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Abstract

Lattice spin models are used to study the magnetic be-
havior of interacting electrons in solids. We study the one
and two dimensional nearest-neighbor Ising model and the
one dimensional XY model to demonstrate that variational
autoencoders with convolutional layers can learn to prop-
erly sample from the correct distribution of spin configura-
tions across a range of temperatures and capture a phase
transition. Generative neural networks produce uncorre-
lated samples and therefore offer an advantage over Markov
chain Monte Carlo methods which often suffer from long
autocorrelation times.

1. Introduction
An understanding of emergent behavior in many-body

systems is a great challenge that has been the subject of in-
tense research in the physics community for many decades
and has lead to the invention and discovery of many novel
materials with practical technological applications in the
real world [1, 2, 3, 4, 5]. Theoretical approaches to this
problem often utilize simplified models to represent the in-
teractions involving electrons and the lattice in real materi-
als. Spin models are one particular type of idealized model
used to study magnetism. In these models the kinetic en-
ergy of electrons hopping on a lattice is ignored and only
the interactions between the electron spins, a quantity pro-
portional to the magnetic moment, is considered. For clas-
sical (non-quantum mechanical) models, the probability of
a given spin configuration is proportional to the Boltzmann
weight which depends on the energy of the state and the
temperature of the system and is straightforwardly com-
puted for a given configuration [6]. The temperature of
the system determines the strength of thermal fluctuations
which can drive the system through phase transitions. To
illustrate the importance of such models, the 2017 Nobel
Prize in physics was awarded in part for the understanding
the topological phase transition which occurs in the two di-
mensional XY spin model [7, 8].

Even the simplest case of the nearest-neighbor Ising

model on a square lattice has only been solved analytically
in one and two dimensions [9]. The general intractability
of the many-body problem by exact analytic methods has
lead to the development of a wide variety of numerical tech-
niques such as exact diagonalization, dynamical mean-field
theory, density matrix renormalization group, and Monte
Carlo based methods [10, 11, 6, 12]. More recently, re-
stricted Boltzmann machines (RBMs) have also been suc-
cessfully applied to solving Ising-like models [13, 14, 15].
However, neural network architectures such as variational
autoencoders (VAEs) and generative adversarial networks
(GANs) have been more successful as generative models
than the somewhat outdated RBMs [16, 17]. We demon-
strate that VAEs and the recently developed method of
adversarial variational Bayes (AVB), which combines ele-
ments of VAEs and GANs, can be used to solve classical
spin models in one and two dimensions [18]. Our neu-
ral networks are successful even across a phase transition
and capture the average energy, spin-spin correlation func-
tion, and overall distribution of states. In addition, gen-
erative neural networks provide uncorrelated samples un-
like Markov Chain Monte Carlo methods which often suffer
from long autocorrelation times [19, 16].

The techniques developed in the past decade for the ap-
plication of deep neural networks to computer vision prob-
lems, namely the use of convolutional layers [20], are par-
ticularly useful for neural networks trained to solve spin
models. This is because the Hamiltonian which describes
these systems typically has translation invariance which
stems from the fact that an idealized solid looks the same
from any one of its lattice sites. In other words, patterns in
the spin configurations can be translated in space without
changing the energy of the configuration. Therefore spin
configurations can be viewed as images where each spin
corresponds to a pixel which can either take on discrete or
continuous values depending on the model. The goal of
the neural network is then to learn the likelihood and struc-
ture of important features in the spin configurations which
can occur with equal probability anywhere in the system, in
analogy to features in real images. As expected, we find that
convolutional layers are able to improve the performance of
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the network, likely because they are able to successfully de-
tect the occurence of domain wall features (spin flips) in the
configurations. In addition, the realization that some deep
neural networks perform the same coarse-graining proce-
dure as the powerful renormalization group method in the-
oretical physics suggests that such networks are promising
tools for studying many-body systems [15].

We study the classical Ising model in one and two dimen-
sions and the classical XY model in one dimension. The
configuration energy for the Ising model is given by:

H = −
∑
〈ij〉

Jσiσj (1)

where each spin variable σ takes on a discrete value of -1
or 1 and 〈ij〉 denotes nearest-neighbor pairs on the lattice.
The configuration energy for the XY model is given by:

H = −
∑
〈ij〉

Jsi · sj = −
∑
〈ij〉

J cos(θi − θj) (2)

where each spin is represented by an two-dimensional unit-
length vector s = (cos θ, sin θ) with θ ∈ [−π, π]. The
probability of a given spin configuration with energy E
at temperature T is proportional to the Boltzmann weight
exp(−E/T ) in units where the Boltzmann constant kB =
1. The metrics we use to evaluate our results include the av-
erage energy, spin-spin correlation function, and the distri-
bution of states in energy (density of states). The spin-spin
correlation function is obtained by evaluating the expecta-
tion value 〈sisj〉.

2. Methods
The networks are implemented in Tensorflow and are

trained on an Nvidia Tesla K80 GPU using Google Cloud
compute resources.

2.1. Training data

Training data is obtained from Monte Carlo performed
with the Metropolis-Hastings algorithm [6]. For each
Markov chain, the procedure begins with a random spin
configuration and then generates subsequent configurations
via importance sampling. For each Monte Carlo step a ran-
dom lattice site is chosen and an update to its spin is pro-
posed. The energy difference ∆E between the proposed
state and the current state is calculated, which only involves
the spins of the nearest neighbors for the models we con-
sider, and the proposed state is accepted with probability
r = exp(−∆E/T ). Our Monte Carlo data is generated
using 20 independent Markov Chains for each temperature
in the simulation. Each chain is generated after perform-
ing 2000 warm-up sweeps followed by 10,000 sweeps with
measurements taken every 20 sweeps. The training set for

Figure 1. Architectures. a) The variational autoencoder architec-
tures used for 1D and 2D Ising models. b) The adversarial varia-
tional Bayes architectures used for the 1D Ising and XY models.

each temperature therefore consists of 10,000 spin configu-
rations. We then train a VAE or AVB on each of the training
sets and use it to generate 10,000 random samples which we
analyze and use to compute the expectation values of the
desired observables.

2.2. Variational autoencoder

A variation autoencoder (VAE) resembles a traditional
autoencoder in that it has an encoder and a decoder and
attempts to minimize the reconstruction loss between the
input and the output [21]. However, during training an ad-
ditional term in the loss function reflects that the prior on
the latent variable z generated by the encoder is chosen to
be normally distributed: p(z) = N(0, I). The encoder of
the VAE attempts to learn the posterior distribution p(z|X)
so that it can sample values of z which are likely to corre-
spond to an input X . At test time, the encoder is discarded
and new samples are generated by using Gaussian random
noise (the chosen prior) for the hidden variable z as input to
the decoder.

The translation invariance of the system suggests that
convolutional layers are well-suited for the problem, and
we have achieved the best performance with our VAE by
using convolutional layers for the encoding step and decon-
volutional layers for the decoding step. The specific param-
eters in the architecture are outlined in Fig. 1a for both one
and two dimensional cases. The ε in Fig. 1a is a random
normally distributed variable used for the reparametrization
trick. The loss function for the network is given by:
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L(θ, φ;x) =
1

N

∑
i

DKL(q(z|xi)||N(0, I))− log p(xi)

=
1

N

∑
i

DKL(N(µ, σ)||N(0, I)) + |xi − yi|2

(3)

where DKL is the KL divergence, N(0, I) is a unit nor-
mal Gaussian distribution, yi is the reconstructed output
for sample xi, φ represents the parameters for the encoder
q(z|x), θ represents the parameters for the decoder p(x), µ
and σ are the latent variables produced by the encoder, and
N is the batch size. The KL divergence penalty encourages
the distribution for the latent variable z produced by the en-
coder q(z|x) to be Gaussian.

We found that regularization such as L2 weight regu-
larization, dropout, and batch normalization were not help-
ful in the model, possibly because sufficient regularization
is already provided by the KL divergence term in the loss
function and the random noise used to sample from q(z|x).
We used the Adam optimizer for training with a learning
rate of 0.001. Since variational autoencoders perform better
with larger batch sizes which provide a better representation
of the data distribution, we used a batch size of 500 when
training all of our models.

2.3. Adversarial variational Bayes

We also implement the recently developed technique of
adversarial variational Bayes (AVB) which allows for more
expressive inference models by introducing an auxiliary
discriminative network in addition to the traditional VAE
architecture [18]. In a simple test example on a synthetic
dataset consisting of four classes of binary images, AVB
partitions the distribution of the hidden variable more sym-
metrically for the four classes than VAE and also achieves
an improved log-likehood score and less reconstruction er-
ror [18]. The optimization objective for AVB is derived
starting from the VAE objective and expressing the KL di-
vergence as the function which maximizes the objective of
a secondary, discriminative network:

max
T

[EpD(x)Eqφ(z|x) log σ(T (x, z))

+ EpD(x)Ep(z) log(1− σ(T (x, z)))]
(4)

where pD(x) is the data distribution, σ is a sigmoid, p(z)
is the prior, qφ(z|x) the inference network, and T the out-
put of the discriminative network. Intuitively, T (x, z) tries
to distinguish pairs (x, z) sampled from pD(x)p(z) and
pD(x)qφ(z|x). The original objective then becomes:

max
θ,φ

EpD(x)Eqφ(z|x)[−T
∗(x, z)) + log pθ(x|z)] (5)

where T ∗ is the maximal discriminator according to
(4). It can be proven that Eqφ(z|x)T

∗(x, z) =
DKL(qφ(z|x), p(z)) which establishes the connection to
the original VAE objective. Therefore training the network
involves alternating gradient ascent updates according to the
objectives given by (4) and (5).

As shown in Fig. 1b, we have only used dense (fully-
connected) layers in our AVB so far. We used the Adam
optimizer for training with a learning rate of 0.002 and
β1 = 0.4. These networks are more difficult to train than
traditional VAEs because the success of the training is dif-
ficult to determine based on the behavior of loss function
versus training epoch alone. In the future we would like to
experiment with more complicated architectures and convo-
lutional layers.

2.4. Analytic solutions

We compare the average energy predicted by our net-
works to the analytic result which can be obtained from the
partition function as follows:

〈E〉 = −∂ lnZ

∂β
(6)

where β is the inverse temperature. The partition functions
for the spin models we consider are known analytically. For
the 1D Ising model with free boundary conditions, the par-
tition function is:

Z = 2(2 cosh(βJ))N−1 (7)

where N is the number of sites [9]. For the 1D Ising model
we also know the spin correlation function is: 〈σiσi+N 〉 =
tanh(βJ)N . For the 2D Ising model with periodic bound-
ary conditions, the partition function is given by:

Z = λN

lnλ = ln(2 cosh(2βJ))

+
1

π

∫ π/2

0

dw ln

[
1

2
(1 +

√
1−K2 sin2(w))

]
K =

2 sinh(2βJ)

(cosh(2βJ))2
.

(8)

The ferromagnetic phase transition occurs at a temperature
given by Tc = 2J

ln(1+
√
2)
≈ 2.27J [9]. Finally, for the 1D

XY model the partition function is:

Z = (2π)NI0(βJ)N−1 (9)

where I0 is the modified Bessel function of the first kind
[22]. We demonstrate that our Monte Carlo data of course
reproduces the average energy versus temperature within er-
ror bars as shown by the blue markers in Fig. 2 and we are
therefore confident that it represents the true distribution.
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Figure 2. Results. a) 1D Ising model with 6 sites using VAE and
AVB. b) 1D XY model with 6 sites using AVB. c) 2D Ising model
on a 10x10 lattice with VAE.

We use the Monte Carlo data as a baseline for the density
of states and spin correlations in the cases where analytic
solutions are unavailable.

3. Results

The performance of our neural networks is presented in
Fig. 2. In the leftmost panels the solid green line corre-
sponds to the analytic solution for the average energy per
site. In each case, the trends for average energy and the spin
correlation function versus temperature are captured by the
networks, in some cases better than others. For the 1D Ising
model shown in Fig. 2a, the AVB network in the upper
panel outperforms the VAE in the panel below in terms of
accurately capturing the average energy and especially the
spin correlations. Note that the VAE significantly underesti-
mates the spin correlations at the second lowest temperature

Figure 3. Visualization of states. Representative samples draw
with energy equal to average energy for Monte Carlo and the vari-
ational autoencoder for the 2D Ising model at the critical temper-
ature and above the critical temperature. Black and white pixels
correspond to spin up and down on the 10x10 lattice.

in the simulations while AVB does not. This is a promising
result which suggests that extending our AVB networks to
two dimensions may further improve results in those cases.
Insets in the leftmost panels display histograms of the den-
sity of states at selected temperatures which are generated
from the neural networks and compared to the true distribu-
tion obtained from Monte Carlo. The distribution of states
is particularly well captured in the 1D XY model in Fig.
2b which demonstrates that our methods apply equally well
to systems with continuous spin variables. In the two di-
mensional Ising model, the VAE successfully captures the
average energy versus temperature even across the critical
temperature for the ferromagnetic phase transition as shown
in Fig. 2c. Note that in every case the networks perform
nearly perfectly at training time (see red markers in left-
most panels of Fig. 2) which suggests that there may be
some over-fitting.

In Fig. 3 we visualize some sample states generated
by the VAE for the 2D Ising model and those generated
by Monte Carlo to perform a qualitative comparison. We
checked that these particular Monte Carlo samples are re-
constructed perfectly when passed through the network,
which is not surprising given the high accuracy of the net-
works at training time. The Monte Carlo samples are se-
lected samples with energy equal to the average energy
predicted by Monte Carlo, and the VAE samples are se-
lected samples with energy equal to the average energy
predicted by the VAE. We see qualitative agreement be-
tween the samples at the transition temperature as well as
above the transition temperature. This verifies that despite
the small discrepancies in the average energy predicted be-
tween Monte Carlo and the neural networks, the spin con-
figurations are qualitatively similar. As expected, compared
to the high temperature spin configurations, the spin con-
figurations at the transition temperature contain far fewer
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spin flips (which come with an energy cost) and demon-
strate a tendency towards ferromagnetic ordering where all
spins tend to point in one direction. At higher tempera-
tures thermal fluctuations lead to an increased number of
spin flips resulting in a more random, uncorrelated spin pat-
tern. The location and frequency of spin flips determines
the energy of the configuration as well as other properties
such as the spin correlations. Note that spin flips simply
correspond to edges in the images of the spin configurations
visualized in Fig 3. Since convolutional layers are designed
to detect features such as edges, we argue that the ability
of convolutional layers to detect spin flips is responsible for
the improvement we see over dense (fully-connected) net-
works. An example of the quantitative improvement from
use of convolutional layers in our VAE is shown in the top-
left panel of Fig. 2a where a VAE with convolutional layers
performs better than a VAE with only dense layers for which
the results are plotted with the gray markers.

4. Conclusion

It is exciting that neural networks are able to learn the
true distribution of spin configurations for both discrete and
continuous spin models. Furthermore, if used cleverly, gen-
erative neural networks which produce uncorrelated sam-
ples may provide a computational advantage over Markov
Chain Monte Carlo methods which often suffer from long
autocorrelation times. Techniques such as amortized Monte
Carlo could be used to train these networks efficiently [19].
We would like to apply VAEs and AVBs to more interest-
ing spin models such as the 2D XY model which exhibits
a vortex-unbinding phase transition, models with frustrated
magnetism, and models with quantum dynamics. Our work
demonstrates that deep learning could potentially prove to
be a useful computational technique in condensed matter
physics.
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