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Abstract 

 

Lung cancer is a leading cause of death worldwide, and 

life-threatening misdiagnoses are prevalent. In order to 

assist in diagnosis and prognosis, promising machine 

learning and deep learning techniques have been proposed, 

but these are computationally intensive and inaccurate. The 

goal of my research is to use a new technology, quantum 

annealing, to efficiently and accurately determine a 

diagnosis and prognosis from scans of potentially 

cancerous lungs. I seek to leverage the recent success of 

deep learning image recognition along with the exponential 

computational improvements shown in quantum annealing 

to develop an efficient classification pipeline for potentially 

cancerous lung tissue images.  

 

1. Introduction 

Lung cancer is the deadliest form of cancer worldwide, 

accounting for almost one fifth of all cancer deaths [1] and 

a predicted 115,870 deaths in the US in 2017 [2]. 

Furthermore, lung cancer is often misdiagnosed, leading to 

a rapid decrease in life expectancy or expensive and 

harmful treatments. Promising work has recently attempted 

to assist and improve lung cancer diagnosis and prognosis 

using deep learning and other machine learning techniques 

[3] [4]. However, these methods are constrained by 

computational resources and poor scalability. For example, 

Yu et al. recently determined lung cancer prognosis by 

using machine learning algorithms on histopathology 

images from cancer patients, but features were only 

extracted from 3% of each image [4]. New techniques are 

needed to look more holistically at the input data and 

improve prediction accuracy.   

Quantum computing promises exponential 

improvements for many optimization problems. D-Wave 

Systems has developed a novel processor that performs a 

process known as quantum annealing, which has achieved 

a ~108 processing time improvement over classical systems 

when solving problems related to quantum behavior [5]. 

Additionally, the D-Wave architecture has been used to 

demonstrate simple deep learning applications [6] [7] [8]. 

However, although deep learning has been demonstrated on 

the D-Wave, and deep learning has been shown to be 

promising for lung cancer research, no biological studies 

have been done with D-Wave. Achieving a similar 

performance improvement in lung cancer research could 

revolutionize the diagnosis and prognosis of lung cancer, as 

well as make these methods readily accessible to health 

facilities worldwide. 

The goal of this work is to determine the potential 

improvements that quantum annealing, used jointly with 

deep learning, can offer to lung cancer image classification 

and diagnosis. In this paper, I empirically investigate how 

quantum annealing can be applied to aid with a simple 

image classification problem. Specifically, I consider deep 

belief network architectures, because the variable updates 

for these architectures have previously been computed 

using the D-Wave quantum annealer [7]. I compare 

network training using the classical algorithm of contrastive 

divergence, and training that uses a simulated result 

comparable to results using quantum annealing. 

The remainder of the paper is organized as follows. In 

Section 2, I discuss some work related to this study. In 

Section 3, I provide some background on Deep Belief 

Networks and quantum annealing. In Section 4, I present 

the methods used in this project. Section 5 discusses the 

data sources used in this project. Section 6 presents a 

numerical performance evaluation study that compares 

simulated quantum and classical heuristics. Finally, I 

conclude and discuss ongoing and future work in Section 6. 

2. Related Work 

A number of studies have previously used deep learning 

and machine learning to analyze lung cancer images. In 

order to properly diagnose lung cancer, two stages of image 

classification need to take place. First, a patient is given a 

computed tomography (CT) scan, and the resulting images 

are then viewed to see if any cists or tumors are present in 

the patient. If a nodule is identified as potentially cancerous, 

a biopsy of the nodule is surgically taken from the patient 

and stained with hematoxylin and eosin (H&E). A 

radiologist then examines the cells from the biopsy under a 

microscope, and makes either a cancerous or non-cancerous 

diagnosis.  
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Figure 1: Deep Belief Network architecture. The input layer and 

hidden layers all have 36 nodes, while the output layer has 10 

nodes. 

 

Studies have attempted to improve both stages of this 

pipeline using deep learning. In 2016, Li et al. [3] used a 

convolutional neural network to identify lung nodules from 

CT scans, and achieved an accuracy of 86.4% with a 

sensitivity of 89.0%. Also in 2016, Yu et al. [4] created a 

fully automated pipeline to extract image features from 

H&E-stained pathology images and run an ensemble of 

machine learning algorithms (Naïve Bayes, Random 

Forests, SVMs) to distinguish between two types of lung 

cancers: adenocarcinoma and squamous cell carcinoma. 

They achieved an AUC of 0.85.  

Separately, D-Wave Systems has developed a machine 

that leverages the quantum properties of superconductors to 

perform quantum annealing. In 2011, D-Wave Systems 

made quantum annealing technology commercially 

available, and from 2011 to 2017, D-Wave has scaled the 

number of qubits (quantum bits) contained on their 

processor from 128 to over 2000. However, there remains 

some controversy over the extent to which the D-Wave's 

success can be attributed to quantum effects [9]. 

Nevertheless, D-Wave’s quantum processing unit (QPU) 

has demonstrated a ~108 processing time improvement over 

classical systems when solving problems related to 

quantum behavior [5]. However, these problems were 

specifically chosen to be easy to solve using quantum 

annealing, and very difficult to solve using comparable 

classical methods. More generally, the D-Wave quantum 

annealer has been shown to offer an improvement of up to 

a factor of ~103 on a more useful class of real-world 

problems when compared to classical heuristic solvers [10].  

A number of studies have used quantum annealing in 

conjunction with image processing. O’Malley et al. [8] 

compared quantum annealing to classical methods in a 

study that attempted to reconstruct faces using pre-learned 

facial features. They were able to analyze large datasets 

(2,400 facial images) using quantum methods, although the 

low connectivity of the D-Wave QPU limited the number 

of pre-learned features that could be extracted and 

considered during reconstruction.  

In 2015, Adachi and Henderson [7] used the D-Wave 

architecture to identify handwritten numbers. This study 

used the well-understood MNIST dataset [11], but scaled 

the 28-by-28 images down to blurry 6-by-6 grayscale 

images so that they would completely fit on the quantum 

annealer. The study used deep belief networks to identify 

these 6x6 images, and compared classical algorithms with 

quantum annealing in the generative training phase of the 

DBN. My paper attempts to recreate this study, with the 

intention of eventually increasing both the types of 

architectures on which quantum annealing can offer an 

improvement, and the size of the input images (to be able 

to consider lung cancer images, for which a similar scale-

down approach would not be feasible).  

3. Background 

In this section, I will discuss Deep Belief Networks and 

quantum annealing, both of which are integral to the 

project.  

3.1. Deep Belief Network 

A Deep Belief Network consists of multiple stacked 

Restricted Boltzmann Machines (RBMs), so that the output 

of one RBM is the input of the next. Each RBM has a set of 

visible nodes 𝑣𝑖, a set of hidden nodes ℎ𝑗, and a set of 

weights 𝑤𝑖𝑗  that connects all visible nodes to hidden nodes. 

In this way, an RBM is similar to a fully connected layer of 

a neural network. However, in the most commonly used 

Bernoulli-Bernoulli RBM, each of 𝑣𝑖 and ℎ𝑗 can only take 

on binary values. An example DBN is shown in Figure 1. 

The weights connecting the nodes, as well as the biases on 

all of the visible and hidden nodes, though, are continuous. 

So, in order to obtain values for hidden nodes given values 

for the visible nodes, values are sampled from a joint 

probability distribution determined by the visible nodes, 

weights, and biases. 

 
 

 

 

 

Training of Deep Belief Networks consists of two stages: 

the generative training phase, which is unsupervised, and 

the discriminative training phase, which is supervised. The 

unsupervised training is done for each RBM separately; that 

is, the weights and biases are first learned in an 

unsupervised way for the first RBM in the network only. 

Once these have converged, or a specified number of “pre-

training” iterations have elapsed, the second RBM’s 

weights and biases are trained. This unsupervised process 

is the stage for which quantum annealing has been shown 

to offer a potential advantage.  

The true update to the weights in the model is given by 

 



 

𝑤𝑖𝑗
𝑡+1 = 𝛼𝑤𝑖𝑗

𝑡 + 𝜀(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙),      (1)  

 

where 𝛼 is the momentum, and 𝜀 is the learning rate, 

and 〈𝑣𝑖ℎ𝑗〉 denotes the expected value of the product of 𝑣𝑖 

and ℎ𝑗 . The bias update formula is similar. The first term is 

easy to estimate, since it is calculated with a specific input 

data vector. However, the second term is the expected 

value over the entire dataset, and is very computationally 

costly to calculate.  

 Typically, the update is instead performed using 

contrastive divergence, which calculates a probability 

distribution for all of the hidden nodes, and then samples 

binary values for the hidden nodes based on that 

distribution. Then, with these values for the hidden 

variables, a probability distribution of the visible nodes is 

calculated, and then binary values are sampled from the 

probability distribution of the visible nodes. The update 

formula then becomes 

 

𝑤𝑖𝑗
𝑡+1 = 𝛼𝑤𝑖𝑗

𝑡 + 𝜀(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝐶𝐷−𝑛),   (2)  

 

where CD-n represents n iterations of contrastive 

divergence (sampling the hidden nodes, locking them to 

that value, and sampling the visible nodes). In practice,   

CD-1 is often used because it is fast and works surprisingly 

well. However, this method has many cases where it 

converges slowly, or gets stuck in local optima. 

This unsupervised learning provides a way for the 

network to potentially learn features from the input data 

without any labels. Once each RBM layer of the DBN has 

finished with the generative training phase, the supervised 

training begins. For this, the hidden variables of the last 

RBM are locked to the value of the output labels, and then 

traditional backpropagation is used to get gradient updates 

for all of the weights and biases in the entire network. This 

continues for a specified number of “post-training” 

iterations.  

3.2. Quantum Annealing 

Now I will discuss quantum annealing, the optimization 

heuristic that runs on the D-Wave QPU. 

Problems on the D-Wave machine are represented using 

an Ising model formulation. This model, first used to 

simulate magnetism in statistical mechanics, consists of 

discrete “spin” variables 𝑠𝑖 ∈ {−1,1}.  

These variables determine the energy of the system, 

 

  𝐸(𝒔)  =  𝒔𝑇𝑱𝒔 −  𝜇𝒉𝑇𝒔                        (3) 

 

where 𝒉𝑖  is the weight associated with site i, and 𝑱𝑖𝑗 is 

the coupling strength between sites i and j. The D-Wave 

processor then seeks to minimize the energy of this system, 

heuristically solving the problem 

 

𝒎𝒊𝒏𝒔  𝒔𝑇𝑱𝒔 −  𝜇𝒉𝑇𝒔                         (4)                      

subject to  𝒔 ∈ {−1,1}𝑛 

 

This problem can be trivially transformed to have  
𝒔 ∈ {0,1}𝑛, 

so that the variables more closely align with RBMs.  

To solve (4), the D-Wave QPU uses quantum annealing, 

an algorithm that takes advantage of the quantum nature of 

the processor hardware. Quantum annealing utilizes 

quantum tunneling to more efficiently search through 

highly non-convex solution spaces. If the energy landscape 

(defined by (3)), has tall, narrow peaks, then the variables 

of the problem (represented by qubits) will be able to tunnel 

through these peaks to continue the search for the global 

minimum energy. We know from quantum mechanics that 

a quantum particle, such as an electron, will be able to 

tunnel through finite-energy barriers with probability 

inversely proportional to an exponential function of both 

the height of the barrier and the width of the barrier.  So, if 

h is the energy barrier height and w is its width, then 

 

 𝑃(tunnel)  ∝ 𝑒−𝑤√ℎ .                       (5) 

 

This finite probability is extremely helpful for exploring 

very rugged search spaces. In classical algorithms, there is 

Figure 2: Typical paths of classical and quantum annealing 

through the search space. The problems shown are attempting 

to find the minimum energy (objective function) value. In order 

to pass over an energy peak, a classical algorithm such as 

simulated annealing must have an energy  value higher than 

the peak in order to explore further. However, quantum 

annealing can tunnel through tall, narrow energy peaks with a 

low amount of energy. Tunneling is shown here with a red 

line. So, if approaching this energy landscape from the left, the 

quantum algorithm would be much more likely to reach the 

minimum than the classical algorithm would, but if the 

problems approached this landscape from the right, quantum 

annealing would not offer a noteworthy advantage. 



 

zero probability of going through a place of higher energy 

to get to a different place of lower energy; the only way to 

achieve this is to give the entire system more energy, and if 

that is done, the path through the search space has a high 

probability of going away from the global minimum. 

Figure 2 illustrates this point. If approaching this one-

dimensional landscape from the left, quantum annealing 

would have a much higher probability of reaching the 

global minimum than a classical algorithm would. 

However, if approaching from the right, the energy barrier 

is wide enough that there is a negligible chance of quantum 

tunneling through the base, so quantum annealing would 

perform comparably to, for example, simulated annealing. 

3.3. D-Wave Hardware 

In order to understand how quantum annealing runs on 

the D-Wave QPU in detail, we need to understand the D-

Wave hardware. 

The current generation of D-Wave QPU, the D-Wave 

2X, contains 1152 qubit sites, each of which can represent 

one 𝑠𝑖 variable.  Not every two qubits are connected; each 

qubit is connected to at most 6 of its neighbors, resulting in 

3360 total couplers. The  D-Wave architecture is laid out in 

a graph structure known as a Chimera graph, and is shown 

in Figure 3 (left). However, the quantum processor is 

extremely sensitive, and due to fabrication defects, the 

processor used in this study only had 1135 working qubits 

and 3265 working couplers. 

Equation (4) represents the energy minimization of the 

multi-qubit quantum system on the D-Wave processor. The 

processor runs quantum annealing in order to heuristically 

find 𝒔 such that the energy is minimized. The quantum 

annealing steps the processor runs are as follows: 

1. The coupling strengths and qubit weights are 

loaded onto the processor. 

2. The system is prepared is a quantum superposition 

of all possible answers. If an answer was read out 

at this stage,  it would be equivalent to selecting 

an answer out of all possible solutions uniformly 

at random. 

3. The system gradually evolves from this initial 

superposition state (with no problem-specific 

constraints) to the final state specified by the 𝒉 and 

𝑱 loaded into the system. As the coupling strengths 

and qubit weights gradually increase/decrease to 

the desired levels, the probability of reading out 

each state also changes, so that it becomes more 

likely to read out lower-energy states and less 

likely to read out high-energy states. This step is 

analogous to gradually lowering the temperature 

when running a simulated annealing algorithm. 

4. An answer is read out of the system, with the 

qubits representing the variables 𝒔. The longer the 

time allowed for the previous step, the more likely 

the global minimum is reached.  

However, it is not possible to run arbitrarily large 

problems in this manner. As mentioned above, each qubit 

is only connected to a maximum of 6 other qubits. This 

means that only 6 off-diagonal elements of 𝑱 can be nonzero 

per row, regardless of the dimension of  𝑱. 

In an image classification problem, this would mean that 

fewer than 6 pixels can be considered at once on the D-

Wave when using a DBN model. Thus, an additional step 

is necessary. An RBM of larger size can be graphically 

embedded onto the D-Wave architecture. Embedding a 

problem provides a mapping from physical qubits on the D-

Wave machine to logical variables in the problem of 

interest; often, multiple physical qubits are strongly 

coupled together and collectively represent one logical 

variable.  

Finding an embedding can be done heuristically, and, for 

fully connected graphs, it only has to be done once per 

Figure 3: Left: Architectural layout of the D-Wave processor. Circles represent qubit sites, with black and white representing spins of 

-1 and +1. A line between two sites i and j represents a potential nonzero interaction 𝑱𝑖𝑗  term between the sites. Each subgraph should 

have 8 qubits, but due to fabrication defects, some qubit sites are unusable. Each qubit is coupled to a maximum of 6 neighboring 

qubits. Middle: D-Wave quantum processing unit (QPU). The chip operates at 10-15 millikelvin, a regime where superconducting 

effects can be utilized to perform quantum computation. Also pictured are wires which read out values of the qubits after each anneal. 

Right: exterior shielding for D-Wave machine. The shielding serves to isolate the sensitive qubits from environmental noise and to 

house all of the equipment needed to cool the QPU to 10-15 millikelvin. 



 

problem size. In other words, once we have an embedding 

for, for example, a 36x36 bipartite graph, we can solve any 

36x36 bipartite graph problems using that same embedding. 

Furthermore, since steps 1-4 above utilize the entire 

architecture, it is possible for multiple copies of smaller 

problems to be embedded on the architecture at the same 

time, effectively solving the problem multiple times every 

iteration of the quantum annealing algorithm. 

If the system is annealed slowly enough from the initial 

quantum state to the final problem state, then the system is 

guaranteed to find the optimal solution. However, this time 

might be exponentially slow. An interesting result shown 

while doing experiments on the D-Wave stated that results 

from the quantum annealing follow a joint Boltzmann 

distribution, with all of the qubits as variables. This is 

exactly the information we need to gather to make an update 

of the parameter weights in equation (1). In fact, we can 

modify the update equation to the form that includes 

sampling from a quantum annealer: 

 

𝑤𝑖𝑗
𝑡+1 = 𝛼𝑤𝑖𝑗

𝑡 + 𝜀(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑄−𝑠𝑎𝑚𝑝𝑙𝑒)   (6) 

 

So, with the quantum annealer, we can estimate the final 

term in the weight update much more accurately in a 

reproducibly fast way. This insight can be used to more 

rapidly perform the unsupervised learning stage in DBN 

training. 

4. Methods 

The first goal of this project was to identify handwritten 

digits using a Deep Belief Network, as was done in the 

Adachi and Henderson study [7]. For this, I built off of the 

source code from a MATLAB toolbox implementation of 

Deep Neural Networks [12]. I modified this code to be able 

to perform CD-n updatets, as well as iterate over different 

learning rates and momentum parameters.  

When exploring hyperparameter space, I first iterated 

over a logarithmic scale of values, then took the best result 

of that sweep (averaged over 3 trials) and did a more fine-

tuned exploration around the best result. I continued 

exploring until I found a local optimum, i.e. the values on 

either side of that hyperparameter value resulted in lower 

performance. 

I also attempted to modify this toolbox to make calls to 

the D-Wave to sample from the quantum annealing 

solutions in order to get an estimate of the model 

expectation, as in equation 6. However, due to D-Wave 

system outages and other complications, I was unable to get 

results from the quantum annealer for this project. 

5. Data 

5.1. Cancer Images 

For the cancer image analysis portion of this project, I 

have obtained 144 hematoxylin and eosin stained lung 
tissue slides, which radiologists use to diagnose lung 

Figure 4: Example hematoxylin and eosin stained slides that show non-

cancerous lung tissue (left) and cancerous lung tissue (right) 



 

cancer. This dataset was used by Levensen et al. in a 

cancer image classification study, which used pigeons to 

identify cancerous images [13]. This dataset contains 72 

cancerous and 72 non-cancerous lung cancer images. 

The images are further broken down by magnification: 

48 images magnified 4x, 50 images magnified 10x, and 

46 images magnified 20x. All images were 500x500 

pixels. 

At each magnification, I divided up the images into ½ 

training, ¼ validation, and ¼ testing images. For the 

training images, I rotated them 0, 90, 180, and 270 

degrees, as well as rotated the mirror images 0, 90, 180, 

and 270 degrees, for a total of 576 training images. The 

test images and validation images I did not augment. 

Examples of both cancerous and non-cancerous images 

are shown in Figure 4.  

5.2.  MNIST 

For recreating the image analysis done using the 

quantum annealer, I am using a scaled-down version of 

the MNIST dataset, which contains 60,000 training 

images and 10,000 test images. For each image, I have 

created a coarse version of the 28x28 image by removing 

a 2-pixel wide strip around the edges, and then taking the 

average of each 4x4 square of pixels to create a single 

pixel, scaling each image down to 6x6. This is shown in 

Figure 5. 

 

 

6. Results 

The experiments I ran are shown in Figure 6. Since I was 

unable to use the quantum annealer to utilize equation 6, I 

compared equations 1 (right column) and 2 (left column). 

For the model expectation in equation 1, I ran CD-1000, 

which, due to the many iterations of contrastive divergence, 

calculated a near-exact value for the expectation, and 

allowed a near-optimal directional step for the weight 

updates. Additionally, running CD-2000 did not offer any 

noteworthy improvement in performance on a small 

number of test cases, which indicates that CD-1000 does 

indeed perform a near-optimal update.  

The optimal hyperparameters are shown in Table 1. In 

order to determine the hyperparameters to use, I considered 

the maximum accuracy on 100 pre-training iterations and 

200 post-training iterations, averaged over 3 trials. The 

momentum for CD-1 during pre-training is much larger 

than the momentum for CD-1000. This makes sense, as we 

expect CD-1000 to have a much more accurate estimate of 

the gradient at each time step, so much less of the previous 

steps should be used for the current update. 

 

 CD-1 CD-1000 

𝛼𝒑𝒓𝒆 0.82 0.14 

𝜀𝒑𝒓𝒆 0.094 0.092 

𝛼𝒑𝒐𝒔𝒕 0.91 0.90 

𝜀𝒑𝒐𝒔𝒕 0.000015 0.000011 

 
The graphs in Figure 6 show that, even with the optimal 

learning parameters (for 100 pre-training and 200 post-

training iterations), CD-1 cannot achieve any 

improvements beyond random guessing in as many as 50 

pre-training and 100 post-training iterations. As an aside, 

when CD-1 was run for 10,000 post-training iterations with 

the parameters shown in column 1 of Table 1, the model 

achieved a training accuracy of 0.86 and a test accuracy of 

0.81. However, when using CD-1000, there was a 

significant increase in prediction accuracy as a function of 

pre-training iterations, even when only running 10 

iterations of post-training. This is promising for the 

quantum annealer, which is expected to follow the CD-

1000 curves more closely, while taking a fraction of the 

time to train. 

7. Future Work 

In this paper, I have shown how quantum annealing can 

be used in the unsupervised learning of Deep Belief 

Networks. I have given simulated results that show the 

potential improvement that can be gained from using 

quantum annealing in this way. Work is ongoing to get 

results from the D-Wave 2X quantum annealer to 

concretely demonstrate an improvement.  

One important area of future research is to explore 

opportunities to analyze larger images with the D-Wave 

quantum annealer. A possible study that would address this 

is the analysis of Convolutional Deep Belief Networks 

(CDBNs). There, the constraining factor is not the size of 

the pixel input, it is the size of the filters used.   

Figure 5: Example images from the MNIST dataset [11], 

original (top) and scaled down to 6x6 images, in order to fit 

on a D-Wave QPU (bottom). 

Table 1: Optimal hyperparameters (momentum, learning rate) 

for both unsupervised (pre) training and supervised (post) 

training, for the commonly used stochastic update CD-1, and 

CD-1000, which serves as an estimate for the true weight 

update. 



 

  

Figure 6: Results showing prediction accuracy of running CD-1 (left) and CD-1000 on the DBN to identify 

coarse-grained MNIST images. With parameters tuned for optimal accuracy for 200 post-training iterations and 

100 pre-training iterations, CD-1 never showed any improvement over random guessing. However, CD-1000, 

which is meant to serve as a near-optimal update rule, was able to achieve significant accuracies with as few as 

10-post training iterations, and there was a noticeable improvement with increased pre-training iterations. 
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