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Abstract 

 Geological scenario characterization is very important 

for making reservoir development decisions because the 

outcome of those decisions depends on it. The goal of this 

project is to identify the geological scenario of petroleum 

reservoirs given seismic impedance data using a 

convolutional neural network (CNN). A CNN is ideal for 

this task because it takes into account the spatial 

correlation in the data, which is crucial for discriminating 

between different geological scenarios. Here, the CNN is 

trained on synthetic seismic data generated using rock 

physics forward modeling. To approximate the low 

resolution real seismic data that is usually collected in the 

field, an averaging filter is applied to the generated 

impedance at the geostatistical scale. Both high quality 

and low quality seismic data are considered. The CNN is 

found to work quite well on both these types of data, and, 

as expected, a higher classification accuracy is obtained 

for the high quality seismic data. This methodology is 

more robust than other methodologies for geological 

scenario characterization using geophysical data, which 

require different transforms or distance measures. 

1. Introduction 

The geological scenarios of different subsurface 

petroleum reservoirs are different. The geological scenario 

of a conventional petroleum reservoir is usually 

determined by the depositional environment under which 

the sediments composing the reservoir were deposited over 

geologic time. For example, the depositional environment 

could be fluvial or deltaic, and with or without the 

formation of crevasse splays. Also, the orientation and 

position of these channels and deltas could be altered over 

time by processes such as aggradation and progradation. 

Even after deposition and consolidation of sediments has 

ceased, processes like erosion can dramatically change the 

geomorphological features of the rocks. Therefore, 

correctly identifying the geological scenario of petroleum 

reservoirs is a very challenging problem. 

It is important to identify the geological scenario of 

petroleum reservoirs because the outcome of reservoir 

development decisions, like drilling new wells or setting 

well control parameters, depends on it. A correctly 

identified geological scenario might make the difference 

between drilling a well at the right place and finding oil, 

and drilling at the wrong place and incurring huge losses. 

This is due to the complex spatial heterogeneity that 

characterizes petroleum reservoirs. A typical petroleum 

reservoir consists of many different lithofacies, each with 

different petrophysical properties such as porosity, 

permeability and density, distributed spatially in a complex 

manner. Different geological scenarios require different 

production strategies to optimize oil production, and hence 

to maximize profits. For example, a single well might be 

sufficient to extract oil from a reservoir with conducting, 

highly permeable sands, while multiple wells are required 

in compartmentalized reservoirs with impermeable 

boundaries. Therefore, it is very important to identify the 

geological scenario of the reservoir before making 

reservoir development decisions. 

Different types of geophysical data can be used to 

identify the geological scenario of a reservoir. But this is 

very challenging because usually spatial geophysical data 

have low resolution, of the order of tens of meters, and 

cannot resolve small-scale variability in reservoir 

properties. Well log data have high resolution, of the order 

of a meter, but they are collected only at well locations and 

hence are sparse, and therefore do not inform much about 

the large scale spatial variability in reservoir properties 

characteristic of a particular geological scenario.  Spatial 

geophysical data, such as seismic data or electromagnetic 

data, can inform us about the large scale spatial variability 

in the reservoir, even though they are not perfect 

information because of their lower resolution. 

This project aims to classify the geological scenario of 

subsurface petroleum reservoirs using convolutional neural 

networks on seismic acoustic impedance data. A synthetic 

dataset has been created using geostatistical simulation to 

generate the reservoir properties, and then using rock 

physics modeling to generate the synthetic acoustic 

impedance data. The acoustic impedance data thus 

generated, and the associated geological scenario labels, 

comprise the dataset which will be used to train and test a 

convolutional neural network. Convolutional neural 

networks can be expected to give better classification 

results than other classification techniques because they 
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can capture complex patterns in the data. To evaluate the 

results, the classification accuracy on the test data is a 

good metric to use. By testing the trained convolutional 

neural network on the test data, a confusion matrix can be 

obtained which will indicate how well the network 

performs on the dataset. 

2. Related Work 

Previous work in identifying geological scenarios from 

geophysical data has been done by Trainor-Guitton (2010), 

who used directional variograms on inverted images 

obtained from electromagnetic data to classify the 

realizations into different geological scenarios. Transient 

or time-domain electromagnetic (TEM) data, which are 

magnetic field responses over time, were inverted to obtain 

a layered model of electrical resistivity and thickness 

values. The electrical resistivity maps thus obtained were 

used to generate lithological images, considering different 

electrical resistivity values for different lithologies. These 

lithological images were used to infer the channel direction 

and hence the geological scenario. However, the possible 

scenarios considered consisted of only three different 

orientations of channels, which is probably too simplistic. 

In addition to uncertainty in the orientation, there might be 

uncertainty in the depositional environment, types of 

lithofacies present, and their proportions and spatial 

distributions. Also, the resolution of land-based TEM 

measurements is very low because of the high in-line 

measurement separation, and hence the classification 

accuracy obtained is quite low (about 50%) for this three-

class classification problem. 

Yang et al. (2015) used different distance measures to 

discriminate geological and rock physics scenarios from 

time-lapse seismic data. Seismic data has higher resolution 

than electromagnetic data, but still its resolution is quite 

low compared to the geostatistical scale at which the 

reservoir properties are simulated. Besides, the time-lapse 

signature might be caused by various factors such as fluid 

saturation change, pressure change, etc. So, it is not trivial 

to retrieve meaningful information from time-lapse seismic 

data which could help in making better reservoir 

development decisions. Therefore, a sensitivity analysis 

using Distance-based Generalized Sensitivity Analysis 

(DGSA) was first performed to determine the rock physics 

and seismic parameters that influence the time-lapse 

signature the most, to better model the uncertainty in the 

forward time-lapse seismic response. They considered 

slightly more complex scenarios; in addition to different 

orientations, they considered different shapes of geological 

bodies (channels and ellipsoids) and different lithofacies 

(channel sand, splay sand and background shale). To 

discriminate between these different scenarios, different 

distance measures were used to capture the complex and 

non-stationary spatial patterns in the realizations, including 

Principal Component Analysis (PCA), Fractal Dimension 

and Clustered Histogram of Patterns (CHP). Then 

Bayesian classification was used to classify the realizations 

based on these distance measures and the test accuracy was 

evaluated for each distance measure. It was found that 

CHP gave the highest overall test accuracy of about 70%. 

The performance of this methodology depends on the 

problem at hand because one particular distance measure 

might work well for discriminating some particular types 

of geological scenarios, but might not effectively 

distinguish between other types of scenarios. In short, 

there is no distance measure that works well universally 

for all types of geological scenarios. 

It is clear from the above discussion that a more robust 

classification technique that performs well over many 

different geological scenarios incorporating the complex 

spatial and lithological variability in the reservoir is 

required. The technique should be flexible enough to 

distinguish between non-stationary spatial patterns, yet 

powerful enough to detect large-scale regional variations 

in the data. It should be able to learn from features at 

multiple scales to successfully discriminate lithological 

and structural differences between different geological 

scenarios. A Convolutional Neural Network (CNN) seems 

ideal for this purpose, as it takes into account the spatial 

correlation in the data, and has numerous parameters that 

can be learned by proper training to build a classifier 

which can distinguish between both large-scale and small-

scale features in the data. 

3. Dataset Generation 

To model the dataset, we need to first model the 

uncertain reservoir properties corresponding to each 

geological scenario. In this project, two different 

geological scenarios, having different depositional 

environments, are considered: channels and mounds. 1000 

facies realizations (samples) are simulated corresponding 

to each of these scenarios on a 100 x 100 grid. The facies 

realizations for the channel scenario are simulated using 

the multiple-point geostatistical algorithm Single Normal 

Equation Simulation or SNESIM (Strebelle, 2002), with 

65% floodplain facies and 35% channel facies (SGeMS, 

2011). On the other hand, the realizations for the mound 

scenario are simulated using object based Boolean 

simulation with ellipsoidal objects (Deutsch and Journel, 

1998). The major and minor axes of the ellipsoids are 

sampled from Gaussian distributions with means 10 and 5 

respectively, and variances 1 and 0.5 respectively. The 

mounds represented by the ellipsoids occupy 30% of the 

volume of the reservoir, and there is no overlap between 

them. Figure 1 shows three facies realizations of each 

geological scenario thus generated. 
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Figure 1: Three facies realizations each of (a) the channel 

geological scenario, and (b) the mound geological scenario. 

 

 
                                              (a) 

 
                                              (b) 
Figure 2: Histogram of porosity in (a) the sand facies, and (b) the 

background facies. 

 

The porosity is then simulated conditioned to the facies, 

using the two-point simulation algorithm Sequential 

Gaussian Simulation (SGSIM). To do so, we basically 

require the following information: 

a) Histograms of the sand and background facies which 

represent the distributions of porosity in these two 

facies. 

b) Variograms representing the spatial correlation of the 

porosity distribution in both the geological scenarios. 

The histograms of the porosity distributions in each facies 

are obtained from prior knowledge of the reservoir. Figure 

2 shows the histograms of porosity in each facies that are 

used for this purpose. 

The generated porosity realizations for the two facies 

are then combined using the Cookie-Cutter method to 

obtain the porosity realizations for the reservoir. It is 

necessary to model the porosity of the reservoir because it 

affects the density of the reservoir and the velocity of 

seismic waves through the reservoir, both of which affect 

the acoustic impedance in turn. Figure 3 shows the 

porosity realizations corresponding to the facies 

realizations shown in Figure 1. 

 

 
Figure 3: Porosity realizations corresponding to the facies 

realizations in Figure 1 for (a) the channel geological scenario, 

and (b) the mound geological scenario. 

 

Given the porosity and the constituent minerals for each 

facies, the density of the reservoir can be computed as the 

weighted average of the densities of its constituents, 

weighted by their fractions. Table 1 shows the constituents 

of each facies along with their fractions. In addition, the 

sand facies is assumed to contain 1% cement. Also, the 

water saturation and the oil saturation in the sand facies are 

assumed to be 15% and 85% respectively, and those in the 

background facies are assumed to be 30% and 70% 

respectively. 
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Facies Constituent Fraction 

Sand Quartz 0.65 

Feldspar 0.20 

Rock fragments 0.15 

Background Clay 0.85 

Quartz 0.15 

Table 1: The constituents of the two facies and their fractions. 

  

 Using the constituent densities shown above, the density 

realizations of the reservoir are modeled using the porosity 

and the facies realizations. Figure 4 shows the density 

realizations corresponding to the facies realizations of 

Figure 1. The density is one of the two reservoir properties 

that directly affects the acoustic impedance, the other 

being seismic velocity (the acoustic impedance is defined 

as the product of the density and the velocity). So, to 

model the seismic data, i.e. the acoustic impedance, the 

seismic velocity need to be forward modeled. To do so, the 

constant cement model (Avseth et al., 2000) is employed. 

This model assumes that the reservoir rocks have gone 

through the same diagenesis process, which is a reasonable 

assumption if the vertical depth range of the reservoir is 

not very high, like in our reservoir model. The constant 

cement model first computes the elastic moduli of the dry 

rocks and then applies the Gassmann equation (Gassmann, 

1951) to compute the elastic moduli for the saturated rocks 

and hence their velocities (Mavko et al., 2009). 

 

 
Figure 4: Density realizations corresponding to the facies 

realizations in Figure 1 for (a) the channel geological scenario, 

and (b) the mound geological scenario. 

 

To model the seismic data, the acoustic impedance (AI) 

for each realization is first modeled at the geostatistical 

scale using the density and the velocity realizations already 

generated. However, the AI obtained from inverting real 

seismic data is usually of much lower resolution than the 

AI at the geostatistical scale. Therefore, a moving mean 

filter is applied to the AI at the geostatistical scale to 

approximate the AI at the seismic scale. Here, we assume 

two kinds of seismic data – high quality and low quality. 

The high quality seismic data is obtained by applying a 

moving mean filter with window size of 2x2, and the low 

quality seismic data is obtained by applying a moving 

mean filter with window size 4x4. Figure 5 shows the AI at 

the geostatistical scale, and Figure 6 shows the AI at the 

seismic scale for the low quality seismic data. 

 

 
Figure 5: AI at the geostatistical scale corresponding to each 

facies realization shown in Figure 1. 

 

 
Figure 6: AI at the seismic scale corresponding to each facies 

realization shown in Figure 1 for the low quality seismic data. 

 

Thus, we have 2000 samples of the AI at the seismic 

scale, which are the data, and their corresponding labels 

(the geological scenario). Each of the AI samples is on a 

grid of dimension 100 by 100, which can be stretched out 

into a vector of size 10000. Thus, we have a data matrix of 

dimension 2000 by 10000, and their associated labels. 

This dataset is split into a training set containing 1800 
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samples (900 samples of each scenario), and a test set 

containing the remaining samples. This will be used to 

train and test a CNN to classify each realization into one of 

the two geological scenarios. The accuracy of the 

classification will be determined using a confusion matrix, 

which shows the percentage of samples belonging to each 

scenario that are classified as each scenario. 

4. Methods and Experiments 

A CNN with the following architecture is trained on the 

dataset (MATLAB 2017a): 

[32 channel 29x29 CONV, stride 1, padding 2] 

[ReLU] 

[3x3 Max Pooling, stride 2, padding 0] 

[64 channel 29x29 CONV, stride 1, padding 2] 

[ReLU] 

[3x3 Max Pooling, stride 2, padding 0] 

[64 channel Fully Connected] 

[ReLU] 

[2 channel Fully Connected] 

[Softmax] 

The input image is 100x100 with 1 channel, and the output 

is the probability of each geological scenario. A large 

kernel size is used for the convolutional layers because we 

would like to capture the large scale spatial correlation in 

the data which is characteristic of each geological 

scenario, and hence very important for discriminating 

them. This CNN is first trained on the low-quality training 

data using stochastic gradient descent with momentum, 

with a momentum of 0.9, learning rate of 0.001, decay rate 

of 0.95, L2 regularization of 0.004, and minibatch size of 

128. After training for 40 epochs, a training classification 

accuracy of 81.2% is obtained. The first layer weights after 

training is shown in Figure 7. 

 

 

Figure 7: First CONV layer weights after training on the low-

quality data. 

This trained CNN is evaluated on the test set and the 

results are summarized in the confusion-matrix in Table 2. 

It is seen that the overall test accuracy is 81.5%, with 

perfect classification for the mound geological scenario 

and not very good classification for the channel geological 

scenario. The reason why some of the channel realizations 

are classified as mounds by the CNN might be because of 

the blobs present in some of the channel realizations which 

look like mounds. 

 
Predicted 

channel 

Predicted 

mound 

True channel 63 37 

True mound 0 100 

Table 2: Confusion matrix showing test accuracy of the CNN 

when trained on the low-quality dataset. 

 The CNN is then trained on the high-quality seismic 

acoustic impedance dataset. The same architecture and set 

of hyperparameters is used. The first layer weights for the 

CNN trained on the high-quality data is shown in Figure 8. 

It is seen that the weights learn some elongated channel-

like features and some blobby mound-like features. This 

trained CNN is again evaluated on the test data and the 

results are shown in the confusion matrix in Table 3. It is 

seen that the overall test accuracy is 91.5%, with good 

classification accuracy rates for both the geological 

scenarios. The increase in the classification accuracy for 

the channel geological scenario can be attributed to the 

higher resolution in the dataset. On the other hand, the 

classification accuracy for the mound geological scenario 

is almost the same as that using the low-quality data. This 

shows that the resolution of the seismic impedance data is 

important for detecting channels, but not very important 

for detecting mounds. 

Figure 8: First CONV layer weights after training on the high-

quality data. 
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Predicted 

channel 

Predicted 

mound 

True channel 84 16 

True mound 1 99 

Table 3: Confusion matrix showing test accuracy of the CNN 

when trained on the high-quality dataset. 

5. Conclusions and Future Work 

A robust and flexible methodology to characterize the 

geological scenario of petroleum reservoirs from seismic 

impedance data has been demonstrated using a CNN. This 

methodology is robust because, unlike other 

methodologies discussed in the Related Work section, it 

does not involve computing different types of transforms 

or distance measures on the data and can make predictions 

based on the raw spatial data. This methodology is also 

flexible because the same network can be used to classify 

based on different types of spatial geophysical data. 

The CNN used in this project is trained on both high-

resolution and low-resolution seismic acoustic impedance 

data, and the effect of the change in resolution is evident in 

the classification accuracy rates. This type of analysis 

could be very useful prior to actually collecting the data to 

determine the minimum resolution required for the 

classification to give satisfactory results and hence help in 

proper design of seismic surveys.  

In this project, only seismic acoustic impedance data is 

used to classify the geological scenario, but future work 

might combine various types of geophysical data to make 

predictions on the geological scenario. These include 

various seismic attributes such as the seismic S-wave 

impedance, velocities of seismic P and S waves (Vp and 

Vs), and the Vp/Vs ratio. So, instead of a “one to one” 

classification, it would be a “many to one” classification, 

and can be performed using Recurrent Neural Networks 

(RNNs) instead of CNNs. The classification accuracy rates 

might increase if multiple data sources are used. 

Another direction for future research is to perform a 

value of information (VOI) analysis (Howard, 1966) on 

various geophysical spatial data for geological scenario 

characterization. To do a VOI analysis, a decision situation 

need to be framed, and the prospect values evaluated for 

each possible decision alternative. Then, the effect of the 

geophysical data on the outcome of our decision 

alternatives need to be evaluated using an information 

reliability measure (Trainor-Guitton, 2010). The VOI is 

computed before actually collecting the data, and is a 

monetary estimate of the additional value resulting from 

acquiring the data before making the reservoir 

development decision. Thus, a VOI analysis can tell us 

whether it is worthwhile to collect the data, and if so, how 

much and what type of data to collect. These are important 

questions because geophysical data, such as seismic data, 

are expensive to collect and process. 
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