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Abstract

In this paper, FCN and CNN were trained on the image
data set that were prepared from the in-house fabricated
micro-fluidic device and fluid injection experiment. Trained
FCN and CNN model provide the best validation accuracy
of 0.81 and 0.83, respectively, for the surface wettability
classification of sandstone and carbonate pore structure.

1. Introduction

Energy underpins all aspects of modern life. Energy use
is directly correlated with broad measures of societal health
including the human development index, and female life
expectance at birth more is more. Human ingenuity, in-
novation and technology has been focusing on relieved the
greater pressure on worlds energy demand allowing peo-
ple to gain more access to energy and to power their higher
standards of living.

In many of the challenges we face today as geoscientists,
in particular in the context of water and energy resources,
fluid invasion into a porous soil or sediment is a key process
in different scale ranged from pore to reservoir scale shown
in Fig.1. Examples include hydrocarbon migration and re-
covery, methane venting from hydrate-bearing sediments,
drying and wetting of soils, and carbon geosequestration.

Complex interplay between capillary, viscous, and grav-
itational forces, wettability effects, and the underlying het-
erogenous pore geometry, leads to ramified, preferential
flow paths.Particularly, Fig.1 demonstrate the key mech-
anism at pore-scale where oil invade into narrower pore
throat (Rth) when pressure difference (P1 − P2) is higher
than the capillary pressure (2 ∗ σ ∗ ( 1

Rth
− 1

Rb
)). Here, σ

interfacial tension that is strongly related with the surface
wettability.

P1 − P2 > 2 ∗ σ ∗ ( 1

Rth
− 1

Rb
)

Figure 1. Schematic diagram of fluid invasion into a porous soil or
sediment at different scale from pore to reservoir scale.

Hence, the microscale visualization of fluids in complex
geometry brings better understanding of fluid movement,
droplet generation and other effects, especially for the effect
of wettability of the surface geometry on fluid flow.[8] The
effect of wettability, simply oil-wet and water-wet shown in
Fig.2 , on the fluid movement can be studied, visualized and
modeled on a micro-level representative of the actual rock
structure, so called micromodel. Micromodel is a silicon-
based microfluidic device that are particularly useful labo-
ratory tools for the direct visualization and image acquisi-
tion of fluid flow revealing mechanisms controlling flow and
transport phenomena in natural porous media [7][6]. Micro-
scopic image in Fig.2 demonstrate fluid saturation patterns
for oil or water-wet condition of sandstone-like pore geom-
etry.

1.1. Challenges

Predicting the emergent patterns is challenging, because
of the sensitivity to pore-scale details and the large number
of coupled mechanisms and governing parameters which
vary over a wide range of values and scales. To evaluate the
variability of multi-phase flow properties of porous media at
the pore scale, it is necessary to acquire a large number of
representative samples of the void-solid structure. Indeed,
image analysis on microscopic images requires tremendous
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Figure 2. a) Example image of oil and water in the micromodel
with water-wet surface. Water-wet can be shown as the water
(green) surrounds the grain (black). Capillary pressure forces the
wetting-phase (water) to occupy the smaller spaces than the pore
spaces occupied by oil (red). The shape of interface between oil
and water tells the water-wet characteristic of surface. b) Image of
oil and water in the micromodel with oil-wet surface that the oil
(red) surrounds the grain (black) and occupies the smaller spaces
than the pore spaces occupied by water (red).

time effort.

1.2. Problem Statement

Hence, application of Convolutional Neural Networks
should be achieved for automated surface-wettability clas-
sification of massive microscopic pore scala images from
core scale domain.

2. Related Work

Deep learning allows computational models that are
composed of multiple processing layers to learn represen-
tations of data with multiple levels of abstraction. These
methods have dramatically improved the state-of-the-art in
speech recognition, visual object recognition, object detec-
tion and many other domains such as drug discovery and
genomics.[3] However, there have not been many studies
applying the deep learning technique to geology or energy-
fluid system.

As mentioned, it is necessary to acquire a number of
representative samples of the void-solid structure for reli-
able evaluation of the variability of multi-phase flow prop-
erties of porous media at the pore scale. Recently, Mosser
et al. (2017) [4] present a novel method to reconstruct the
solid-void structure of porous media by applying a genera-
tive neural network (GAN). By using an adversarial learn-
ing approach for neural networks, the authors were able to
generate representative samples of porous media at different
scales that are representative of the morphology of a bead
pack, Berea sand-stone, and Ketton limestone.

Here, this report will discuss both experimental proce-
dure to produce massive pore scale images and the applica-
tion of deep learning including Fully Connecte Layer Net-
work, Convolutional Network, AlexNet[2] to perform the
classification of wettability of pore structure in micromodel
device.

Figure 3. Schematic illustration of micromodel fabrication (A) and
the use of micromodel(B). Experimental set-up for fluid injection
(C) for producing image data is demonstrated.

3. Data Acquisition Process

This section will discuss the experimental procedure to
fabricate the microfluidic device with oil- and water-wet
properties and the use of laser scanning fluorescence mi-
croscope (LSFM) to generate pore scale images.

3.1. Micromodel manufacturing

Micromodel fabrication takes place in the Stanford
Nanofabrication Facility (SNF). As showin in Fig.3A and
Fig.3B, 4-inch silicon wafers were etched to create the pore
network on the wafer surface. Finally, a glass cover plate
was bonded to the top of the etched wafer in order to con-
tain the fluid in the pore channels that were etched on the
silicon water surface. Initially, the silicon wafer surface is
water-wet and the surface was modified to oil-wet by silane
modification process using hexamethyldisilazane (HMDS).
[1] Microfluidic devices will have four different rock pat-
terns: sandstone-A and carbonate and the surface wettabil-
ity of each rock pattern is both oil-wet and water-wet.

3.2. Microscopic image acquisition

Two different phases, e.g. mineral oil and water, were
injected into microfluidic devices shown in Fig.3C. Image
will be taken and visualize the saturation profile of two
phase in complex geometry. Image acquisition will be con-
ducted using the laser scanning fluorescence microscope
(LSFM) with 100X objectives magnification. Field of veiw
(FOV) of a single image is about the size of 800 µm by
800µm. The importance of the size of FOV during the train-
ing the neural network will be discussed in section.4.1.

Raw pixel data (200×200×3 pixels) of images with
the corresponding pixel-wise fluorescence emission wave-
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Figure 4. Diagram of the structure of dataset.

length data will be utilized for the post-image processing.
After the post-image processing, the phases including min-
eral oil, water, and grain (pore structure) in the images were
identified and labeled. 1600 images for each class per rock
pattern will be prepared with their classes as shown in Fig.4.

4. Data and Preprocessing

We will examine 6400 microscopic images with different
FOV for four classes.

4.1. Variation of spacial resolution

In Fig.5 and Fig.6, training image data set has four dif-
ferent spacial resolution (0.6x, 1x, 2x, and 3x) via zoom-
operation of LSFM image capture. From the baseline FOV
(800µm by 800µm) of 1x-zoom, 0.6x-zoom increases the
size of FOV ;and 2x and 3x-zoom decrease the size of FOV.
Hence, 0.6x-zoom is particularly useful for overview the
distribution of two-phases in the large area of pore network,
however, it gives not enough resolution of showing thin-film
surrounding grain (black). On the other hand, 3x-zoom pro-
vides the image with high-resolution details of thin-film and
the shape of interfacial curvature for wettability classifica-
tion. In turn, the training images with combining four dif-
ferent spacial resolutions are helpful to promote validation
or test accuracy of CNN network. In contrast to the sand-
stone with relatively uniformly distributed pore and grain,
varying spacial resolution should be beneficial for pore net-
work, especially the carbonate with very high heterogeneity
of pore and grain size distribution,

4.2. Data structure

The dataset consists of 6400 200x200 color images in 4
classes for sandstone and carbonate rock pattern, with 1600
images per class. 400 images per each zoom-level were
taken. There are 1500 training images and 100 test images
per each class. The dataset has been post-processed to be
stored as a file with name of data-batch-1 with 6300 images
and test-batch with 100 images. The test batch contains ex-
actly 100 randomly-selected images from each class. The
training batches contain the remaining images in random

Figure 5. Example of training images of class ”0:sandstone A-
oilwet” and ”1:sandstone A-waterwet”. Four different size (1x,
0.6x, 2x, and 3x) of FOV per class are shown

Figure 6. Example of training images of class ”2:carbonate-
oilwet” and ”3:carbonate-waterwet”. Four different size (1x, 0.6x,
2x, and 3x) of FOV per class are shown.

order.Fig.5 and Fig.6 shows the example of training image
in the data-batch-1.

5. Method
We treat our problem as supervised regression and tackle

this problem by convolutional neural network models. In
this section, we discussed our models in details and also
talked about evaluation criteria.

5.1. Fully-Connected Neural Nets (FCN)

Following the assignment2 of the course material, a
fully-connected neural network with an hidden layers of
[512, 256, 128, 128], ReLU nonlinearities, and a soft-
max loss function. The model implemented dropout(=0.5)
and batch normalization. For a network with 5 layers,
the hyper-parameters are regularization (= 1e-4), update
rule(rmsprop), and learning rate (=2e-4) with number of
epochs(=15) and batch size of 128.

5.2. Convolutional Networks (CNN)

A three-layer convolutional network with the following
architecture in Table.2 with an hidden layers of 500 di-
mension, ReLU nonlinearities,maxpool, and a softmax loss
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Table 1. Summary of Model
Model Architecture

FCN
(affine-batchnorm-relu-dropout)

×(L-1)-affine-softmax

CNN
conv-relu-2×2 maxpool

-affine-relu-affine-softmax

Figure 7. Evaluation of update rule with FCN architecture using
1000 image data of Sandstone rock type only.

function. The hyper-parameters are regularization (= 1e-1),
update rule(adam), and learning rate (=2e-4) with number
of epochs(=15) and batch size of 50.

6. Result and Discussion

The wettability and the shape of pore structure is the fac-
tor to change the ganglia shape of oil and water and de-
termine the occupation of each phase in difference size of
pore. The goal of the project is to predict the wettability (oil
or water wet) for the given test images that has the oil and
water phases with pore space.

6.1. Evaluation Update rule

Fully-connected networks was used to train model and
evaluate the hyper-parameters. In addition to implementing
fully-connected networks of arbitrary depth, I explored dif-
ferent update rule and ”rmsprop” update rules provide the
best accuracy for sand-stone only data set shown in Fig.7.

6.2. Effect of spacial variation

Using data set of sandstone, data set with or without full
variation of spacial resolution are used for train the FCN
model. Validation accuracy increased from 0.83 to 0.93
when the variation of spacial resolution was added to data
set.

Table 2. Best validation accuracy of model trained on 6400 images
for 4 classes

Model Validation Accuracy
FCN 0.81
CNN 0.83

7. Future work
It will worthwhile to try to build the fully convolutional

network architecture [5]. And, according LeCun et al.
(2015) [3], the pretrained CNNs on other image dataset like
ImageNet are still powerful to extract useful hierarchical in-
formation for images, future direction will utilize AlexNet
[2] as pretrained CNN layers to extract features and com-
pare the validation accuracy.
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