 5d). Furthermore, as shown in Tables 1-3, providing
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No Tissue Masks Tissue Masks
3 Layer Network 12,795 10,664
9 Layer Network 5,177 4,091

Table 1. Within-subject loss values. Corresponding output images
are not shown for simplicity.

these tissue labels as input reduced the L2 error across all
model variants tested - typically by 20%. We thus conclude
that the addition of binary tissue label masks significantly
enhances the prediction of T2-weighted images from T1-
weighted images.

Figure 4. Across-subject T2 prediction results using n=1 subject
training set for four representative patches. (a) T1-weighted im-
age. (b) Ground-truth T2-weighted image. (c) Predicted T2 image
using nine-layer network without tissue masks. (d) Predicted T2
image using nine-layer network with tissue masks. (e) Predicted
T2 image using three-layer network without tissue masks. (f) Pre-
dicted T2 image using three-layer network with tissue masks.

No Tissue Masks Tissue Masks
3 Layer Network 20,385 16,627
9 Layer Network 12,643 9,783

Table 2. Across-subject loss values, training size = 1 subject.

No Tissue Masks Tissue Masks
9 Layer Network 9,093 7,728

Table 3. Across-subject loss values, training size = 50 subjects.

5.2.3 Effect of network size

We next compared our results with those of a shallower net-
work that uses only three convolutional layers instead of
nine. Visually, we found that the resulting T2-weighted im-
ages looked much more similar to the ground-truth images
when a deeper network was used (Figure 4c,d vs. 4e,f). In
this case, we see that adding additional convolutional lay-
ers significantly enhances the prediction performance. As
shown in Tables 1-2, increasing the number of convolu-
tional layers reduced the L2 error across all model variants
tested - typically by 40-60%. We thus conclude that the ad-
dition of more convolutional layers significantly enhances
the prediction of T2-weighted images from T1-weighted
images.

5.2.4 Effect of training set size

Finally, we compared two scenarios to determine the im-
provement in performance achieved by training over larger
datasets: (1) a single subject was used as the training set,
while five other subjects were used as the test set, and (2)
images from 50 subjects were used as the training set, while
five other subjects were used as the test set. Comparing
the loss values in Tables 2 and 3 indicates that the loss de-
creased when using the larger training set size. Further-
more, a comparison of the images shown in figures 4d and
5d shows that certain features were better preserved in the
inclusion of multiple subjects, such as the apparent sepa-
ration of adjacent gyri. In addition, subcortical blurring
was significantly reduced on the images obtained using the
model trained with a larger training set.

5.2.5 Tissue specificity

As can be seen, the trained networks could preserve tissue
traits in the mapping of T1-weighted to T2-weighted im-
ages. As a remarkable example, the CNN recognized in-
version. For example, while the predicted T2 images show
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Figure 5. Across-subject T2 prediction results using n=50 subject
training set for four representative patches. (a) T1-weighted im-
age. (b) Ground-truth T2-weighted image. (c) Predicted T2 image
using nine-layer network without tissue masks. (d) Predicted T2
image using nine-layer network with tissue masks.

dark white matter and bright gray matter (the opposite from
the input T1 images), the skull and ventricle intensities gen-
erally do not change. All networks are able to produce these
inversions. That the network without tissue labels could
learn these mappings suggests that tissue specific mappings
are latent in intensive patterning of the patches, that the
patches provided enough view to sufficiently distinguish
large scale structure, or both.

6. Conclusions and Future Work

Our experiments demonstrate the feasibility of applying
deep convolutional neural networks towards the problem of
predicting one MRI contrast from another. Our results in-
dicate that deep CNNs perform better than shallow CNNs,
and that including tissue type feature labels as additional
inputs improves performance. Finally, we find that larger
training datasets have potential in improving the perfor-
mance of the network but require significant training time,
even on a GPU.

A critical question moving forward with this approach is
whether the algorithm can accurately predict T2-weighted
images in the presence of abnormalities. Because MRI im-
ages are acquired for diagnostic purposes, this ability is nec-
cessary if it were to ever be deployed. Although the dataset
used here included healthy subjects only, future work will

incorporate pathological images with tissue abnormalities.
If the model cannot successfully predict these abnormali-
ties, the training set can be revised to include this type of
data.

There are a number of hyperparameter options left to
test. One other item to test in future work is any potential
improvement by using 3D convolutions instead of 2D con-
volutions. 3D convolutions were initially attempted here,
but found to be infeasible due to memory constraints. Run-
ning the model with higher specification computers and em-
ploying the NumPy memory map module used here are
likely to make this approach more feasible. Another pos-
sibility is to sweep across patch or 1st layer kernel sizes to
vary the amount of spatial information that the network is
provided at the input level.

If network optimization were to reach satisfactory map-
ping, as validated by radiologists or imaging scientists, it
would be of interest to transfer the network to other con-
trast problems.
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