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Abstract

This project explores the possibility of training Pile Up dis-
criminators for ATLAS based on Convolutional Neural Net-
works, exploiting the structural differences in the momen-
tum spread of Pile Up and Hard Scatter jets.

1 Introduction

The Large Hadron Collider (LHC) is a particle accelerator
that collides two beams of protons at energies up to 14 TeV.
Physicists can probe the most elementary of forces under
conditions similar to that of the Universe at the time of
the Big Bang. This is done by a careful study of all the
particles that are produced in the proton - proton collisions
that occur at the LHC using large detectors. The ATLAS
detector is one such detector on the LHC,which studies the
physics at the collider by careful measurements of all the
final products that arise from the proton collisions [6]. These
final products, however, don’t show up as isolated items in
the detector, but instead get converted into collimated high
energy showers of particles.

These collimated streams of particles are called jets, and
are crucial to any study of Particle Physics as the momenta
and energies of these jets can tell us a great deal about the
particle that created the jet, which in turn tells us some-
thing about the nature of the proton - proton collision that
created the particle. As the proton’s radius is merely a few
femtometers, the LHC collides bunches of 109 protons every
25 ns to get an appreciable number of interesting collisions
[1].

This proton bunching leads to several experimental com-
plications, one of them being Pile Up (PU) [Fig. 1]; Pile
Up is the phenomenon where false jets are registered in the
detector equipment [7]. This could be as a result of several
shower particles from different jets coincidentally hitting the
detector in a localized spot, registering themselves as a new
jet. This could also happen as a result of time delays in the
detector which falsely register jets much after the actual hit.
In addition to these issues, several other contributing fac-
tors also create these Pile Up jets. These PU jets can pollute
the physics sample, hampering physics analyses and leading
to potentially spurious results. Hence identifying these PU
jets is crucial to the operation of experiments such as the
ATLAS detector.

Figure 1: Typical bunch crossing at ATLAS. Each point in
the lower image is a p-p collision; It is clear that shower
particles from one collision wander across and interact with
the detector in varied places, making it possible for false jets,
that don’t originate from an actual collision, to be registered
in the detector equipment.

The aim of this project is to determine whether Machine
Learning and Convolutional Neural Networks can be used
to effectively identify PU jets in the central region1 of the
ATLAS detectors. This is done for a couple of reasons.
First there is a clear baseline available in the forward region
with which the results of this project can be compared[8].
Secondly, the central region is the most fruitful region of the
detector in terms of physics analysis, which is why it has the
best resolution[6]. Improving Pile Up identification in this
region of the detector could therefore have a massive and
immediate impact on the work done at ATLAS. This study
will be limited by the similarity of QCD PU jets2 to actual
Hard Scatter (HS) Physics jets3 [2], but the CNN method
should be sufficient to discriminate against Stochastic PU
jets4.

2 Related Work and Evaluation
Metrics

The ATLAS standard for discriminating between HS and
PU jets in the central region is using the Jet Vertex Tag-

1Central Region in this report corresponds to pseudo-rapidity η <
0.8, which is related to θ w.r.t. z-axis by, η = − ln tan θ/2

2PU jets due to Quantum Chromodynamics interactions
3Real jets due to interesting physics interactions
4PU jets made up of random collections of tracks and clusters
*Prof Ariel Schwartzman is not enrolled in CS231N
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ger (JVT)[8][1]. The JVT[23] is based on the jet Rpt[24]
variable as well as the pileup corrected jet-vertex-fraction
(corrJVF) variable[22]. The jet Rpt is the sum of the pT of
the tracks from the primary vertex divided by the pT of the
jet, thus combining both calorimeter and tracking informa-
tion. JVF[9] is the sum of the pT of tracks from the primary
vertex divided by the sum of all tracks. And corrJVF is a
modified version of JVF which accounts for the total number
of pileup tracks in the event. The JVT is constructed from
the Rpt and corrJVF as a 2-D likelihood, using a k-nearest
neighbour algorithm [10].

The tracks[18][19][20] mentioned above are paths of
charged particles as they travel through the magnetic field
and ionize the silicon tracker inside the ATLAS detector[6].
They are very precise and for that reason we can identify
which interaction point they originated from, their primary
vertex. Clusters[12][21], which will be mentioned shortly,
are the energy deposits of both charged and neutral parti-
cles in the calorimeter. It’s impossible to distinguish which
interaction point a cluster came from because of the resolu-
tion of the calorimeter. That is why sometimes we do not
know for sure if a jet is PU or not. Tracks and Clusters form
the input data for the networks explored in this model, as
described in Section 3 ahead.

For the purposes of the study conducted in this report,
the jet Rpt variable serves as a good proxy for the JVT,
and shall serve as the baseline against which network per-
formance will be measured. In addition to jet Rpt, a baseline
Neural Network has also been trained using jet Rpt and pT
as input features. This is theoretically a more challenging
baseline to work with, as it uses pT information to improve
predictions.

Figure 2: Receiver Operating Characteristic curve [14]

The primary metric used to gauge the performance of a
discriminator in ATLAS is the Receiver Operating Charac-
teristic (ROC) curve[15][16][17]. Figure 2 offers a neat illus-
tration of the principle of ROC curves. Given some discrim-
inating variable, one starts by plotting the distribution of
said variable for truly Positive (P) and Negative (N) cases5.
Given the distribution of the discriminator, one places ei-
ther a lower or upper limit on the variable, and classifies
everything on either side as P and N. This will mean that
some cases will have been correctly classified as P (TP),
some will have been correctly classified as N (TN), while
others will have been misclassified as P (FP) or N (FN)6.

5In the context of this report, the Positive case corresponds to a
PU jet, and the Negative case corresponds to a HS jet.

6literally, True Positive, True Negative, False Positive, False Neg-
ative.

Using these four numbers, one can deduce the efficiency of
TP and FP events (Figure 2), and this forms a point on the
ROC curve. Then by varying the value of the lower/upper
limit, different points on the ROC curve can be explored.

ROC curves are used in ATLAS as discriminators are used
at the start of any physics analysis to make sure that the
physicist is working with good data. These ROC curves
thus help the physicist determine the appropriate tool and
upper/lower limit to use for their specific analysis. In ad-
dition to ROC curves, traditional metrics like Accuracy are
also helpful in illustrating the merits of a discriminator tool.
Hence in this report both ROC curves as well as accuracy
shall be used to evaluate the performance of models.

3 Dataset and Features

Our dataset has been mined from the massive xAOD con-
tainers that hold most of the ATLAS simulation data. It
consists of ∼ 4.105 detector level jets which contain the fol-
lowing information:

• The boolean variable isPU, which tells us whether a jet
is PU or HS. This forms our truth label.

• The reconstructed transverse momenta pT of all the
clusters[12] that belong to a jet; these contribute to the
values of the pixels in the first channel in the image.

• The η and φ values of each cluster, effectively the (x, y)
co-ordinate of each cluster in the image plane

• The pT , and (η, φ) coords for all the tracks leading into
a jet, separately for HS and PU tracks. These form the
second and third channel in the image.

• The true transverse momentum pT of the whole jet
• Reconstructed jet pT , used to place the momentum cut

on the data
• Event Weights, to ensure the network has an equal

number of PU and non-PU (HS) jets to train on
• Jet η, which is used to select forward jets by η > 2.5,

as well as the jet φ.
• The jet Rpt; the sum of the pT of the tracks from the

primary vertex divided by the pT of the jet

The data has been split into 80% training, 10% CV, and
10% test sets. Only central jets with |η| < 0.8 are taken for
uniform detector response, and with pT ∈ [20, 30] GeV are
considered to wash out any pT dependence. This is done
since it was is that the jet energy scale can depend on the
η position of the jet [3], and imposing |η| < 0.8 requires the
jets to be in the central region of the detector where the
detector non-uniformities are not as significant.

The data is adapted into images by representing all the
momentum deposits that make up a jet in the form of a 2-D
planes (η - φ plane), where each pixel value represents the
transverse momentum pT deposited in that pixel. Images
are formed using the cluster pT s, HS track pT s, and PU
track pT s binned in the η − φ plane. The resolution along
both the η and φ axes is 0.1, and the span along each axes
is 1.0 (radians), which means that each layer in an image
is a 10 x 10 matrix. CNNs can then be used to learn the
structure of these images and learn to discriminate between
PU and non-PU jets with reasonably good accuracy.
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To better visualize the data, Figure 3 and Figure 4 are
shown. However it should be noted that individual images
are very sparse and resemble samplings from these averaged
distributions. The x-y axes here are the η and φ axes re-
spectively, which are essentially the usual 3-D polar angles
represented on a 2-D plane. The color of each pixel is a
measure of the total transverse momentum pT that is de-
posited within that pixel, making the entire image a 2-D
histogram of the momenta pT , where the first layer corre-
sponds to cluster pT , the second to HS track pT , and the
third to PU track pT .

Figure 4 clearly highlights the structural differences that
exist between the averaged PU and HS jets. This is dif-
ference in behavior of stochastic PU jets and actual Hard
Scatter jets in momentum space means that there are indeed
structural properties that can be learned from visualizing
the jets in the η − φ plane.

Figure 3: Averaged image of HS jets in the (η, φ) plane.

Figure 4: Absolute difference in the averaged HS & PU jets.

As part of the preprocessing, each image is reflected across
the orthogonal axes to produce four copies of the image, each
rotated by 90 degrees. This was done to help the network
learn the rotation invariance of the jets in the η − φ plane.
Another augmentation was done by dividing the images by
the averaged sum of the values of the pixels channel-wise.
By doing so, the momentum dependence of the data was
further removed, leaving only structural information in the
images to be learned by the CNNs. pT dependence of the
learned network would bias the network to data belonging
to that specific pT range, rendering it non-generalizable to
other physics processes. This is why great care is taken to
remove pT dependence from the data.

4 Methods

Several different approaches were taken at training discrim-
inators to tell PU jets from HS ones. Across all the mod-
els, Cross Entropy Loss is used as it tries to accumulate
the probability distribution on the true labels, making the
output of the network a good discriminator, as opposed to
margin losses which settle once a margin is achieved. The
Adam[11] optimizer is used to move towards convergence
due to its efficient incorporation of gradient information into
the step corrections, particularly its ability to handle sparse
gradients appropriately. The Keras[5] machine learning li-
braries were used for designing the various networks and
training the models discussed in this report. Note that the
ReLu activation function was used with all the Convolu-
tional Layers mentioned in this report.

4.1 Baseline Neural Network

The first step in the analysis was to train a Baseline NN
based on the jet Rpt variable, as well as the jet pT . This
is expected to do better than the jet Rpt alone as the jet
pT is tied to the jet’s identity as PU or HS. While this is
not a strong correlation, it is certainly expected to improve
the performance slightly. The structure of this model was
guided by the universal approximation theorem which says
that a single layer neural network can approximate any func-
tion to arbitrary precision [4]. This motivated the choice of a
simple sequential fully connected network with two inputs,
namely jet Rpt and jet pT , only one hidden layer with 5
nodes before the output node. This network performed bet-
ter than the jet Rpt alone, as expected, and this is visualized
in Figure 9 and Table 1.

4.2 Pseudo CNN with full sized kernels
and angular regularization

The next step was to train a simple CNN with just one
convolutional layer with 100 kernels of size 10, which is the
full size of the input images in the η−φ plane. This is akin
to a fully connected layer, however in this case this was
treated as a convolutional layer as a custom regularizer was
designed to penalize not only the L2 norm of the learned
weights, but also the L2 norm of the gradient of the learned
weights in the polar θ direction in the η − φ plane. This is
detailed below. The convolutional layer was followed by the
final output single node.

4.2.1 Angular Regularizer

Given a weight matrix with the full size 10 of the input
image, a regularization had to be imposed on the weights
to impose angular invariance around the jet axis. This is
equivalent to imposing a regularization on the gradient of
the weights in the polar θ direction of the η − φ plane.

This invariance is expected due to the rotational invari-
ance of the data about the jet axis, and must therefore be
imposed on the weights learned by the network to ensure
that only the useful structural properties are picked up by
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the network. To do this, the initial 10 × 10 matrices are
convolved with row(1, 0,−1) and column(1, 0,−1), and re-
duced to 8 x 8 images by dumping the edges. These two
8 × 8 matrices represent the gradient of the weight matrix
along the η and φ directions, and can be combined under
quadrature to get the total gradient at the point. Treating
the two values of the gradient for each point as a 2-D vector,
this vector can be dot producted by the unit vector along
the polar θ direction, to find the component in that direc-
tion. Note that for a given point (x, y) in the η − φ plane,
the unit vector along the polar θ direction divided by the
radius is just 1

r (y,−x). This methodology is guided by the
total derivative equation,

df(r, θ) =
1

r

∂f

∂θ
dθ +

∂f

∂r
dr

where only the coefficient of the dθ term is relevant for the
penalty that was imposed here. This yields the magnitude
of the gradient in the polar θ at the point, and so an 8× 8
matrix of such magnitudes ∂f

∂θ is constructed, and the L2
norm of this matrix is penalized.

4.2.2 Resulting weights

Some of the weights resulting from this model with the cus-
tom angular regularizer are visualized in Figure 5. As is
evident, these weights have picked up the required angular
invariance around the jet axis. Certain filters have picked
up features reminiscent of the data having been quadrupled
by rotating each image four times by 90 degrees. However,
the improvement in performance over the vanilla CNN was
marginal in both metrics (ROC curve and Accuracy) with
an improvement of 0.1% at best. For this reason, the an-
gular regularization approach was no longer deployed in the
models that follow, as the weights seem to be learning the
angular invariance naturally during the course of training.

Figure 5: Random selection of learned full sized filters

4.3 Sequential Convolutional Neural Net-
works

Along with the pseudo CNN described above, two other
architectures were explored. The first was a sequential CNN
with a convolutional layer of 50 kernels size 3 with zero
padding to keep the dimensions of the image intact. This
was followed by a convolutional layer with 100 full sized
10× 10 kernels, and the final output node.

The second was a sequential CNN with a convolutional
layer of 50 kernels of size 2 and stride 2, which reduced
the image to half its size. This was then followed by a
convolutional layer with 100 full sized 5× 5 kernel, and the
final output node.

The idea behind training these models was to explore the
possibility that downscaling the input images might improve
the networks ability to learn the structures and have better
overall performance compared to the network without down-
scaling. The results of the two were comparable (Figure 9
and Table 1), with the downscaling CNN outperforming the
full sized CNN by only 0.04% points.

4.4 Wide Inception[13]-Inspired Convolu-
tional Neural Network

The next step in the project was to explore the ability to
learn from scaling the input images to different sizes and
checking if the network was learning something hitherto in-
accessible by the simple networks. This was done by per-
forming different convolutions in parallel and combining the
results from the different branches before connecting to the
final output node. The structure of this model is illustrated
in Figure 6.

Figure 6: Architecture of wide Inception[13] inspired model

A sample of the learned weights is visualized in Figure 7.
While the larger kernels can be seen as inverse jets, and
thus make visual sense, the smaller weight matrices shown
in Figure 7 have also picked up structural nuances of the
jets. Whilst this may not be immediately obvious from the
image, the vast multitude of filters in the branches makes
sure all the details are learned. The outputs from these
branches are all equally combined before being condensed
down to the final output node.
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Figure 7: Random selection of weights from final full sized
filters, each row corresponds to a different branch of the
model

4.5 Models with Auxiliary Inputs

As a final exercise, the wide model discussed above, as well
as the pseudo-CNN model, were modified with an auxiliary
input, the jet pT . As mentioned before, training networks on
the jet pT is expected to artificially improve the performance
of the networks. Hence these two models were trained as a
sanity check to ensure that this jump in performance would
be observed. As is evident from Table 1, this is indeed the
case.

It must be noted that training a discriminator on the jet
pT is not appropriate as it biases the model on the jet mo-
mentum scale. This renders the model non-generalizable to
different physics processes that occur at different pT scales.
So while including the jet pT as an added feature will im-
prove the discriminator’s performance, this must not be im-
plemented in practice.

5 Results

All of the above models were trained to the brink of over
fitting, and the results of the training are now presented for
the test data.

Figure 8: Distribution of output variables in HS/PU jets
from tested models

Figure 8 is a visualization of the output of some of the

networks times 1000. This plot neatly illustrates the sepa-
ration the models achieve between the PU and HS jets in
the data. The ROC curves are based on these plots in the
way as described in Section 2. Here the x - axis represents
the efficiency of selecting a HS jet, and the y - axis the ef-
ficiency of selecting a PU jet. These are identical to the
efficiency of TP and FP respectively, as described in Sec-
tion 2. The objective here is to maximize the efficiency of
HS while minimizing the efficiency of PU. The ROC curves
for all the listed models are shown below.

Figure 9: ROC curves for tested models

Figure 9 is the most important metric for evaluating the
performance of a discriminator in ATLAS. The models ex-
plored in this report have all outperformed both the base-
lines; the jet Rpt variable as well as the artificially improved
baseline. The models perform comparably amongst each
other, for which reason the Accuracy of the model is used
a secondary metric. The accuracies of each of the models
tested are presented in Table 1 on the following page.

6 Discussion and Future Work

The trained CNNs outperform the baseline Rpt discrimi-
nant by 20 - 30 % in PU efficiency. They also outperform the
baseline NN by similar margins.Since much of the physics
analysis at ATLAS happens in the central region, these re-
sults have the potential to massively impact ATLAS Pile
Up ID procedures.

It is particularly interesting to note the effectiveness of
CNNs at a classification job intractable by human eyes
alone. This could prove to be a highly useful observation
as there are several other aspects of the ATLAS detector
that could benefit from similar image analysis techniques,
such as jet pT Calibration.

The accuracies in Table 1 suggest models with jet pT
passed as auxiliary inputs perform the best. As explained in
Section 4.5, these models cannot be used for the task. Nev-
ertheless these results serve as a useful sanity check. Con-
sequently the best network from all the architectures tried
was the Wide Inception[13] inspired model, which learned

5



Models Accuracy

ATLAS standard proxy, Rpt 0.5005
Baseline NN using jet Rpt and pT 0.6994
Pseudo CNN with full sized kernels and angular regularization 0.7013
Sequential CNN with “Same” Conv2D followed by full sized Conv2D 0.7025
Sequential CNN with downscaling followed by full sized Conv2D 0.7029
CNN with parallel convolutions of 3× 3, 5× 5, 10× 10 filters 0.7036
CNN with parallel convolutions and Auxiliary Input of jet pT 0.7072
Sequential CNN with Auxiliary Input of jet pT 0.7073

Table 1: The model accuracies

from different downscaled convolutions. This makes phys-
ical sense given the sparse nature of the input images, as
scaling them down can reveal details in the structure other-
wise inaccessible.

The next step in this analysis is to perform detailed stud-
ies of the learned weights. This is required to understand
how and why these networks outperform the current stan-
dard. Additionally, the preprocessing of the images can be
improved by duplicating the data more than just 4 times,
with rotations finer than 90 degrees. This should make the
task of learning the rotational invariance even simpler for
the networks.

Furthermore the trained models will have to be tested on
datasets from different pT scales to ensure that the networks
are truly generalizable. Once these thorough analyses are
performed, a formal proposal to ATLAS needs to be made
suggesting possible methods to incorporate the findings into
its normal operations.
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