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Abstract

Numerical simulation is the dominant method to ana-
lyze wave-dynamics. Few neural network methods have
been tried on wave-dynamics simulation before. In this
project, we have trained a neural network to test if it could
learn wave-dynamics only by watching wave propagation
sequences without explicit physical equations. We firstly
generate a dataset of seismic waves using homogeneous me-
dia. The results show that the neural network can success-
fully predict the propagation of wavefront and keep good
sharpness. Then we generate another dataset using com-
plex media with random velocity anomalies, which contains
much more complex wave-dynamics phenomena like reflec-
tion and diffraction. The prediction results prove that the
neural network is also able to predict the complex signals
based on the velocity model. Our results demonstrate that
the neural network method may be used as an alternative
method for wave-dynamics simulation.

1. Introduction
When we see an apple falling from a tree, or a ball throw-

ing at us, we can predict where the apple or the ball would
go in just seconds. We do not form physics equations and
solve it in our mind to get the answer. Instead, our pre-
diction is based on our instinct and experience. But can a
machine learn the basic physical instincts just like humans?
Can neural networks make long-term predictions based on
observations without explicitly solving the underlying phys-
ical equations?

Recently with the fast development of deep neural net-
work methods, many researchers in physics begin to exper-
iment with using neural networks to simulate physical pro-
cesses. It is a challenging idea to train a neural network to
mimic humans’ ability to observe and learn physical laws.
By now, numerical simulation is still the most accurate
and effective way to understand the complex physical phe-
nomenon. As traditional numerical simulation usually re-
quires extensive computing resources, neural networks may
provide a less accurate, but much faster and more efficient

solution. It is also very crucial for model-based decision-
making and planning of robots in complex physical envi-
ronments.

In this project, we are trying to apply deep neural net-
works on wave-dynamics simulation to test if the neural
network can learn and predict the dynamics of wave prop-
agations. We have used a multi-scale convolutional neural
network to map the input several frames of wavefields to the
output frame. The neural network is trained by ’watching’
tons of seismic waves propagating through different media.
No physical equations or numerical approximation methods
are fed into the neural network. The training data and test
data are generating using a numerical simulation code for
seismic waves. The results show that the neural network can
predict the following sequence of wave propagation given
only the first several frames. It also learns the diffraction
and reflections given complex media with velocity anoma-
lies inside.

2. Related Work
Watters [13] introduced Visual Interaction Network, a

general-purpose model for learning the dynamics of a phys-
ical system from raw visual observations. The model con-
sists of a perceptual front-end based on convolutional neural
networks and a dynamics predictor based on interaction net-
works, which can produce a predicted physical trajectory of
arbitrary length.

Carleo and Troyer [1] applied machine learning on the
simulation of quantum many-body systems by using an ar-
tificial neural network to represent the wave function of a
quantum many-body system and making the neural network
learn what the ground state (or dynamics) of the system is.

Enrhardt et al. [3] investigated the effectiveness of neural
networks for end-to-end long-term prediction of mechanical
phenomena. The network is also able to generate a distribu-
tion of outcomes to capture the inherent uncertainty in the
data.

DeVires et al. [2] trained a deep neural network to learn a
computationally efficient representation of viscoelastic so-
lutions. The machine learning approach accelerates vis-
coelastic calculations by more than 50,000%, which enables
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the modeling of geometrically complex faults over thou-
sands of earthquake cycles.

Lerer et al. [9] explored the ability of deep feed-forward
models to learn the physical behavior of the world by play-
ing wooden blocks toy. They trained large convolutional
network models, which are able to accurately predict the
outcome of randomized initial stability, as well as estimat-
ing the block trajectories.

Tomposon et al. [12] trained a convolutional network
from a training set of simulations to realize real-time and
highly realistic simulations of fluid and smoke.

Guo et al. [5] demonstrated that convolutional neural
networks could estimate the velocity field two orders of
magnitude faster than a GPU-accelerated CFD solver and
four orders of magnitude faster than a CPU-based CFD
solver at the cost of a low error rate, which provides imme-
diate feedback for real-time aerodynamics related design.

Ladick et al. [7] proposed a novel machine learning
based approach to approximate the behavior of particles ob-
served in the large training set of simulations obtained us-
ing a traditional solver. The GPU implementation led to
a speed-up of one to three orders of magnitude compared
to the state-of-the-art position-based fluid solver based on
Navier-Stokes equations.

As far as we know, using deep neural networks to do
simulation is still a relatively burgeoning area. Our work
may be the first one to use deep neural networks for wave-
dynamics simulation.

3. Methods
3.1. Network Architecture

The structure of our neural network is depicted in Fig-
ure 1. We used the method in video prediction [10]1 to build
a deep neural network [8] to learn an end-to-end mapping
that predicts the wavefields at following continuous time-
steps from only a few initial time-steps. In this project, we
will predict the next time-step wavefield based previous four
time-steps. The neural network architecture mainly consists
of two components:

1. Multi-scale encoding and decoding convolutional
layers (Figure 1a). It essentially is four mini ConvNets
with input and output sizes of n × n, n2 ×

n
2 ,

n
22 ×

n
22 or

n
23 ×

n
23 , where n is the dimension of the input wave-

fields. The parameters of these ConvNets are shown in Ta-
ble 1. For example, if the dimensions of wavefields are
(32×32), the input and output sizes of the four ConvNets
are 32 × 32, 16 × 16, 8 × 8 and 4 × 4. The four ConvNets
are connected successively from small scale to large scale.
To be more specific, the ConvNet at scale (8×8) takes both
the down-sampled raw wavefields (32 × 32 down-sampled

1https://github.com/dyelax/Adversarial_Video_
Generation

to 8 × 8) and the output of the previous ConvNet (4 × 4),
which are up-sampled to (8 × 8) through interpolation, as
the inputs and predicts the next time-step (8 × 8) wave-
field. The main advantage of this multi-scale structure is
that it skips the pooling/unpooling pairs and could preserve
the high-frequency information[10]. As waves usually have
many characterizing frequencies, it is imperative for wave-
dynamics simulation to have accurate frequency informa-
tion and to keep sharpness of wavefront.

2. Generative adversarial networks (GAN)[4] (Fig-
ure 1b). GAN is known to be effective in producing re-
alistic images. In addition to the multi-scale generative
model above, a discriminative model is trained simultane-
ously. For each scale, a discriminative network is trained
to take both the true down-sampled input wavefield and the
predicted wavefield as input to predict True/False. The pa-
rameters of the discriminate network are shown in Table 1.
These two models are competing against each other, in a
way that the generative model tries to ’foul’ the discrimi-
native model by generating more realistic wavefields, while
the discriminative model tries to be smarter to tell if the
generative model is ’cheating’.

For wave-dynamics simulation, we need to consider the
background velocity model too, which will control waves’
propagation speed, direction and path. It also produces
reflection, refraction and diffraction. For both generative
model and discriminative model, we have included the ve-
locity model as three indecent channels, so that we can test
if the neural network is able to learn the complex wave-
dynamics phenomena based on physical models.

During training, each sample consists wavefields of five
continuous time steps: four input wavefields and one actual
output wavefield. During testing, we use a recessive way
to generate long time steps predictions. The first predicted
wavefield is based on the four input wavefields, then we
drop wavefield of the first time-step and append the newly
predicted wavefield as the last input wavefield. The updated
sample is used to generate next wavefield. This process is
repeated to generate a long continuous sequence of wave-
fields.

3.2. Loss Functions

The loss function used to evaluate how realistic the pre-
dicted wavefield is compared with the true wavefield. The
loss function for our generative network is:

LG
total(Y, Ŷ ) =

λL2L2(Y, Ŷ ) + λGDLLGDL(Y, Ŷ ) + λGLG(Y, Ŷ )

L2(Y, Ŷ ) =
1

N
||Y − Ŷ ||22

LGDL(Y, Ŷ ) =
1

N
||∇Y −∇Ŷ ||22
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Generative Network Discriminative Network

Scale 1

3× 3× 20× 128
3× 3× 5× 64

3× 3× 128× 256
3× 3× 256× 128 FC: (512, 256, 1)
3× 3× 128× 5

Scale 2

5× 5× 25× 128 3× 3× 5× 64
3× 3× 128× 256 3× 3× 64× 128
3× 3× 256× 128 3× 3× 128× 128
3× 3× 128× 5 FC: (1024, 512, 1)

Scale 3

5× 5× 25× 128
5× 5× 5× 128

3× 3× 128× 256
5× 5× 128× 2563× 3× 256× 512

3× 3× 512× 256
5× 5× 256× 256

3× 3× 256× 128
FC: (1024, 512, 1)3× 3× 128× 5

Scale 4

7× 7× 25× 128
7× 7× 5× 128

5× 5× 128× 256
7× 7× 128× 256

5× 5× 256× 512
5× 5× 256× 512

5× 5× 512× 256
5× 5× 512× 128

5× 5× 256× 128
FC: (1024, 512, 1)7× 7× 128× 5

Table 1: Multi-scale Network Parameters

LG(Y, Ŷ ) = − 1

N

∑
i

log(D(Ŷ )i)

where Y is the true wavefield, Ŷ is the predicted wavefield,
(λL2, λGDL, λG) are weights for different loss functions.
N is the number of data points in a wavefield. D is the
generative network.

The loss function of the generative network is:

LD(Y, Ŷ ) = − 1

N

∑
i

(log(D(Yi)) + log(1−D(Ŷi)))

The Euclidean lossL2 is the most straightforward way to
measure the difference between two wavefields. Minimiz-
ing L2 is to make sure the amplitude of predicted wavefield
is close to ground truth.

The spatial gradient loss LGDL is a measurement of the
sharpness of wavefront. By minimizing the gradient differ-
ence loss, we can preserve the sharpness of the generated
wave field and prevent blurry wavefronts.

By combining these losses, we hope to improve the
sharpness of wavefront and keep frequency information,
which is vital for wave-dynamics simulation.

4. Dataset and Features
We use a 2-D seismic wave numerical simulator [6]2 to

randomly generate wave fields both for training and test-
ing datasets. The parameters we change during simulations

2http://geodynamics.org/cig/software/seismic_
cpml/
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Figure 1: Network architecture for wave-dynamics simula-
tion

are: source number, source location, source frequency, P-
wave velocity, S-wave velocity and material density. By
combining different choices of these parameters, our sim-
ulations can capture different seismic wave phenomenon:
reflection, diffraction, P-to-S or S-to-P conversion, hetero-
geneous propagation velocity et al. [11]. The simulation
domain (32km×42km) is discretized into 160×210 grids.
The displacements in both x and y directions are recorded
at continuous time steps (dt = 0.075s), serving as the input
data for our neural network.

We have tested two datasets: one of homogeneous me-
dia and the other of complex media with velocity anoma-
lies. For the dataset of homogeneous media, we randomly
pick the source numbers (1∼20 in our case) as well as their
locations but fix all the other parameters. For the dataset
of complex media with velocity anomalies, we only use
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one random source and randomly decide the numbers, lo-
cations and radius of the circular anomalies in the media.
The anomalies are added to material density. They can also
be added to the velocity of P wave or velocity of S wave.
Because these three media parameters have similar effects,
we think if the neural network is able to learn reflection or
diffraction from density anomalies, it can also lean wave-
dynamics based on the velocity of P and S waves.

For both datasets, we repeatedly generated 72 test sam-
ples and 720 training samples. Each sample consists of 85
time-steps. Figure 2 shows one example of the synthetic
wavefields in complex media. The white circles are density
anomalies with 5000km/m3 while the background density
is 3000km/m3. We can observe very complicated signals
from reflection and diffraction in this example. Then the nu-
merically generated samples of 85 time-steps are randomly
clipped into small samples of only five time-steps: four as
inputs and one as true output. The input data include five
channels: (Ux, Uy, Vp, Vs, ρ) which are x component dis-
placement, y component displacement, velocity of P wave,
velocity of S wave, material density.

model 0 4 8 12 16 20

24 28 32 36 40 44 48

Figure 2: Training example of synthetic wavefields in com-
plex media produced by the numerical simulator

5. Results

We have done three experiments using the two numerical
generated datasets: 1.homogeneous media without GAN;
2.complex media without GAN; 3.complex media with
GAN. Two evaluation criteria, Peak Signal-to-Noise Ratio
(PSNR) and Sharpness Difference, are used to evaluate the
quality of our generated wavefield.

PSNR(Y, Ŷ ) = 10 log10
1

1
N ||Y − Ŷ ||

2
2

Sharpness(Y, Ŷ ) = 10 log10
1

1
N |∇Y −∇Ŷ |

5.1. Homogeneous media

In this experiment, all channels of Vp, Vs, ρ of training
data are zeros. GAN is not used (λG = 0). The two loss
weights (λL2 and λGDL) are set to one:

LG
total(Y, Ŷ ) = L2(Y, Ŷ ) + LGDL(Y, Ŷ )

Figure 3 shows one test example of predicted wavefield
of Ux. Images in the first row are the true wavefields from
a numerical simulation. Images in the second row are the
wavefield generated by our neural network. Step 0 ∼ 3 are
the four input wavefields, the rest steps are generated based
on previous four continues steps. The newly generated step
will be used for the next predictions recursively.

The image quality is quite good for homogeneous me-
dia. The generated wavefronts are clear and sharp.There
are few noticeable differences between the true wavefields
and generated wavefields at early time-steps. At very late
time-steps, the wavefronts start to suffer from blurry effect.

As we used absorbing boundary condition in the numeri-
cal generator, the wavefront will be absorbed on the bound-
ary. There are no reflections from the boundary in the train-
ing dataset. The neural network also learns how to deal with
the boundary and generate no reflections from the boundary.
The wavefront disappears after it hit the boundary.

5.2. Complex media

In this experiment, we train our model using the dataset
with complex media. There are anomalies in the density
channel (ρ) to cause reflections and diffractions. This exam-
ple could further test if the neural network can learn com-
plex wave-dynamics. The two loss weights (λL2 and λGDL)
are still set to one.

Firstly, We train a model without GAN. The testing re-
sults are shown in Figure 4 and Figure 5. Same as the ex-
ample in homogeneous media, the major incident wavefront
is clear and sharp through all time steps. Moreover, the re-
flections and diffractions after the incident wavefront are
also generated by the neural network. Comparing the gen-
erated wavefields and the true ones in Figure 4, we can see
the complex pattern of reflected or diffracted waves are cor-
rectly predicted. But the amplitudes of the weak signals are
predicted to be too large at late time-steps.

The change of loss of generative network is shown in
Figure 6. With the decrease of training loss, the two eval-
uation criteria (PSNR and sharpness difference) (Figure 7b
and Figure 7a) gradually improve. Figure 8 quantitatively
measures the deterioration of generating quality with pre-
diction steps. PSNR and sharpness difference decrease to
about half of its origin value after 20 predictions.

In some test examples, We also observe some undesired
reflection signals from the boundary for complex media.
Figure 5 is one test example showing very clear abnormal
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reflection signals. The true reflection signals from density
anomalies are correctly predicted, but two wavefronts start
to grow after step 8 from the left boundary.

Secondly, we try to incorporate GAN into the model by
increasing λG and training the discriminative network si-
multaneously. The training of GAN model is not success-
ful. We have tested λG = 0.2, 0.4, 0.6, 0.8, 1.0 and different
learning rates for the discriminative model. The generative
loss (Figure 9a) and discriminate loss (Figure 9b) both de-
crease at the early iterations. But the generative loss will
explode if we continue training for longer time (Figure 9c).
We also don’t observe any increase in PSNR and Sharpness
difference on the test set.

6. Discussion
The predicted results prove that the neural network can

successfully learn from physical simulation and generate
realistic wavefields of following time-steps in both homo-
geneous and complex media. The predictions in homoge-
neous media show that the neural network not only accu-
rately learns the propagation of the seismic wave but also
learns the absorbing on the boundary. The test in complex
media demonstrates that the neural network is also able to
predict reflections and diffractions based on velocity model.
This makes the neural network fully cable to predict wave-
dynamics simulations with different velocity models.

However, we also observe some problems that limit the
accuracy and robustness of results:

1. Prediction quality decreases as time step increases.
This is a problem of recursive prediction, as the errors will
accumulate through time. How to ensure long time-step sta-
bility is still challenging. RNN or LSTM method may help
to consider long time-step dependence and improve predic-
tions further.

2. Abnormal reflections from boundaries. In some ex-
amples with complex media, we find some reflections on
the boundary which don’t exist in the actual simulation
data. One possible cause could be the model misunderstand
the boundary as obstacles and reflects. Further analysis is
needed to find the source of these abnormal reflections and
remove them from prediction.

3. GAN gives little improvement. The improvement in
GAN is not as large as we thought. The training of GAN
is much harder for the multi-scale network structure. It is
tricky to balance the learning of different scales. Different
ratios of learning rate between generator and discriminator
and different ratios between three losses are tested. Further
fine-tuning the hyper-parameters is needed.

One of our origin goals is to use neural network to pro-
vide a fast but less accurate solution for seismic simulation
so that computational intensive inversion methods could be-
come practical. But the prediction speed of our current net-
work is not distinctly faster than the numerical simulation

code used. There is also a trade-off between complexity and
speed of neural network architecture too. However, the neu-
ral network method learns from raw observations. It does
not depend on the complexity of physical equations behind
the phenomenon and can be applied to other different phys-
ical processes as well. If given a more complex problem,
like fluid simulation[12], which is much slower using tra-
ditional numerical simulation, the advantage of neural net-
work method may become more significant.

7. Conclusion
We have successfully trained a neural network to learn

and predict wave-dynamics. The network uses a multi-scale
structure to predict the next time-step wavefield based on
previous four time-steps. Beside loss of wave amplitude
difference, sharpness difference is added into the total loss
function of the generative network to keep wavefront clear
and sharp. We have also added GAN to test if it could im-
prove the prediction quality.

The experiment results turn out to be promising. In ho-
mogeneous media, the network can predict the propagation
of wavefronts inside the media and the absorbing on the
boundary with high accuracy. In complex media, the net-
work is further proved to be able to predict complex re-
flections and diffractions based on velocity model. But the
training using GAN still needs future improvement. The
training of GAN is not stable at current state.

Our work has proven the neural network could become
an alternative method for wave-dynamics simulations be-
side numerical simulation. The neural network method
learns from raw data and does not rely on explicit physi-
cal equations, so the same network structures may be used
learn and predict other physical phenomena too.

Acknowledgements
This work has not been submitted to any conference

or journal. It has not ever been used as a project for
other classes. The numerical simulation code for 2D
seismic wave simulation is modified based on open-
source code ”seismic cpml” (http://geodynamics.
org/cig/software/seismic_cpml/). The
neural network code for wave-dynamics prediction is
modified based on code ”adversarial video generation”
(https://github.com/dyelax/Adversarial_
Video_Generation). We would like to thank these two
projects for sharing their codes.

5

http://geodynamics.org/cig/software/seismic_cpml/
http://geodynamics.org/cig/software/seismic_cpml/
https://github.com/dyelax/Adversarial_Video_Generation
https://github.com/dyelax/Adversarial_Video_Generation


Ac
tu
al

0 2 4

Ge
ne

ra
te
d

6 8 10 12 14 16 18 20

Figure 3: Test example of generated wave propagation in homogeneous media
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Figure 4: Test example of generated wave propagation in complex media
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Figure 5: Test example with undesired reflections from boundary
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Figure 6: Training loss change of generative network with-
out GAN
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(a) Peak Signal-to-Noise Ratio (PSNR) change during training
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(b) Sharpness difference change during training
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Figure 8: PSNR and sharpness difference changes during
recursive prediction
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(a) GAN loss of generative model in early time
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(b) GAN loss of discriminative model in early time

0 50000 100000 150000 200000 250000
Iteration

0

500

1000

1500

2000

2500

3000

Ge
ne

ra
to

r l
os

s

(c) GAN loss of generative model in late time
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