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Abstract

To reconstruct the structure of the magnetic field, the de-
flection of charged particles through this field is recorded
on a detector. The distribution of the particles on the screen
are a consequence of the existing magnetic field. By an-
alyzing these radiographs, we can infer the magnetic field
that caused these deflections. However, the analysis is chal-
lenging when the amplitude of the field increases. In this
paper we will propose a new way to analyze these radio-
graphs based on Convolutional Neural Networks, which
have demonstrated their ability to extract features from im-
ages. Two different approaches will be considered: (a) re-
trieve the integrated-line potential which is extremely chal-
lenging given the size of the dataset and (b) classify each
radiograph based on the number of Gaussian blobs used to
describe ~B in the object.

1. Introduction
Investigating high energy dense matter, a state where

matter undergoes high energy stimulation, is crucial to un-
derstanding nature and develop a theory for matter at ex-
treme temperature and pressure conditions. To generate this
state of matter, we usually send high intensity short pulse
laser on a target to heat it on a short time scale. The inter-
action between light and matter leads to the generation of a
plasma inside the target. We can then retrieve information
of the matter in extreme conditions from the analysis of this
plasma.

However, one significant drawback is that under certain
conditions, the plasma is opaque to light which makes the
analysis difficult. One way to tackle this problem is to use
protons rather than photons as probe particles. Indeed gen-
erating a plasma leads to charge separation inside the tar-
get, creating electric and magnetic fields. The interaction
between these fields and the probe particles (protons) leads
to a modification of the distribution of proton trajectories,
which can be recorded on a detector, generating a radio-
graph.

For now, the analysis of the radiographs is done by
guessing the 3-D shape of the electric and magnetic fields
inside the target and use that guess to simulate a radiograph.
The simulated radiograph is then compared to the experi-
mental one, the guess for the fields is updated until both
radiographs are identical.

As a first approach, we will analyze radiographs by train-
ing a neural network on simulated radiographs to retrieve
the line-integrated potential φ, defined as:

Φ(x, y) =

∫ +∞

−∞
Az(x, y, z)dz

Where Az is the potential vector such as ~B = −∇Φ In
a second part, the analysis will be restricted to getting the
structure of the field ~B by classifying radiographs based on
the number of blobs in the magnetic field.

2. Related work
Up to now there is only a few attempt to use Machine

Learning to analyze data coming from experiments [1].
Even though it is possible to retrieve the integrated-line po-
tential φ directly from a radiograph in the linear regime,
there is in general no model that accurately describe the re-
lation between a radiograph and φ. The capability of Ma-
chine Learning to generalize from data makes it compelling
for this task.

Even though Machine Learning can bring a solution to
this retrieval problem, there are a few difficulties that have
to be considered. First, the difficulty to acquire data from
these experiments reduces the amount of data realistically
available to train a model. Second, radiographs coming
from real experiments cannot be used to train any Machine
Learning algorithms. Indeed, to train a model we need a
training set and the corresponding labels. Those labels are
unavailable in general as they are not available to the ex-
perimenter and are usually estimated through the trial and
error process described above. Thus, all the training set and
labels will come from simulations, where full knowledge of
the ground truth is available.
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From the wide range of simulated radiographs, we use
the backpropagation property of neural networks to come
up with a new analysis method.

3. Data Generation Process
3.1. Generation of radiographs using simulation

As described in [1], the target is radiated with a proton
beam and proton deflection is recorded on the detector. To
simulate our data, an object with a known a magnetic field
~B is radiated with a source (object in Figure 1), then the
protons distribution is recorded in the image plane which
leads to a radiograph.

Figure 1. Scheme of a proton radiography imaging system

During the analysis, one might be tempted to predict the
field ~B that generated the radiograph. This is in general
not possible. Indeed, the 2D-radiograph is the result of the
course of protons through a complex 3-D magnetic field.
Consequently, many different fields can generate the same
2-D projection, which makes this problem highly non bi-
jective. One approach to retrieve ~B is generating a 3-D
radiograph by moving the proton source around the geom-
etry. It is not explored here. However, by only using 2-D
radiographs, the line-integrated potential Φ can be recov-
ered, that corresponds to the total deflection of the proton
throughout its course across the field. That is a necessary
step to the 3-D approach.

The scope of this study is restricted to magnetic field ~B,
even though the same method can be apply to an electric
field. The following assumptions are made: the energy of
protons is constant and the relative positions of the detector
and the source.

To generate the data, different magnetic fields are ex-
plored over different shapes and intensities. The stimulated
magnetic fields are a constellation of Gaussian blobs.

BΦ = B0
r0

a
exp(− r

2
0

a2
− z2

0

b2
)

Where BΦ is the only non zero component in spherical co-
ordinates. In this case, the magnetic field is modeled as
spherical blob (a = b). [2]

The parameters of this simulations will be the relative
position in space of each blob as well as the intensity and

size of each blob. We then simulate the radiograph cor-
responding to each field, and the line-integrated potential
map, our label. The same simulator is used to generate
training and test sets (see Figure.1).

(a) (b)
Figure 2. Legend: 691x691 pixels images (a) Simulated radio-
graph used for training, (b) Line-integrated potential Φ used as
label, (BΦ = 30T )

The novelty of the approach as compared to as done in
[1] consists of (a) using convolutional neural networks in-
stead of simple feed forward neural network and (b) using
radiographs with more complex magnetic field geometry
making our approach more applicable.

Note that the dataset generation process introduces a bias
since all the simulated radiographs come from the same
simulator. Since all the simulators Maxwell Equations,
there is a natural bias in all the radiographs. The value
of this approach is to speedup the retrieval of Φ in a first
place and to come up with a model that classify each ra-
diograph based on the number of blobs used to describe ~B,
even though the model will be applicable under the assump-
tion that we made on ~B. We can then loosen those assump-
tions and try to to build a general model, but this is out of
the scope of this paper.

3.2. Two different regimes

Based on the amplitude of the magnetic field, the per-
turbation undergone by the protons follow two different
regimes. In the linear regime, where amplitudes of ~B are
”small”, the expected trajectory should be closed to the non-
perturbed trajectory.

When the amplitude is ”high”, we enter the non-linear
regime and the interpretation of the radiograph gets difficult
as the perturbations are large. There is also no known an-
alytical relationship between Φ and the intensity I of the
radiograph in that regime.

We will first train our model on simulated data in the
linear regime. We will then try to extent this approach to
the linear regime, which we expect will be more difficult as
it requires a larger dataset to ensure generalization.
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3.3. Data Augmentation

As it is quite costly to generate data using our simulator,
we augment our data by rotating the images by 90◦, 180◦

and 270◦. This makes sense from a physics perspective as
the experiment is rotation invariant: turning the features re-
sults in a rotated radiograph.

Finally, the full process of generating data is summarized
in the following pipeline.

Figure 3. Pipeline for the simulation of the training data

4. First approach: Predict the integrated line
potential Φ for each radiograph

4.1. Approach

To train our model, we first need a training set and a test
set. We simulated as many radiographs as possible to get
a dataset of reasonable size (10000 + images). This proved
to be a major bottleneck as (a) each image generation takes
a minute (b) the simulation process may run into numeri-
cal instability in some edge cases, the protons are deflected
too much and are not recorded on the detector anymore.
Once the dataset was created, we implemented the pipeline
to feed our data to our neural network. That involved pre-
processing and data augmentation.

To estimate the computation time required to train a
model on our task, we considered the following baseline
model: a 4 layers ConvNet with batch-normalization. We
first didn’t use max-pooling layers since we wanted to pre-
serve the dimensions of our images throughout all the lay-
ers. Indeed we want in the end to produce a 2-D map of the
integrated line potential which is also a 691× 691 image.

Figure 4. Architecture of the Neural Network used for sanity-
check

4.2. Experimental Results

Training our neural network on this task is very chal-
lenging, and all of our losses looked very bumpy. We can
explain these difficulties by (a) the high dimensionality of
the problem and the small amount of data that reduce our
capacity to explore the state space and (b) the size of our
images constraints the batch-size to be 10 because of mem-
ory limitations.

Figure 5. Evolution of the loss for different batch

The best loss we obtained is plotted below: note that the
final loss is still extremely high. As we aim at predicting
the line-integrated potential in the form of a 691× 691× 3.
We opted for the L2 norm to compare the features and the
labels, this leads to a value for the loss that is unrealistically
high. Creating an accuracy metric is also something that
proves to be a challenge for that problem. To tackle the
problem of dimensionality, we changed our approach and
we reduced the task to a classification problem where each
radiograph is classified based on the number of blobs used
to simulate it. This step is important to characterize the field
~B in this case because it gives an idea of the complexity of
the field in the target object.

As our data is based on simulation, we can generate la-
bels with a lower dimension. Indeed, we can parametrize
them by the number of Gaussian blobs we used in the simu-
lation, their relative position as well as their intensity. That
would restrict the applicability of the method since we are
basically retrieving the magnetic field structures and not the
integrated line potential anymore. Even though, this ap-
proach has been studied in [1], they limited their analysis
to only one Gaussian blob. We want to extend this analysis
to multiple blobs. Considering the following approach will
reduce the output space size from a 691 × 691 × 3 image
to only a few parameters (≈ 10). In the part that follows,
we focus on classifying the radiographs depending on the
number of blobs they contain.

5. Second approach: Predict the number of
blobs to describe ~B for each radiograph

5.1. Approach

As discussed in the previous paragraph, the amount of
data available is limited and thus makes the retrieval of Φ
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delicate. A second approach is to classify each radiographs
based on the number of blobs used to describe ~B. For the
sake of this analysis, we fixed the intensity of the magnetic
field used so that we can observe modifications in the dis-
tribution of the protons on the detector (|| ~B|| = 40T ). Fi-
nally the training dataset consists in simulated radiographs
for different number of blobs (6 5) and for random po-
sition of the blobs in the object. Even though the qual-
ity the image is an increasing function of the number of
protons, we decrease it to cut down the computation time
(NProtons = 5.106).

In addition to the computation time, the classification of
each image based on the number of blobs is a challenging
task since the relationship between the number of blobs and
the radiograph is highly non-linear (see the example below).

Figure 6. Illustration of the non-linear relationship between the
images and the labels, high variance

From the above samples, one can easily understand that
this task is extremely challenging even for a human since
the number of blobs is not directly encoded in the images.
A naive approach would be to count the number of circles
we see on the picture. However this approach is only valid
if the deflection of a proton only results from the interaction
with only one blob. This corresponds to radiographs gener-
ated from small blobs with no overlapping. But in the most
general case, the protons interact with many blobs which
results in the images presented above.

To make a prediction about the number of blobs, we con-
sider a CNN with a Fully Connected layer to compute the
scores of each class for all training examples.

Figure 7. Architecture of the classifier used to predict the number
of blobs

To ensure the robustness of the model and to minimize
the impact of the background of the image on the prediction,
we normalize all the training data by retrieving the mean
value of the training dataset. Since we want to evaluate our
model on similar images, we also retrieve the mean of the
training set to the validation and test sets. (see Fig.8)

(a) (b)
Figure 8. (a) Original sample from the training set, (b) Same sam-
ple after normalization by the mean of the training set

Before training our model, we resize all the images in
order to speed up the computation time during the forward
and the backward pass through the images. In the end the
images are 169x169x3.

5.2. Experimental Results

The following model design characteristics and hyper-
parameters are tuned:

• Number of convolutional layers

• Size (depth) of convolutional layers

• Size and strides of filters

• Number of fully connected (FC) layers

• Size of FC layer

• Use of Batch Normalization

• Loss choice (cross-entropy, hinge loss, L2 loss) + L1

regularization

• Regularization scope and strength

• Learning rate, decay and annealing

Intuitively, adding many fully connected layers (FC)
would not be optimal as that would very quickly increase
over-fitting on our relatively small dataset. That intuition
turned out to be true as adding more than one FC dra-
matically increased over-fitting. A number of filter size
(3 × 3 to 10 × 10), strides and layer numbers (2 to 7)
were tried for the convolutional layers. A model with 3
convolutional layers and one FC achieved the best results.
Adding batch-normalization decreased performances in the
best-performing model, though it slightly increased the per-
formance of a deeper model. That makes intuitive sense as
the deeper the stack of convolution, the more we can expect
the input parameters of the deeper layers to change.

In terms of loss choice, the hinge loss performed in gen-
eral slightly worse than the cross-entropy loss by a few %
accuracy on the validation set.
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The training is completed on 25 epochs, after which we
see the validation accuracy starting to decrease. At this
stage, the training set is nearly over-fitted. Adding more
regularization strength does not yield better results than this
model. The training is stopped when either the accuracy on
the training set is 100% either the accuracy on the validation
test starts decreasing.

Figure 9. Evolution of the loss as a function of the number of mini-
batches during training

Figure 10. Train and Validation Accuracy as a function of the num-
ber of epoch at training time

The results on the best performing models are as follow.
For reference, we achieved our best validation accuracy on
169 × 169 × 3 images with a learning rate of λ = 1.10−4,
and a regularization parameter of r = 1.10−1.

Image Size Validation Accuracy Test Accuracy
169x169x3 56.4% 54.8%

67x67x3 54.2% 54.1%

Figure 11. Best validation and test accuracies

Human accuracy on a sample size of 50, with bal-
anced radiograph classes, is 38% (p-value vs null of picking

classes at random stands at 0.1%). That means our method
performs significantly better than humans.

Note that a slightly lower accuracy is achieved on
smaller image sizes, however training is much faster. For
future work on a larger dataset, having a deeper model with
smaller images might be efficient in terms of both training
speed and memory requirement (the training set becomes
rapidly too big to fit in memory for larger images).

6. Limitations and Future Work
The size of the dataset has been a key limitation in this

project. As we double the size of the training set, we saw a
significant increase in performance as the validation accu-
racy went from 40% to more than 50%. The computation
time at training time has to been tackled by reducing the
size of the images.

It might be interesting to evaluate the performance of our
model with a bigger dataset to prevent early over-fitting in
the training phase. Once the dataset is ”big enough”, we can
then increase the complexity of the task. Up to now we only
developed a Neural Network for the number of blobs, this
network would be coupled to a second network that would
predict the position of the center of the blobs in the object.
Indeed, based on the number of blobs predicted by the first
CNN, we will output of 3-D vector corresponding to the
center of the blob in space. This task is even more chal-
lenging than the first one since the predictions would in R3

(restricted to the position of the object). To complete this
task, a larger dataset is needed since the dimensionality of
the predictions is larger.

7. Conclusion
The study presented in [1] has been extended to more

complex geometry for the ~B field (constellation of Gaussian
blobs). ”Realistic” radiographs have been generated using
simulation. The CNN trained on this dataset reaches a test
accuracy of 54% which is better than human accuracy.
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