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Abstract

Cell counting is a ubiquitous, yet tedious task that would
greatly benefit from automation. From basic biological
questions to clinical trials, cell counts provide key quan-
titative feedback that drive research. Unfortunately, cell
counting is most commonly a manual task and can be time-
intensive. The task is made even more difficult due to over-
lapping cells, existence of multiple focal planes, and poor
imaging quality, among other factors. Here, we describe
a convolutional neural network approach, using a recently
described feature pyramid network combined with a VGG-
style neural network, for segmenting and subsequent count-
ing of cells in a given microscopy image.

1. Introduction
Cell segmentation and counting is a currently a labori-

ous task commonly requiring the use of averages over many
grid areas[1]. A scientist must manually estimate the num-
ber of cells in a local grid within an image. This is repeated
at various grid points across the plate to get a mean den-
sity which is then used for estimating the total number of
cells. These density-based techniques suffer from several
drawbacks: firstly, they require a human to manually count
the number of cells, introducing the possibility of subjec-
tive errors; secondly, they require a significant amount of
time commitment, which could be better used for under-
standing, designing, and performing a new series of exper-
iments; thirdly, it is not completely obvious how error bars
can be obtained from such an analysis. Although more so-
phisticated tools do exist for this task, they can be costly,
rely on closed-source software, and do not address the issue
of quantifying error.

In short, we aim to automate the tedious process of
counting cells and estimating uncertainty. Our methodol-
ogy takes on a two-step approach:

• Cell segmentation: Generate a mask capable of identi-
fying cells in an image.

• Cell counting: Approximate a count and confidence
interval from the mask generated in the prior step.

In this manuscript, we aim to demonstrate how our ap-
proach leads to reliable cell counting in our benchmark
dataset. Additionally, we discuss model interpretability and
assess how our model learns to count. Finally, we dis-
cuss how incorporating uncertainty into the counting prob-
lem can improve model reliability and help identify failure
cases.

2. Previous Work
2.1. Segmentation

Segmentation using convolutional neural networks
(CNNs) is an important problem in computer vision and sig-
nificant progress has been made over the past few years [15,
16, 3, 17, 12, 4]. Of particular note is the Mask-RCNN al-
gorithm designed by Facebook AI Research (FAIR), which
represents the current state-of-the-art in the field [4]. In
their manuscript, He, et al. describe the use of feature pyra-
mid networks (FPN) to generate smooth subject masks from
a region of interest within an image [4, 12]. The stated ad-
vantage of the FPN is that it down-samples the input image
several times to learn features at different scales, which re-
portedly yields improved segmentation masks [12]. As the
accepted state-of-the art, we adopted this approach for our
task of segmenting cells.

However, we acknowledge that the task cell segmenta-
tion problem using CNNs has been addressed before. Van
Valen, et al. developed DeepCell, which treats the segmen-
tation task as classification problem on a pixel-by-pixel ba-
sis [20]. While successful at classifying different cell types
in images, DeepCell produces fairly low-quality segmenta-
tion masks and does not aim to solve the cell counting prob-
lem; hence, our decision to tackle this challenge using the
more state-of-the-art FPN instead.

2.2. Counting

To our knowledge, there is no state-of-the-art CNN ar-
chitecture for counting cells in an image. Although, at least
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one attempt has been made to count object densities from an
image using a CNN approach [14]. In their work, Oñoro-
Rubio and López-Sastre generate density maps from multi-
ple image patches, which they then sum over to calculate
a final count. The authors report success in both count-
ing vehicles and pedestrians in separate benchmarks. While
their approach is similar to ours in spirit, our model predicts
counts from high-contrast foreground masks, with no direct
knowledge of the density. This is in-part due to our dataset’s
limitations, which only provides a binary foreground mask
for select images.

2.3. Uncertainty

Understanding the uncertainty within a model is a crit-
ical part of generating better-informed predictions. Unfor-
tunately, deep neural networks are often used blindly and
their limitations are ignored, which can lead to devastating
consequences in practice [9]. In the case of counting cells,
we often rely on such assays for everything from basic re-
search to clinical trials. The difference between having a
statistically significant result or not, in somes cases, has po-
tential to save lives. Quantifying error for these scientific
problems can lead to improved statistical power and help
resolve experimental phenotypes more easily.

The recent work of Kendall and Gal details how to quan-
tify uncertainty in CNN models and shows its importance
in vision tasks [9]. Even more interesting is how trivial it is
to implement their derivation of a model’s aleatoric uncer-
tainty. By simply modifying the L2 loss function to include
an uncertainty term, σ:

[Aleatoric Loss] =
‖y − ŷ‖2

2σ
+ log σ2 (1)

where ŷ is the model prediction and y is the ground truth.
The aleatoric uncertainty of a model captures the uncer-
tainty with respect to information which the training data
cannot explain. In the idealize case of a complete train-
ing dataset and overfit model, the aleatoric uncertainty of
a given model input would be zero. Therefore, learning
the aleatoric uncertainty can yield some insights into what
the model has never seen before at test-time and, therefore,
suggestions to the experimentalist about what training ex-
amples might need to be added in future datasets.

3. Technical Approach

3.1. Cell Segmentation using a Feature Pyramid
Network

We begin by using an FPN to segment cells from their
background. The FPN is a feature extraction network de-
signed to build feature maps at multiple spatial scales [12].
It is a computationally efficient algorithm that cross-links a

Figure 1: A schematic of our Feature Pyramid Network for gen-
erating a foreground mask.

convolved down-sampled image with its corresponding up-
sampled image in the network, as shown in Fig. 1. The
cross link uses a single 3x3 convolution layer with 128 fil-
ters and padding to preserve the down-sampled images’ di-
mensions. These cross-links enable the network to infer not
only the relevant features at different scales but their spatial
correlations as well. Finally each up-sampled layer, goes
through three 3x3 convolutional layers: the first two have
256 filters and the final one only has one to produce a black-
and-white foreground mask. All convolutional layers were
proceeded by batch-normalization apart from the final out-
put layer. The result is an arbitrary number of foreground
masks at different scales from the original image. For our
network, we scale each layer in the pyramid by a factor of
0.5 and have a pyramid depth of 4 resulting in four output
masks, the largest of which is half the size of the original
image and is the mask used later by the counting network.
A similar set of convolutional layers is used to generate the
mask uncertainties, expressed as log-variances, as shown in
Fig. 1.

Each mask has its associated loss function, which con-
tains two terms: 1) the aleatoric loss from the true fore-
ground and 2) the total-variational (TV) loss. The aleatoric
loss, as described before, behaves as an L2 loss funtion with
the addition of the mask uncertainty. The TV loss helps to
smooth the foreground mask and remove any unwanted ar-
tifacts in a semi-unsupervised fashion [7]. The sum of these
losses, for each scaled masked, is then used as the final loss
for the FPN model.

3.2. Cell Counting using a VGG-like Network

For the counting network, we chose to look at the work
of the Visual Geometry Group (VGG) [19]. VGG networks
are deep convolutional neural networks that, in the past,
have won the ImageNet Challenge [19]. We used the VGG-
11 network which consists of 11 layers of two-dimensional
convolutions with a filter size of 3x3 pixels. The number
of filters vary from 64 to 512 as the network progresses.
Furthermore, each convolution layer was also followed by
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Figure 2: A schematic of our VGG-11-based network for count-
ing cells from a foreground mask generated using the network
from Figure 1

a batch-normalization layer, which has been shown to im-
prove training stability by preventing gradients from blow-
ing up or going to zero [6]. This was followed by a leaky
ReLU and a max-pooling layers.

The VGG-11 network was used as a feature extractor
for the counting network. To generate the count predic-
tion, we used three fully connected layers which were again
separated by a batch-normalization layer and leaky ReLu.
These fully connected layers had dimension 1024, 512, and
1, respectively, to end with a single float. The final layer
included a ReLU layer to prevent the network from out-
putting negative counts. A similar fully connected network,
with out the final ReLU layer, was used to predict the log-
variance. A schematic of the final network is shown in Fig.
2.

3.3. Uncertainty prediction for counting and seg-
mentation

Most neural networks are not designed to assign asso-
ciated error bars to their predicted values. This makes it
difficult to assess the model’s confidence in its prediction.
Such uncertainties might be useful in evaluating a model’s
strengths and weaknesses. They can also help us ascertain
a notion of what kind of data might be under-represented in
our training ensemble.

As mentioned previously, recent work in computer vi-
sion attempts to correct this by using a Bayesian deep learn-
ing frame work. With in this framework, the final loss is
modified to include an additional learnable σ parameter, as
shown in Eq. 1 [9].

Under this scheme, the model attempts to predict not
only the correct output y but also an associated log-
variance, log σ2. The log-variance is calculated, as opposed
to the variance, for numerical stability. Kendall and Gall
show empirically that the aleatoric loss allowed the model
to assign uncertainties to masking results [9]. More con-
cretely, it allowed the model to assign higher uncertainties
to areas of the mask where multiple objects were overlap-

Figure 3: Sample in-focus image from the Broad dataset. The raw
image is shown on the left while the masked image is shown on the
right.

ping for example. We choose to include the uncertainty es-
timation during both the segmentation and counting. We
believe this approach allows us to not only understand the
weaknesses within our dataset and model but also provide
accurate error estimates for downstream scientific analyses.

4. Dataset
We used the BBBC005 dataset from the Broad Institute’s

Bioimage Benchmark Collection [13]. This dataset is a col-
lection of 9,600 simulated microscopy images of stained
cells. An example is shown in Fig. 3.

These images were simulated using the SIMCEP simu-
lation platform for a given cell count with a clustering prob-
ability of 25% and cell areas matched to the average cell
areas of human U2OS cells [10, 11]. Focal blur was sim-
ulated by applying variable Gaussian filters to the images.
Each image is 696 x 520 pixels encoded in the 8-bit Tagged
Image File Format. However, for the purposes of our exper-
iment, images were eventually converted to JPEG format
and scaled down to 256 x 192 pixels.

Of the 9,600 images, 600 images have a corresponding
foreground mask. All 9600 images have associated cell
counts with an upper limit of 100. The FPN was trained
on the 600 images while the Counting network was trained
on the full dataset. We use about 100 of those for fast pro-
totyping. We used a standard 80-20 train/test split for the
final models.

5. Results
5.1. Segmentation

We pre-trained the FPN on 480 images with known fore-
grounds, out of a total 600 images with this information.
Training was done using the sum of L2 loss functions with
aleatoric uncertainties and TV losses for each output mask
with its associated uncertainty, as described previously, and
optimized using the ADAM optimizer with a learning rate
of 1E − 3 and batch size of 2.

We found that the average mean-squared error (MSE) on
100 validation images converged to a value less than 0.1 af-
ter about 50 epochs. Visual inspection of the masks over
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(a)

(b)

Figure 4: Examples where our model successfully predicted the
number of cells in an image within its expected 95% confidence
interval. The left-most image is the input to our model. To its
right is the predicted foreground mask for the input and its asso-
ciated uncertainty, respectively. The right-most image depicts the
saliency map during counting. (a) A test example from our model
with 14 cells. Our model predicts that this image has 14.00 ± 1.82
number of cells with 95% confidence. (b) Another test example
from our model with 96 cells. Our model predicts that this image
has 96.17 ± 3.62 cells.

each epoch also corroborated this convergence, as masks
looked nearly identical to the ground truth. Convergence
of the uncertainty masks also occurred over the 50 epochs,
evolving from uniform uncertainty over the image to out-
lines of the cell clusters.

5.2. Counting

After training the FPN, we trained the VGG-11-based
network on 7,680 FPN-generated masks out of 9,600 total
images in our dataset. Training was done using an L2 loss
function with aleatoric uncertainty for cell counts, optimiz-
ing with the ADAM optimizer with a learning rate of 1E−4
and batch size of 5.

We found that the average validation MSE of the counts
from 1,420 seperately generated masks converged after af-
ter 50 epochs to a final value of less than 11.2. After train-
ing, we found that our best model is able to achieve an R2

value of .987, with an average L1 error of 2.4 cells, on our
test set. Furthermore, when considering the uncertainty pre-
dictions of our model, we find that over 80% of ground truth
counts fall within the model’s predicted 95% confidence in-
terval on our 500 image test set. The maximum L1 error
never exceeded six cells during testing, which seems fairly
accurate for the task.

Fig. 4a and Fig. 4b demonstrate two random examples
from our test set for which our model was successful.

5.3. Saliency Mapping

An unfortunate result of the complexity of modern deep
learning models is that they can be difficult to interpret
reliably. Good model interpretation can increase our un-

derstanding of the underlying problem, highlighting poten-
tially insightful non-trivial patterns within datasets. These
insights might be useful for designing future experiments or
perhaps even improving the model itself.

In this vein, we decided to probe our model further using
saliency mapping [18]. These maps are a standard tech-
nique in CNN literature to probe the internal states of the
neural network. At a simplistic level, they are designed to
highlight pixels in the data that maximally influence the pre-
dicted score. Saliency maps tend to highlight important fea-
tures within the data which can then be used to understand
what it is that the model is maximally looking at.

We applied the saliency mapping technique to the count-
ing network loss. The results are shown in Fig. 4 and Fig.
5. Our analysis shows that the network identifies outlines
of cells within individual images. More importantly, the
saliency map results seem agnostic to the number, size, and,
orientation of cells within the images, emphasizing the gen-
eral applicability of the model.

5.4. Failure Cases

In reviewing the saliency maps where the model fails to
predict the correct number of cells within an expected con-
fidence interval, we find three cases where our model seems
to systematically fails:

• High cell overlap

• Irregular cell shapes

• Bad focal planes

Examples of each case are demonstrated in Fig. 5a, Fig.
5b, and Fig. 5c, respectively.

In Fig. 5a, the input image has a number of regions with
high cell density, which make it difficult even for a human
to count. From the saliency map, we find that, although it
recognizes many of the smaller patches of cells, the model
ignores a large mass of cells in the upper right-hand corner
of the image, causing it to undercount. We assess that this is
possibly due to the model being unable to find a satisfiable
edge to count in that region.

In Fig. 5b, the input image has a patch of cells near the
center with an irregular shape. Although the image only
has 18 cells, our model predicts that it should have at least
21. Upon further inspection of the saliency map, we assess
that the model is counting multiple edges in the irregularly
shaped patch, as irregularities in these cells are highlighted
along with the exterior edges that we normally find high-
lighted.

In Fig. 5c, the input image is simulated in a bad fo-
cal plane, yielding significant blurring. In this case, the
FPN does a poor job at creating a reliable foreground mask,
which leads to undercounting. We find in the saliency map
that a number of cell edges are ignored by our model.
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(a)

(b)

(c)

Figure 5: A few examples where our model successfully predicted
the number of cells in an image within its expected 95% confi-
dence interval, due to systematic biases. The left-most image is
the input to our model. To its right is the predicted foreground
mask for the input and its associated uncertainty, respectively. The
right-most image depicts the saliency map during counting. (a) A
test image with 100 cells with lots of overlapping. Our model pre-
dicts that this image has 93.50 ± 3.51 cells. (b) A test image with
18 cells, a few of which are oddly shaped. Our model predicts that
this image has 22.83 ± 2.19 cells. (c) A test image with 14 cells
taken at a poor focal plane. Our model predicts that this image has
11.85 ± 1.77 cells.

6. Discussion

We show that it is possible to design and train a CNN ar-
chitecture to count cells in microscopy images and achieve
relatively good accuracy. While a number of failures cases
do arise, we believe that better training data might help to
overcome these shortcomings. Specifically, the BBBC005
lacked foreground masks for out-of-focus images, which
could have helped greatly in improving countingperfor-
mance. However, some cases might continue to persist,
such as the issue of overlapping cells. At the moment, is
unclear how to design a model to overcome such a diffi-
culty, as overlapping cells can even confound human ex-
perts, but one solution might be to include the original im-
age as additional input to the counting network. Another
solution might be taking randomly cropped image patches
and robustly estimating the count from the average density
over the many patches, similar to Oñoro-Rubio and López-
Sastre’s approach [14].

The failure cases we discovered also raise the question
as to whether human counters mightperform any better than
our algorithm and highlight the need for datasets that in-
clude expert predictions in this space. In lacking such a
dataset, we are currently unable to assess whether or not

our alogrithm is on par with human performance.

Finally, we demonstrate a few good use-cases for
aleatoric losses in estimating uncertainty in cell counting.
For one, it helps us define failure cases as instances when
the ground truth lies outside of some acceptable tolerance.
In carefully defining failures, we were able to identify spe-
cific systematic cases of failure, which we can improve
upon in future work. As the eventual goal is to create a use-
ful scientific tool, generating error bounds is essential, as it
improves the statistical power of our method and yields the
ability to form better informed hypotheses.

7. Future Work

Several extensions to the work presented are possible.
On the methodology side, we have not yet worked exten-
sively in optimizing the depth or architecture of the count-
ing network. It is entirely possibly that other variants of
the VGG network or even more modern networks, such
as Residual Networks, might yield better performance [5].
Furthermore, fully applying transfer learning to our FPN
towards the counting task, where we would fine-tune the
model during the counting, might improve our final results.

We are also interested in training on more real-world
datasets and have our model compete with human experts.
We believe that this will yield more insight into the count-
ing problem and better diagnose the limitations of our
model compared to human performance. Not only this,
but we strongly believe that any additional datasets can
only improve our model’s performance, as certain aspects
of BBBC005 were not ideal.

Another way we might be able to leverage more real-
world datasets is by using our network to tackle visual rea-
soning in microscopy images, similar to the work of John-
son, et al. [8]. One might imagine a researcher asking a
visual reasoning algorithm to mask and count specific kinds
of cells in practice. This would greatly accelerate the pace
of biological research and reduce the need for humans to
interpret microscopy data altogether.

On the applications side, we hope to build the current
models into an easy-to-use smart phone or web application,
allowing researchers to freely use our model in their re-
search. We also hope to integrate the ability for the research
to submit their own training examples to help improve our
model. Open-source microscopy platforms like Foldscope
might offer a great source of training images and commu-
nity involvement to get started [2]. Ultimately, we believe
cell counting should evolve from a tedious manual task to a
fully automated process simply using relatively cheap digi-
tal imaging and computing resources.
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