
Early Stage Integrated Circuit Design Efficacy Prediction using Congestion and
Cell Density Maps

Isuru Daulagala
NVIDIA Corporation

Santa Clara, CA
idaulagala@nvidia.com

Praveena Kode
NVIDIA Corporation

Santa Clara, CA
pkode@nvidia.com

Abstract

The Physical Design flow of integrated circuit design
which is also known as the backend flow consists of con-
verting a netlist or connectivity information to geometric
representations of wires, transistors and other manufac-
turing material. This flow is partitioned into various sub-
stages such as floorplanning, placement, clock tree synthe-
sis and routing. At each stage designers are tasked with
finding the optimal design based on many constraints such
as power, performance and area while performing often ex-
ecuting NP-complete algorithms to complete each substage.
The efficacy of a final design is often unintuitive at early
stages. We used congestion and cell density images from
each step to predict the final design efficacy in terms of the
number of Design Rule Constraint (DRC ) violations of the
final design. We used popular Convolutional Net Architec-
tures such as Resnet, VGG as well as RNNs to sequentially
take glimpses of congestion and density map images to clas-
sify the final DRC numbers. The architectures were able to
classify the final DRC numbers with an accuracy of 57%,
71%, 79% and 87% for the placement, clock tree synthesis,
route and post-route stages respectively.

1. Introduction
The Physical Design flow of integrated circuit design

which is also known as the backend flow consists of con-
verting a netlist or connectivity information to geometric
representations of wires, transistors and other manufactur-
ing material. A summary of the flow is presented in Figure
1 . The physical Design flow itself can be divided to the
following main substages :

1. Floorplanning - Memory elements/RAMs and other
third party IP (Intellectual property) blocks are placed
in the circuit area

2. Placement - Transistors are placed based on connec-
tivity information

3. Clock Tree Synthesis - The clock signal is routed to
all flip flops

4. Routing - All other signal wires are connected/routed

The algorithms behind majority of these
substages[21][10] are NP-complete and have a large
runtime as seen in Figure 2. The Physical Design Engineer
runs tools which execute such algorithms while fine-tuning
certain parameters which are available to him or her. An
execution path based on a list of values for these parameters
for which the tool runs algorithms for multiple stages
described above is known as a run. The efficacy of the
final design is often measured by two metrics - if designs
meet their timing targets and the amount of Design Rule
Checking (DRC) violations there are in the final design.
DRC rules are speficied by the foundary fabricating the
chip. An example of a DRC violation is two wires being
too close. If there are violations in a design, the chip cannot
be fabricated. At the end of the Physical Design flow, the
Physical Design often spends a large amount of time fixing
DRCs manually. If the Physical Designer cannot fix all of

Figure 1: The Physical Design Flow as part of the overall
Intergrated Design process [17]

1



Figure 2: The mean and standard deviation for the runtime
for substages in Physical Design for a Mobile SoC

the DRCs or if there are too many of them, the Physical
Designer will have to launch a new run with different
parameters. As shown in Figure 2, this whole process from
placement to postroute stage can take more than 40 hours
in total. So it is necessary to gain insight about a run at the
beginning of the Physical Design flow to save engineering
effort as well as computational resources.

In order to determine if a specific run has too many
DRCs we consider two classes of images

1. Congestion Maps - Congestion maps describe the
space of a design in terms of congestion of metal lay-
ers or wires. The bins or colors are directly propor-
tional to the amount of metal layers/wires in a given
unit volume. Since the metal layers/wires can span in
3-D space, a unit volums is considered.

2. Cell Density Maps - Cell Density Maps describe the
space of a design in terms of the number of transistors
or cell in a given area. The bins or colors are directly
proportional to the amount of cells in a unit area.

The changes to the Congestion and Cell Density Maps as
the Physical Design flow progresses is shown in Figure 3.

This project aims to :

1. Predict the number of DRC violations in a given run
at different substages considering congestion and cell
density maps

2. Predict if a run needs to be re-executed because it will
result in too many DRC violations

2. Related Work
The amount of work to predict the efficacy of a run at

an early stage is surpisingly scarce. Hence, the amount of

literature that try to predict the number of DRC violations
is even scarcer. The existing literature can be divided into
three categories : 1) literature on predicting the number of
DRC violations at an early stage 2)literature on prediting
congestion at an early stage and 2) literature on predicting
the efficacy of a run that is not related to DRC violations at
an early stage.

Chan et. al[6]’s work is the closest to this work. They
tried to extract number of features off at the placement
stage. They use a somewhat small threshold of 50 DRCs to
classify if a design ends up being routable. Although they
achieve a somewhat high accuracy (67%), their F1 scores
are extremely low (21%) owing to their data skewed to be-
ing unroutable. They also use designs with older feature
sizes (28nm FDSOI). With newer designs and lower feature
sizes, the design rules are much more complicated. [7] tried
to predict hotspots (regions with DRC violations) based on
features extracted during the routing stage. Both these pub-
lications used Support Vector Machines based pre-selected
features without actually using the congestion maps.

The congestion maps generated at the placement
stage are not based on real congestion of metal layers
since the design hasn’t been routed yet. Majority of
work[4][15][24][5][25][20][18][19][13][12][23] in the past
has gone to estimating the congestion at an early stage.
These work has helped generate congestion maps which are
being used in this project. Yet, existing work apart from two
papers deccribed above do not tackle predicting the number
of DRCs directly.

Figure 3: The changes in Congestion and Cell Density maps
with the progression of the Physical Design Flow

2



Jiao and Daulagala [16], tried to predict if a run would
fail based on the logfile that is generated by the tool during
the run. They tried to generate a language model to predict
failures by training logfiles. While they were able to predict
if a specific run could fail based on a logfile, these failures
were not necessarily only due to the underlying algorithms
in the stages not being able to converge. For example, if
there are libraries that are needed to execute the run that
were missing, the run would fail.

None of the work discussed above use congestion map
images as features directly. To the best of our knowledge,
we are the first work to use visual recognition techniques
and deep neural nets to predict the number of DRC viola-
tions.

The use of machine learning in Physical Design is a rel-
atively new research area [26]. Majority of the research
improving the algorithms of Physical Design have come
from 3rd party Electronic Design Automation (EDA) ven-
dor companies who don’t have access to the data the com-
panies which actually design the circuits.

3. Methods
The problem of predicting the number of DRCs based

on the congestion and cell denisty maps of different stages
was converted into a classification problem by binning the
number of DRCs to six classes as described in the Dataset
section. We considered 3 architectures which are described
below. The first 2 are winning architectures of the ILSVRC
challenge[3].

3.1. VGG

The original VGG Network[22] composed of blocks of
two convolutional layers and max pool layers stacked to-
gether with ReLU activation units in the convolutional lay-
ers. In the VGG-19 Network there were 5 such blocks
(15 layers), followed by 3 fully connected layer and the
softmax layer. 3x3 convolutional filters were used with a
stride of 1. 3x3 kernels were used since stacked convolu-
tional layers would result in a large receptive field while
keeping the benefits of a smaller kernel such as parameter
such. Since this paper was published before the advents of
batch normalization [14], batch normalization wasn’t used
in the original paper. However, for this project we added a
batch normalization layer creating a [conv-conv-maxpool-
batchnorm] block.

3.2. Resnet

Residual Networks of Resnets are composed of residual
blocks shown in Figure ??. Resnets are revolutionary since
during backpropagation, it allows gradients to pass directly
through block skipping what’s in the block. Multiple resid-
ual blocks can be stacked. We used the implementation de-
scribed shown in Figure ??

Figure 4: Residual Block Architecture [9]

3.3. DRAW

The DRAW architecture [8] uses an encoder-decoder ar-
chitecture to generate images. A recurrent neural network
is used for both the encoder and decorder. The intuition be-
hind DRAW is that there are multiple steps in creating an
image which it aims to learn in sequence. Essentially the
architecture takes glimpses which are based on a attention
mechanism. Unlike earlier attention mechanisms [2], the
attention mechanism used in DRAW is differentiable.

Instead of using the DRAW architecture to generate im-
ages, the encoder portion could be used to classify images
based on glimpses taken.

4. Dataset and Features

There are multiple types of DRCs. We only consid-
ered DRCs which are related to congestion and cell denisty
maps. These fall into two categories which are shown in
Figure 6.

1. Shorts - When two metal layers that shouldn’t overlap,
end up overlapping

2. Spacing - When two metal layers are closer than the
minimum distance that is allowed between them

Approximately 15k Congestion and Cell Density Maps
were collected which were distributed among the different
stages of the Physical Design flow. The images of each
stage was randomly split by 0.8, 0.1 and 0.1 into training,
validation and test sets.

3



(a) DRC violation caused by short of metal layers (b) DRC violation caused by spacing violation

Figure 5: Types of DRC violations in consideration

Figure 6: Histogram of log10 DRC violation numbers

4.1. Image Preprocessing

Since Congestion and Cell Density maps came on differ-
ent sizes, we used the largest width and length of the dataset
and padded zeros in all 3 channels to create images of the
same sizes and then downsampled the images at which point
the size of an image was 800x600x3. Therefore these im-
ages were relatively large than any images seen in Imagenet
or CIFAR-10 datasets. Examples of the images can be seen
in Figure 3.

4.2. Label Generation

The labels for each image was generated by taking the
integer value of logarithm to the 10th base of each DRC
violation number for each run. The population for each bin
is shown in Figure 6. A large number of runs result in less
than 10 violations which are attributed to the runs with good
parameter setting.

4.3. Binary Classification

In order to classify a run as a fail or success, we used a
threshold similar to [6] to determine if a design was man-
ually fixable or not and hence if that specific run was suc-

cessful. The threshold was set to 100 which also made the
the successful vs failed run populations 50.99% to 49.01%.

5. Experimental Results
We implemented the architectures described above us-

ing Tensorflow [1]. All training was done using an internal
DGX cluster with 64GBs of memory. Owing to the fact that
the images were extremely large, the minibacth size was set
64. Since the amount of images were relatively small com-
pared to ther datasets like Imagenet, we had to use k-fold
cross validation with k=6.

For VGG, we used upto 6 blocks described in
the methods section with convolutional layers pairs of
32,64,128,128,256 and 256 filters. Using more than 3 resid-
ual blocks did not improve the accuracy, hence we could A
stride and padding of 1 was used.For DRAW, we used a
glimpse size of 64x64 while taking 16 glimpses.

All training was done for 30 epochs. The starting learn-
ing rate for the VGG, resnet and DRAW networks were
0.01, 0.02 and 0.005 respectively while learning rate decay
was also used.

The accuracy of DRC bin classification is shown in Fig-
ure 7. DRAW performs the best while resnet outperforms
VGG om all stages of the Physical Design flow.

For VGG and resnet, cell denisty and congestion maps
were trained using identical networks described above and
the output fully connected layers were added together. For
DRAW, only congestion maps were used.

Adding cell density maps to DRAW doesn’t increase the
accuracy as shown in Figure 8. This is probably because
the information is redundant between the two types of im-
ages. Inspecting the Activation maps for VGG network for
congestion maps show that majority of activations are due
to highly congested areas (bright yellow).

We converted the DRC classification problem to a bi-
nary classification problem of a success or fail of a given
run owing to a design exceeding the number of DRCs.The
threshold was set to 100, which split the dataset into approx-
imately equal fails and successes. The accuracy of binary
classification increases from 6 bin DRC classification. This
is primarily due to the architectures being able to correlate

4



Figure 7: Accuracy for DRC bin classification

Figure 8: Increase in accuracy by adding cell density maps
for the DRAW architecture

Figure 9: Activation Map for the VGG network for conges-
tion maps

highly congested areas with higher DRC counts which can
also be deduced from activation maps in Figure 9.

Figure 10: Accuracy for Binary classification with a thresh-
old of 100 DRCs

Table 1: F1 scores by architecture and stage binary classifi-
cation

Architecture/Stage VGG resnet DRAW
placement 0.5042 0.5240 0.5635
postcts 0.6031 0.6229 0.7020
route 0.6525 0.6624 0.7811
postroute 0.6921 0.7020 0.8503

Figure 11: Receiver Operating Characterestic Curves for
the architectures for binary classification

The F1 scores for binary classification is shown in Table
1. The F1 scores are slightly below the accuracy scores,
but not significantly which signifies that it’s extremely good
at predicting failures or high DRC areas using congestion
maps.

The area under the curves for the ROC curves for VGG,

5



resnet and DRAW are 0.741, 0.887 and 0.946 respec-
tively which again shows that DRAW is able to classify
fail/successes more effectively than the other two networks.

DRAW outperforming VGG and resnet can be explained
as follows : the RNN and encoder is able to take glimpses
into high congested areas and ignore areas occupied by
RAMs and use that to predict the failures and DRC counts.

6. Conclusion and Future Work
Using popular deep neural net architectures, we were

able to both accurately classify the number of DRCs and
number if a specific run will fail.

There are certain methods, architectures that intuitively
should work, but weren’t used in this project due to time
constraints. Therefore, we plan to do implement these in
the future.

1. The cross entropy loss in bin classification should
penalize certain classes/bin more than other.s If the
amount of DRCs 105, the label would be that of the
bin of [101-1000]. Therefore classifying it in the [11-
100] should be penalized less than any other bin. We
plan to modify the loss function to take into account
these conditions

2. Implement other popular image classfication architec-
tures such as densenets

3. Add additional non-image based features such as ones
described [6] to improve the accuracy

4. Find a feature which can be used to normalize the DRC
counts. We initially thought that the number of DRCs
would be somewhat related to the size of the design (in
terms of standard cell count). However as seen Figure
12, there is no direct relationship between the two fea-
tures.

7. Acknowledgements
We would like the acknowledge the use of Assign-

ment 2 starter code in bothe CS224N and CS231N
classes. We would also like to acknowledge the
use of Ilya Kostrikov’s DRAW implementation
(https://github.com/ikostrikov/TensorFlow-VAE-GAN-
DRAW)

We would also like to thank our project mentor Shya-
mal Buch for his valuable insight on the directions of this
project.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-
flow: A system for large-scale machine learning. In Pro-

Figure 12: Relationship betweel Number of DRC violations
and std cell count

ceedings of the 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI). Savannah, Geor-
gia, USA, 2016.

[2] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recog-
nition with visual attention. arXiv preprint arXiv:1412.7755,
2014.

[3] A. Berg, J. Deng, and L. Fei-Fei. Large scale visual recogni-
tion challenge 2010, 2010.

[4] U. Brenner and A. Rohe. An effective congestion-driven
placement framework. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 22(4):387–
394, 2003.

[5] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov, and
A. Zelikovsky. On wirelength estimations for row-based
placement. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 18(9):1265–1278, 1999.

[6] W.-T. J. Chan, Y. Du, A. B. Kahng, S. Nath, and K. Samadi.
Beol stack-aware routability prediction from placement us-
ing data mining techniques. In Computer Design (ICCD),
2016 IEEE 34th International Conference on, pages 41–48.
IEEE, 2016.

[7] W.-T. J. Chan, P.-H. Ho, A. B. Kahng, and P. Saxena.
Routability optimization for industrial designs at sub-14nm
process nodes using machine learning. In ISPD, pages 15–
21, 2017.

[8] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and
D. Wierstra. Draw: A recurrent neural network for image
generation. arXiv preprint arXiv:1502.04623, 2015.

[9] S. Gross and M. Wilber. Training and investigating resid-
ual nets. Facebook AI Research, CA.[Online]. Avilable:
http://torch. ch/blog/2016/02/04/resnets. html, 2016.

[10] M. R. Guthaus, G. Wilke, and R. Reis. Revisiting au-
tomated physical synthesis of high-performance clock net-
works. ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), 18(2):31, 2013.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-

6



ference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[12] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F.
Young. Ripple: an effective routability-driven placer by iter-
ative cell movement. In Computer-Aided Design (ICCAD),
2011 IEEE/ACM International Conference on, pages 74–79.
IEEE, 2011.

[13] M.-K. Hsu, S. Chou, T.-H. Lin, and Y.-W. Chang.
Routability-driven analytical placement for mixed-size cir-
cuit designs. In Proceedings of the International Conference
on Computer-Aided Design, pages 80–84. IEEE Press, 2011.

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[15] Z.-W. Jiang, B.-Y. Su, and Y.-W. Chang. Routability-driven
analytical placement by net overlapping removal for large-
scale mixed-size designs. In Proceedings of the 45th an-
nual Design Automation Conference, pages 167–172. ACM,
2008.

[16] A. Jiao and I. Daulagala. Logfile failure prediction using re-
current and quasi recurrent neural networks. CS 224N, Win-
ter 2016, 2016.

[17] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu. VLSI
physical design: from graph partitioning to timing closure.
Springer Science & Business Media, 2011.

[18] W.-H. Liu, T.-K. Chien, and T.-C. Wang. A study on un-
routable placement recognition. In Proceedings of the 2014
on International symposium on physical design, pages 19–
26. ACM, 2014.

[19] W.-H. Liu, T.-K. Chien, and T.-C. Wang. Region-based and
panel-based algorithms for unroutable placement recogni-
tion. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 34(4):502–514, 2015.

[20] W.-H. Liu, Y.-L. Li, and C.-K. Koh. A fast maze-free routing
congestion estimator with hybrid unilateral monotonic rout-
ing. In Computer-Aided Design (ICCAD), 2012 IEEE/ACM
International Conference on, pages 713–719. IEEE, 2012.

[21] I. L. Markov, J. Hu, and M.-C. Kim. Progress and challenges
in vlsi placement research. In Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages 275–
282. ACM, 2012.

[22] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[23] P. Spindler and F. M. Johannes. Fast and accurate routing
demand estimation for efficient routability-driven placement.
In Proceedings of the conference on Design, automation and
test in Europe, pages 1226–1231. EDA Consortium, 2007.

[24] K. Tsota, C.-K. Koh, and V. Balakrishnan. Guiding global
placement with wire density. In Proceedings of the 2008
IEEE/ACM International Conference on Computer-Aided
Design, pages 212–217. IEEE Press, 2008.

[25] M. Wang, X. Yang, K. Eguro, and M. Sarrafzadeh. Multi-
center congestion estimation and minimization during place-
ment. In Proceedings of the 2000 international symposium
on Physical design, pages 147–152. ACM, 2000.

[26] B. Yu, D. Z. Pan, T. Matsunawa, and X. Zeng. Machine
learning and pattern matching in physical design. In De-
sign Automation Conference (ASP-DAC), 2015 20th Asia
and South Pacific, pages 286–293. IEEE, 2015.

7


