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Abstract

Empirical molecular ”fingerprints” are often used in
computational drug discovery (specifically in QSAR meth-
ods [3]) to predict Protein-Ligand binding affinity. How-
ever, these fingerprints are based on rigid, geometrically-
based chemical descriptors that must be hand-tailored to
match quantum mechanical experiment data, making the
development and choice of fingerprint features extremely
difficult. In this paper, we introduce a deep convolutional
network, Brendan, that allows us to learn the latent features
of Protein-Ligand binding poses by learning from the val-
idated crystallographic poses of PDBBind [14]. Although
other approaches have attempted to use deep learning to
predict Ki/Kd, toxcity, or potency of molecules (see [18]
[1] [21] [10]), we are the first to explore the chemical in-
tuition behind these models and present a chemically in-
spired deep learning framework that can accurately predict
− log(Ki/Kd). The main contributions of this paper are to:
(1) explore the effect of using a Protein-Ligand centric lan-
guage (through SPLIF voxels [5]) to represent our 3D crys-
tallographic structures, (2) develop novel graph convolu-
tional methods for crystallographic data, using the theoretic
with of [6], and (3) show that the latent features learned
(via the fully connected representation) can be used in other
Protein-Ligand downstream regression/classification appli-
cations.

1. Introduction

Nine of the top ten most prescribed medicines in the
United States are small molecules [4]. Although ”hot” new
methods such as gene editing occupy the majority of arti-
cles about therapeutics, the reality is that small molecules
have and will continue to make a significant impact on hu-
man health. Small molecule (ligand) based therapeutics
work by binding to and changing the behavior of proteins of
interest (proteins that are involved in disease-related path-

Figure 1. The chemical latent space learned by a deep convolu-
tional network will allow us to use gradients to optimize func-
tions that pertain to binding properties of a ligand-protein com-
plex. Small perturbations in the binding latent space would pro-
vide molecules that have similar binding properties. Reproduced
from [11].

ways). Drug discovery is highly dependent on the pre-
diction of protein-ligand binding affinity and function. In
most cases, in both academia and industry, this prediction
is done manually by a team of highly specialized medic-
inal chemists. However, the chemical space of synthesiz-
able ligand-like small molecules intractable (> 1060 com-
pounds) [19]. QSAR (Quantitative structure-activity rela-
tionship models) methods, introduced in the early 2000s,
comprised of the first efforts to automate the drug discov-
ery process. These methods all create a fixed-length fea-
ture vector to describe the molecular properties of the lig-
and of interest. However, by ”hashing” molecular features
into a fixed-length feature vector, we lose all type of spatial
relativity from our input structure. Although these meth-
ods have decent performance on ligand inputs, they perform
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- log(Ki/Kd)

Figure 2. QSAR methods use traditional machine learning meth-
ods, such as random forests, to regress on fixed chemical feature
vectors [3].

quite poorly on protein-ligand structures due to the impor-
tance of spatially dependent protein-ligand contacts. De-
pending on the contacts made, ligands can induce different
downstream biological effects in protein pathways.

Physics based methods such as protein-ligand docking
make highly inaccurate assumptions about both the inter-
actions being formed and the conformation of the protein-
ligand system but are still the most popular method for
protein-ligand prediction[8]. Very recent methods ([21]
[10]) have attempted to tackle the open problem of protein-
ligand binding affinity via deep learning models. Although
these new methods are promising, they significantly overfit
- failing to generalize to protein classes not trained on. Pre-
dicting protein-ligand binding affinity is still an open prob-
lem, with the majority of models in this space being unex-
plored. In this paper, we explore 3 different types of novel
deep learning models for protein-ligand binding poses: (1)
SPLIF Voxels and 3D Convolutions, (2) Interaction Vox-
els and 3D Convolutions, (3) Interaction Graphs and Graph
Convolutions. These different deep learning architectures
are all used to regress on − log(Ki/Kd) ∈ R. We evalu-
ate each of these methods’R2 for predicting− log(Ki/Kd)
for a held out test set of 1500 structures from PDBBind and
explore the chemical intuition behind each model.

2. Related Work
2.1. QSAR Approaches

Popular QSAR fingerprints include ECFP and SPLIF [3]
[5]. At every atom, these fingerprint methods create a circu-
lar radius, increasing the radius up to 5 Angstroms, hashing
the set of atoms contained in this radius into a fixed length
binary array. ECFP is the generalized version of this proce-
dure, SPLIF is specific to motifs found between the protein
and ligand within the binding site. The typical length of
these bit vectors is 23 − 28. Bit vectors are most commonly
fed into a traditional machine learning algorithm, such as
a random forest, in order to make classification or regres-
sion results. Similarity between molecular fingerprints is
often computed using the Tanimoto coefficient, also known
as the Jaccard index, between two bit vectors [2]. The in-
tuition behind this similarity metric is that molecules with

similar motifs should have the same chemical properties.
Since QSAR fingerprints

More traditional QSAR approaches use fingerprint vec-
tors that contain chemical descriptors of molecules, such as
atomic weight, valence, partial charge, formal charge, hy-
bridization, etc. These descriptors don’t generalize well to
large protein-ligand complexes due to their chemical com-
plexity [3].

2.2. Physics Based Methods

Docking procedures provide physics based functions to
approximate protein-ligand binding affinity. Often, docking
is used to create ligand binding poses for a particular pro-
tein when the binding pose is not known. Docking programs
such as Glide and Vina first perform a search of a predefined
binding pocket in the protein. Then, potential poses are fil-
tered such that no highly energetically unfavorable clashes
between heavy atoms occur. Finally, the binding affinity of
the remaining subset of poses are predicted using a physics
based force field. Recent studies have shown that docking
based methods often include the correct ligand pose in the
final subset of results [17]. The weakness of docking meth-
ods lies in the crude, approximate force field that it uses
to evaluate the final subset of poses. This is done in or-
der to make the scoring set computationally tractable. More
advanced polarizable or QM-based force fields are signifi-
cantly more expensive [16]. With an accurate prediction of
protein-ligand binding affinity (as provided by our method),
the results of docking could be improved significantly. Re-
cent work has attempted to do exactly this, but with subop-
timal results [15].

2.3. Deep Learning Methods

2.3.1 Voxel Based Methods

Deep learning methods have only recently been applied
to chemical problems. The first major paper that used
convolutional networks was AtomNet, which uses voxl-
ized 15x15x15 Å voxel volume input with 1x1x1 Å voxel
size and classifies protein-ligand complexes as high or low
binders [20]. However, AtomNet is proprietary software by
AtomWise and it is extremely unclear what kind of voxel
featurization AtomWise used. AtomNet is trained on the
ChEMBL dataset, which contains 78k actives, 2M decoys,
and 290 targets. However, ChEMBL does not contain crys-
tallographic poses for active or decoy data. It has been
speculated that AtomWise simply chose the highest ranking
docking pose in order to obtain their voxel input volumes,
but they refuse to answer any specific questions about their
method. Although the results of AtomNet did not outper-
form previous methods, the paper represented a new interest
in deep learning models for medicinal chemistry.

Wu et al. introduce a similar model, MoleculeNet.
3D crystallographic data from PDBBind used as training
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Figure 3. Docking methods first use geometrical-based filters to
remove ligand poses with highly unfavorable heavy atom clashes.
These geometrical filters are lightweight to compute and allow a
large amount of the binding site to be explored by the ligand. Fur-
ther refinement steps are taken, each being more computationally
intensive and accurate. Finally, physics based force fields are ap-
plied to the refined set of ligand poses (≈ 300) to predict binding
affinity. [8]

data. Although there is significantly less data in PDBBind
(30000) compared to ChEMBL (78k actives, 2M decoys),
PDBBind is crystallographic and can be seen as ground-
truth. This aliviates the docking-specific bias that results
from using ChEMBL data. MoleculeNet uses SPLIF, salt
bridge, and H bond terms within each voxel. Therefore,
MoleculeNet simply contains a language for chemical frag-
ments within each voxel, without a distinction between pro-
tein and ligand. Pi-Pi Cation and Pi-Pi Stacking terms were
originally included in each voxel but were removed since
they reduced performance. Since we are trying to learn
binding features, it makes sense to instead use a language
that is centered around ligand-protein interaction. From
Zhang et al., we can see intuitively that we have to choose
a language that is represented by our bit vector that will let
our network visually learn from examples (see Figure 10).

MoleculeNet expanded on AtomNet - adding many more
features to each voxel, including partial charge, atomic
mass, and ECPF [21]. However, MoleculeNet is still out-
performed by methods such as Random Forest on the PDB-
Bind dataset. MoleculeNet also uses a 15x15x15 Angstrom
input with 1x1x1 Angstrom voxels to featurize the binding
site of a protein. This is problematic because for one input,
there are 28× 15× 15× 15 ≈ 1M parameters. This highly
encourages the model to overfit to training data. Addition-
ally, input volumes are not rotated such that the network
will maintain rotation invariance.

2.3.2 Graph Convolution Methods

The most notable graph convolution methods relating to
molecules are Duvenaud et al. and Kearnes et al. [7]
[13]. Both methods introduce similar fully-differentiable
functions to represent small molecules as finite-sized fea-
ture vectors. The main innovation behind these papers is
that these ”neural fingerprint” methods are connected to a
downstream regression loss, allowing the neural fingerprint
to be optimized for the regression task of interest.

There has been a notable exception of graph convolu-
tional methods for protein-ligand centric tasks. Molecu-
leNet implements the method in Duvenaud et al. but
achieves subpar results (R2 = 0.1894) [13] [21]. A
naive implementation of Duvenaud et al. will not work
for protein-ligand prediction because it does not capture the
most important factors that drive binding - non-bonded in-
teractions. Since the ligand and protein are two different,
non-connected graphs, the method does not know where the
ligand is placed in the protein. For all the method knows,
the protein and ligand do not bind at all. If we are restricting
ourselves to using crystallographic data, it is important for
us to take advantage of the high resolution of data granted
to us.

Gomes et al. introduces a Atomic Convolution method
that is similar to graph convolutional methods. The Atomic
Convolution can be seen as a graph convolution where all k
neighboring atoms within a neighbourhood of d Angstroms
are connected by an undirected edge. Atomic Convolu-
tions achieve state of the art performance on the PDBBind
dataset, however, a large amount of information is thrown
out by removing bond and interaction information between
atoms. Additionally, significant spatial resolution is lost in
this method. Atomic Convolutions perform significantly
better than graph convolutions though because it still cap-
tures some amount of spatial information.

2.3.3 Autoenconder Methods

Iit is very hard to navigate the large chemical space of small
molecules since neighboring graph operations can render
molecules invalid or unsynthesizable. Bombarelli et al. cre-
ated an autoencoder, using SMILES strings as input/output
to their network [11]. The latent vector that results can be
used to optimize any given function, f(z), which is very
useful from optimizing chemical functions. However, small
perturbations in the latent chemical space are not guaran-
teed to give new molecules with similar binding proper-
ties. Often, although SMILE strings may be very similar,
chemically, they can have significantlly diferent properties.
The latent feature vector captured by a protein-ligand bind-
ing regressor could instead be used, since small perturba-
tion would translate to small perturbations in the binding
space. Additionally, the autoencoder in Bombarelli et al.
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(a) SPLIF Voxels (b) Interaction Voxels

(c) Duvenaud et al. (d) Interaction Convolutions

Figure 4. A variety of novel methods for predicting protein-ligand
binding affinity are explored in this paper.

only works on small molecules that can be represented via
SMILE strings (approximately 2D structures). For pratical
purposes, a protein-ligand autoencoder would be the most
helpful

3. Methods
13,000 crystallographic binding poses from PDBBind

are used for all methods in this paper. PDBBind is a set
of refined crystallographic structures from the Protein Data
Bank (PDB) that contain highly accurate protein-ligand
binding affinities [14]. Structures were split into 10000 for
training, 1500 for validation, and 1500 for test sets. Struc-
tures were split randomly into each set. The same random
splits were used for each method.

3.1. SPLIF Voxels

A 21x21x21 Angstrom input cube is drawn around the
center of each protein binding site. Protein-Ligand features
are inputted into 1x1x1 Angstrom voxels. In each voxel, a
28 sized input vector contained SPLIF (Structural Protein-
Ligand Interaction Fingerprints) features of protein-ligand
motifs [5]. Input grids are transposed across all 3 axises to
help the network maintain rotation invariance.

To generate these fingerprint vectors, for the atoms
within a given 1x1x1 Angstrom voxel, all protein-ligand
motifs within 5 Angstroms of those atoms are uniquely
hashed using MD5 into the voxel’s bit vector. Note that
this means that inputs are very sparse for voxels close to
the input edge. SPLIF bit vectors were chosen such that the
network could learn the strength of each protein-ligand in-

teraction. Unlike ECFP fingerprints, since SPLIF is protein-
ligand based, each bit maintains the spatial interaction be-
tween a protein and ligand [5]. With ECFP fingerprints, the
network does not know what is ligand and what is protein -
which can be problematic with low 1 Angstrom spatial reso-
lution. Spatial resolution could be increased, however, with
1x1x1 Angstrom voxels and 28 bit vectors, maximum batch
sizes of 10 could be fit onto a GTX 1080 before running out
of memory. Smaller voxels would also require many more
network parameters and encourage overfitting. The aver-
age value of each index in a voxel’s bit vector is 1e-4 with
the maximum number of hash collisions being 5 - indicat-
ing that there is enough information for the network to learn
about specific protein-ligand motifs.

After data preparation, inputs are fed into a ResNet-
style network containing 3D Convolutional layers to pre-
dict − log(Ki/Kd) (see Figure 5). A variety of network
sizes with different regularization strengths were trained -
50 layers, no dropout, no regularization; 25 layers, 20 per-
cent dropout, L2 regularization of 1e-2 on fully connected
layers, 15 layers, 30 percent dropout, L2 regularization of
3e-2 on fully connected layers. All networks were trained
using the Adam optimizer with L2 loss and a learning rate of
1e-3. L2 is an appropriate loss function for this regression
because changes in −log(Ki/Kd) linearly affect binding
affinity. Despite this linear relationship, L2 is chosen over
L1 due to its favorable dynamics during training. A batch
size of 10 was used, model was trained for 100 epochs.

3.2. Interaction Voxels

The interaction voxel method also places a 21x21x21
Angstrom input cube around the protein’s binding site and
divides space into 1x1x1 Angstrom voxels. Schrodinger’s
Maestro API is used to identify protein-ligand interactions
that are known to play a role in binding. The OPLSv3 force
field is then used to get the kJ/Mol interaction energy associ-
ated with a specific protein-ligand interaction [12]. Protein-
Ligand interaction energies between atom sets is quantified
by the sum of electrostatic and Lennard Jones potentials.
OPLSv3 has been quantitatively shown to be one of the
best force fields for calculating energies between general
protein-ligand systems [12]. Since we are not performing
any temporal simulations, force field bias is not considered.

Once protein-ligand interactions are identified, the mid-
point of the interaction is determined and the interaction
energy is added to the voxel’s feature vector. Each fea-
ture vector for a voxel contains energies for (1) Hydrogen
Bonds, (2) Pi Stacking, (3) Hydrophobic contacts, and (4)
Salt Bridges.

Interaction Voxels were trained using a 15 layer ResNet,
30 percent dropout, L2 regularization of 3e-2 on fully con-
nected layers. A small network was used due to the con-
densed information of interaction energies. In a sense, we
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Figure 5. Zhang et al. speculate that their convolutional network
was able to understand sentiment from text due to the bit vector’s
similarity to braille. For Brendan to learn about protein-ligand
binding features, we need to choose a chemical language that cen-
tered around the task of protein-ligand interactions.

used physics-based force fields to perform lower-level fea-
ture detection. Therefore, fewer layers should be needed.
The network was trained using the Adam optimizer with L2
loss and a learning rate of 1e-3

3.3. Graph Convolutions

For this method, protein-ligand binding poses are en-
coded in a graph structure. In all graph convolutional meth-
ods explored (and in past literature), atoms are represented
as nodes in the graph and edges represent a molecular in-
teraction (both bonded and non-bonded). Each node in the
graph contains a graph signal s ∈ Rh where h is the dimen-
sion of the signal.

The graph signals at each node are a concatenation of:

• One hot vector of atom element (Length 44)

• One hot vector of atom degree (Length 11)

• One hot vector of number of hydrogens attached (im-
plicit hydrogen model) (Length 5)

• Implicit atom valence

• One hot vector of atom Hybridization Type (Length 5)

• Formal atom charge

• Number of radical electrons

• Boolean isAromatic

• Atomic Mass

The goal of a Graph Convolution Network (of which
there are many varieties) is to learn a function of graph
signals on a graph G = (V,E) with feature signal ma-
trix F ∈ RN×D and adjacency matrix (weighted or un-
weighted) A ∈ RN×N .

The main failing of previous graph convolutional meth-
ods on protein-ligand data has been the failing to in-
clude important non-bonded interactions that are relavant to
binding. Interactions between protein-ligand and protein-
protein atoms are search for 20 Angstroms around the cen-
ter of the protein binding site. These unbonded interactions
are included in our graph structure.
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Figure 6. Network architecture for Brendan. Radial arrows signify
a residual connection between layers. Each convolutional layer is
a RxRxR 3D convolution in which each filter has 28 weights (the
size of the SPLIF bit vector). Brendan is trained using Atom with
L2 loss with a batch size of 10.

The results of Duvenaud et al., ”Neural Graph Finger-
prints”, are explored via the DeepChem library [21]. Neural
fingerprints are created by summing R hidden graph layers.
Each graph layer involves a pooling operation where the
signals at each node are convolved with neighboring nodes.
This convolution is formalized as σ(ÃH(l)W (l)) where σ
is a non-linear activation function such as ReLU, H(l) is
the signal at time l for a given node (with H(0) = X), and
W (l) is the learnable weight matrix for the lth hidden graph
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(a) Structure of 1EVE (b) Structure of 1H23

Figure 7. Adjacency matrix and graph of eigenvalues of the
Laplacian matrix for structures 1EVE and 1H23, both acetyl-
cholinesterase receptors.

convolutional layer. Notice that at each time step, previous
node signals are stored and updated via the convolutional
update rule σ(ÃH(l)W (l)) in which new signals are com-
puted and used for future updates. Ã is actually the symmet-
ric normalization of the adjacency matrix. The full update
rule is σ(D̂− 1

2 ÂD̂− 1
2H(l)W (l)). A fully connected layer

is then used to learn a desired property, given the learned
fingerprint vector. We explore how adding unbonded edges
affects the naive version of this procedure.

Defferrard et al. is also tested on this graph represen-
tation [7]. This method uses Chebyshev polynomial ap-
proximations to learn convolutional filters for the k near-
est neighbors for a node in the graph. This method also
uses a graph pooling layer in which efficient graph coars-
ening is applied to approximate the structure of the Lapla-
cian. When nodes signals are pooled, they are simply added
into the coarsened node. The coarsened graph is represented
as a binary tree for efficient traversal with orphaned nodes
containing two ”ghost” node children to maintaing the bi-
nary tree assumption. After futher graph pooling and con-
volutions, the resulting graph signals are fed into a fully
connected layer to regress on a specific output, in this case
binding affinity. Due to the high computational cost of this
method, only atoms around the binding site are included
in our graph. Additionally, since this method relies on a
fixed number of graph nodes and graph structure, we al-
ways select 100 atoms around the binding site, starting from
a counter-clockwise atom numbering. Since the Laplacian
for each graph is different, we expand on this method by
recomputing it for each graph. As a sanity check, we can
see that the Laplacian for proteins in the same family share
extremely similar structures (see Figure 7).

PDBBind: Regression on -log(Ki/Kd); R2 Performance
Methodology Train Valid Test

ECFP 0.373 0.361 0.337
ECFP Grid 0.960 0.488 0.471
SPLIF Grid 0.971 0.501 0.497

Interaction Grid 0.915 0.402 0.348
Naive Graph Convolution 0.193 0.196 0.189
Atom Convolution [21] 0.962 - 0.562

Brendan Graph Convolution 0.916 0.567 0.503

Figure 8. Performance metrics for different models that were re-
gressed on PDBBind

4. Dataset

All methods are trained on the PDBBind general set. The
general set contains 13,000 entries and are split into 10,000
for training, 1,500 for validation, and 1,500 for testing. The
PDBBind general set was chosen over the refined (4000
entries) and core (290 entries) sets because of the larger
amount of data available. Additionally, structures are min-
imized using OPLSv3 with heavy atom constraints, so the
resolution of the crystallographic structures is not of ma-
jor concern. To further mitigate the problem of resolution,
missing hydrogens are added via PDBFixer.

PLIP and Maestro are used to detect non-bonded terms
in the binding site. OPLSv3 is used to verify the energies of
these non-bonded interactions for interaction voxels. RDKit
and DeepChem are used to calculate graph signals for each
atom.

5. Results and Discussion

5.1. SPLIF Voxels

As expected, using SPLIF Voxels with a large 50 layer
ResNet and no regularization highly overfit to the training
data R2:(Train: 0.989, Valid: 0.273, Test: 0.235). Using a
deep learning model actually significantly hurt performance
compared to using a traditional random forest approach.
This is because the last layers of the ResNet contain a signif-
icant number of layers (512 and 2048) in certain modules,
allowing the network to simply memorize the training data
that it saw. In fact, the number of layers actually exceeds
the amount of training data fed to the network. Although it
looks like the network is learning (see Figure 8), on closer
inspection, training loss in final epochs is ¡ 1 while valida-
tion loss never goes below 5.

The medium sized network of 25 ResNet layers removes
a significant portion of the later, high filter count convolu-
tions. The hypothesis behind this was that with fewer fil-
ters, the network wouldn’t be able to memorize as much
training data and would be forced to generalize. 20 percent
dropout and L2 regularization of 1e-2 on fully connected
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Figure 9. Training and Validation loss for the large ResNet50
model with 3D Convolutions. As shown in the graph, there is a
large gap between training and validation loss, which signals us to
overfitting.

layers were also used to help generalization. This signifi-
cantly helped performance and resulted in the best perform-
ing modelR2:(Train: 0.971, Valid: 0.501, Test: 0.497). The
gap in training and test loss is also seen in this case - training
loss is < 1 while validation loss is < 3. Although the av-
erage loss for validation and test sets is enough to be chem-
ically useful (poor, medium, strong binder), there is still a
large room for improvement.

A small network of 15 layers, 30 percent dropout, L2
regularization of 3e-2 on fully connected layers was trained
to see how many layers are needed to keep this generaliza-
tion. Once again, layers were removed from the end (high-
est layer number) of the ResNet. A noticeable drop in per-
formance was noticed R2:(Train: 0.913, Valid: 0.409, Test:
0.431). This seems to indicate that more than 15 layers are
needed to fully capture the binding trends that are occurring.

It is extremely unlikely that a voxel based method would
perform significantly better without an astronomical in-
crease in data. The network needs to learn the what each
of 28 bits represent in terms of protein-ligand motifs and
learn how the spatial orientation of bits within and close to
voxels affect binding energy.

5.2. Interaction Voxels

Interaction energies are input into voxels, as explained
in the methods section of this paper. The best performing
ResNet25 structure from SPLIF Voxels was used for this
regression problem. After 50 epochs, R2 of (Train: 0.915,
Valid: 0.402, Test: 0.348) was received.

Although this method outperforms SPLIF Voxels, it is
quite surprising that it still highly overfits on training data
since each voxel in the input volume only contains about
5 floats, compared to the 28 bits found in SPLIF vox-
els. This would imply that for Interaction Voxels (also po-

tentially for SPLIF Voxels) that the structure of the input
volume does not contain enough information to general-
ize to other protein-ligand complexes. This would make
sense since 1x1x1 Angstrom input vectors are actually quite
coarse in terms of spatial resolution. Additionally, interac-
tion energies are added to the midpoint between two inter-
acting atoms. This is a problem because in reality, inter-
actions form edges that connect atoms in a graph. We can
clearly see here that voxel-based inputs are not appropriate
for protein-ligand data and should be retired from use.

5.3. Graph Convolutions

Duvenaud et al. with addded unbonded edges was per-
formed on PDBBind with R2:(Train: 0.916, Valid: 0.567,
Test: 0.503). Defferrard et al. was also implemented with
unbonded edges with R2:(Train: 0.618, Valid: 0.223, Test:
0.211).

In retrospect, it is not surprising that Defferrard et al.
does not perform well on protein-ligand data. Since learned
filters are connected to the Laplacian of the input graph, this
method assumes that each nodes performs the same func-
tion in the graph. This is obviously not the case in terms of
a protein-ligand binding site. Our results for Duvenaud et
al. are extremely promising and come close to matching the
performance of Atomic Convolutions [21]. Very coarsely,
connecting each node with its neighbors within a radius
of 5A should give similar results to Atomic Convolutions.
This leads us to believe that there may be other nonbonded
interactions that are not captured by our graph that are ac-
counted for by Atomic Convolutions. More graph edges
would lead to faster communication of graph signals be-
tween nodes, allowing for more expressive functions based
on signals to be learned. Message Passing algorithms for
graphs are able to account for different edge types and could
be an easy way to connect seeming non interacting atoms
such that information can flow easier through the graph [9].

This is the first time that graph convolutional methods
have been successfully applied to protein-ligand crystallo-
graphic data and represents a new path forward for this class
of problems.

5.4. Downstream Machine Learning Applications

To show the potential of protein-ligand specific methods
for other machine learning applications, we take the latent
features learned by the ResNet25 network and use them to
measure binding similarity between poses. As shown by
(Lau et al., Unupublished), ligands that are known to bind
to certain families of proteins often bind in the same pose.
If the latent features of protein-ligand binding are captured,
we can use these latent features to measure similarity be-
tween poses for different ligands.

Glide docking is first run on 12 ligands that are known
to bind to B2AR family of receptors. Markov Chain Monte
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Figure 10. The latent features learned by the ResNet25 model are
a good representation of binding features.

Carlo is run for T=100 steps to find the maximum set of
ligands that overlap. Overlap between two ligand poses is
measured by the L2 distance between latent vectors from
the FC layer. This procedure is repeated for all 12 receptors
from the B2AR family.

Since we know the correct answers, we can select posi-
tive and negative examples from our generated Glide dock-
ing list. These positive and negative examples are first fed
through the ResNet25 network and the FC vector is given to
a random forest. The random forest learns which latent vec-
tors correspond to positive and decoy examples. As shown
in figure 10, the FC feature vector captures enough informa-
tion about the binding pose of the ligand that it can predict
binding energy more accurately than Glide.
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