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Abstract

In this project, ResNet and VGG 16 are utilized as clas-
sifiers for dataset from single particle imaging experiments
with X-ray free electron laser. Both ResNet and transfer
learning with pre-trained VGG 16 achieve an accuracy over
94% on experiment dataset. Their performances are visu-
alized and analyzed in detail.

Source code can be obtained from https://github.
com/JustPhyCs/cs231n_proj

1. Introduction

One of the most persistent endeavor in molecular biology
is to understand structure of various proteins essential to
life. Historically structures of these tiny biological particles
are determined by X-ray crystallography, leaving blanks in
our knowledge of proteins that do not crystallize [11]. Re-
cently a novel method called single particle imaging with
X-ray free electron laser (SPI with XFEL), which does not
require crystallization of samples, is revolutionarily shifting
the landscape of structural biology [5, 24, 8].

The logic cornerstone of SPI with XFEL is as follows
[18]: when the X-ray pulse is extremely short (i.e. with du-
ration less than 10−15s), diffraction patterns of the image
are essentially slices of the particle in three-dimensional
Fourier space; if furthermore the pulse is extremely strong
(i.e. containing extremely many photons, for example 1014),
the signal-to-noise ratio is so high that reconstruction of
electron density of the particle is possible.

Similar to other experiments running on accelerators,
this new technology produces a huge amount of data. To
reach a resolution of 0.5nm for a particle with a diameter of
100nm, more than 106 pieces of 2000×2000 pixel2 diffrac-
tion images are required [10]. Due to certain physical con-
straints, only less than 0.1% experiment data are usable for
reconstruction. Thus it is our goal to design a scalable, au-
tomatic, stable and precise binary classifier to select useful

diffraction patterns from others.
In this work, we choose convolutional neural networks

as our base model. A 10-layer ResNet [12, 3] is trained
from scratch and VGG 16 [25, 3, 1] is adopted for transfer
learning [22]. Both real experiment diffraction patterns and
simulation data are utilized. The result shows that our ap-
proach is promising: transfer learning and ResNet yield an
accuracy of 98% and 94% on real experiment data respec-
tively.

2. History and Related Work

To the best of our knowledge we are the first group ap-
plying convolutional neural network (CNN) to the problem
of SPI with XFEL.

At the beginning of SPI with XFEL, spectral clustering
methods [28, 26, 13, 6, 21, 9, 4] and generative topologi-
cal mapping methods [21, 7] competed on this classification
problem. Generative topological mappings (GTM) are able
to extract global orientation information, which is essential
for reconstruction, as well as to classify. But the prohibitive
amount of calculation resources renders it less useful among
specialists.

For spectral clustering methods, diffusion maps are the
most popular. They also extract the global orientation infor-
mation, in principle. But the subtlety is that the extracted
information is in “eigenfunction representation” (See Ap-
pendix A for detailed explanation). To incorporate informa-
tion in this representation into reconstruction procedure af-
ter the classification, one has to know before-hand the shape
of the underlying parameterizing manifold which we almost
have no control over. But the undeniable advantage of these
methods is that they are very easy to implement with highly
optimized numerical linear algebra libraries [9].

Since GTM has not been applied to real experiment data
yet, we only comment on the undesirable features of diffu-
sion maps. Diffusion maps are unsupervised learning algo-
rithms that do not require training and can be applied to any
dataset. This is both an advantage and an disadvantage. On
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one hand, without accurately labeled dataset these unsuper-
vised learning algorithms are our only choice. In fact the
real experiment data in this project is labeled by diffusion
maps [28, 4].

On the other hand, they do not produce labels so re-
searchers have to label each cluster manually. The num-
ber of clusters is not controlled explicitly by parameters of
the algorithms and in one successful classification applica-
tion, the researcher found more than 2000 clusters [28] to
explore.

Also parameters for different datasets have to be tuned
separately. Currently, there is no theoretical guideline for
tuning but the performance sensitively depends on it. To
our experience, the original diffusion map [9] is stable with
respective to the parameters and the dataset quality (the ra-
tio of good diffraction patterns among all data), but is not
capable of accurately distinguishing good images from bad
ones when the quality is bad. When the dataset quality is
low, a lot of bad patterns are classified as good.

The normalized version of diffusion map [4], on the
other hand, is very sensitive to parameters and the quality
of the dataset, thus it is hard to tune parameters on bad
datasets. Also, because such experiments have to rely on
large X-ray facilities like LCLS, where the beam time is
very expensive (for LCLS, the price is 2 US dollars per sec-
ond), it would be very beneficial if one can know the quality
of their dataset in real time and optimize their experiment
parameters accordingly. Diffusion maps as global methods
can not meet these requirements.

All these requirement can be satisfied by a well trained
CNN. With CNN as is with human eye, each diffraction
pattern can be classified properly. No additional orientation
information is yielded. The processing time to scales only
proportional to the number of the diffraction patterns and
can be parallelized in a straightforward way. Also real time
diagnosis of experiments and automatic labeling are avail-
able in this approach. This is the motivation of our project.

Supervised learning with CNN in XFEL are not very
popular yet. Related research mainly concerns about X-ray
diagnosis [23, 15]. On the other branch of single particle
imaging, i.e. single particle imaging with cryogenic electron
micro-scope (SPI with cryo-EM), there have been several
attempts [29, 16, 27, 19, 20, 17]. But their dataset differs
fundamentally from ours. SPI with cryo-EM reconstructs
the 3D electron density from slices of the electron density
while SPI with XFEL do the reconstruction with slices of
the Fourier transformation of the electron density. So they
need to find the positions of many particles on a huge image
precisely, while we only need to decide whether the diffrac-
tion intensity patterns are good or not since the position of
the particle has no effect on the intensity patterns.

Figure 1. Relation between Fourier transformed electron density
distribution and diffraction pattern recorded by detector. Image
adopted from http://gisaxs.com/index.php/Ewald_
sphere

3. Simulator and Dataset
Simulator is an indispensable part of our project. Our

ultimate goal is to design a general classifier which can be
applied to any dataset from SPI with XFEL. Thus the clas-
sifier should be able to distinguish good patterns from bad
ones regardless the variations in X-ray intensity, detector
configurations and particle shapes. But it is an intimidating
task to find an accurately labeled representative experiment
dataset for training. On one hand, there are not so many
experiments yet in this field, and only very few different
kinds of particles and configurations are explored. On the
other hand, according to our experience, since the object
is diffraction pattern, even human requires comprehensive
training based on simulators to establish valid intuition for
the classification. Unless one has seen similar diffraction
patterns and knows the corresponding real space distribu-
tions, it is difficult to decide whether it’s a good diffraction
pattern or not.

Thus the first part of out project is to establish an ac-
ceptable simulator. Our simulator is only a toy model,
merely considering the most relevant physics processes dur-
ing diffraction. Many details are not taken into considera-
tion. A more sophisticated model is now under construction
by specialists in SLAC.

According to quantum mechanics, when the incident
electromagnetic field is a plane wave with well defined
wave vector k, the elastically scattered electromagnetic field
obeys the formula up to an unimportant overall constant:

f̃(ks) =

∫
d3xe−ix·(ks−ki)f(x) (1)

where ks is the scattered wave vector and ki is the incident
wave vector.

Four fundamental geometric bodies are used as basic
bricks in our simulator: octahedron, dodecahedron, icosa-
hedron and truncated icosahedron (soccer ball shape). Each
is represented by a 3-D (128 × 128 × 128) numpy array,
with 1 representing that the point is inside the geometric
body and 0 otherwise. Then combining simple geomet-
ric transformations (including twist, affine transformations),
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the number of models scales up easily. With these bricks,
it’s straightforward to construct cluster with multiple geo-
metric bodies. Four different clusters are constructed: clus-
ters of two identical particles, three identical particles, four
identical particles and more than four particles. As is indi-
cated in the above formula, the Fourier transformations of
the samples (recorded in a 256 × 256 × 256 3D numpy ar-
ray) are taken and then the diffraction intensity is square of
the magnitude.

As is shown in Fig. (1), there is a one-to-one correspon-
dence between the detector pixel and the data point over the
Ewald sphere. Thus, by randomly selecting an orientation
and utilizing this relation, we get the diffraction intensity re-
ceived by detectors. Those images are not the simulation fi-
nal results. Due to quantum effect, photon are quantized and
thus experiment data i.e. the photon numbers for each pixel
must be integers. According to quantum optics, the photon
number obeys Poisson distribution with an average equal to
the intensity. Thus we generate a Poisson random number
for each pixel which in the end constitutes our simulation
data. To simulate the fluctuation of X-ray intensity, we mul-
tiply the real space models with different overall constants.
Further to simulate the variation in detector configurations,
we explore a large range of detector parameters in our sim-
ulator. To make our models more realistic, we use Gaussian
filters to blur the edges.

In the end, we obtained four groups of simulated diffrac-
tion patterns corresponding to the four basic shapes. Each
group has of 5.5 × 105 diffraction patterns with 2.5 × 105

of them being good patterns. Every 100 diffraction patterns
comes from an independently initialized model (randomly
generated orientations, X-ray intensities, geometric trans-
formations, and detector configurations) to prevent over
sampling.

Besides simulation patterns, 2.4 × 105 real experiment
diffraction patterns are also utilized [28, 4]. 1.4 × 105 of
them are good hits. These data are labeled by the diffu-
sion maps mentioned above. The precise accuracy of the
labeling is unknown. According to inspection by the au-
thor over 500 randomly chosen sample, the accuracy may
be around 95%− 98%. But since we know the accuracy of
this data set is good enough for successful reconstruction,
thus so long as our classifier’s predictions compatible with
diffusion maps, it is good enough for our purpose.

To gain more intuition of our dataset, some samples are
shown in Fig. (2). Diffraction patterns from different num-
ber of particles hit by X-ray are visually distinct: diffraction
of more particles shows more low-intensity stripes due to
destructive interference between particles. However these
stripes can be distorted, rotated, rescaled or blurred because
of noise or different spatial configurations of particle clus-
ters.

Figure 2. Examples of simulation data (diffraction intensity from
icosahedron particles). From left to right: single, double, triple
and four hit.

4. Methods

In this work, we propose to use convolutional neural net-
works to recognize subtle interference patterns in diffrac-
tion images. Concerned about insufficient data, we imple-
ment a 10-layer ResNet trained on simulation and exper-
iment data, and a logistic classifier based on pre-trained
VGG16 over ImageNet for comparison.

4.1. ResNet

A ResNet [12, 3, 2] classifier that decides the number of
particles (from zero to four) hit by X-ray in each snapshot is
trained and tested on simulation and experiment data. The
optimized loss function is

L = − 1

N

N∑
i=1

log
si,yi∑C
j=1 si,j

+ λ
∑
k

‖Wk‖2, (2)

where N is the number of samples in the batch, si,j is the
score for sample i in class j output by the fully connected
(fc) layer, yi is the correct class for sample i, and C = 5 is
the total number of classes. λ = 0.01 is the L2 regulariza-
tion parameter for convolutional kernels Wk.

The network architecture is similar to that in [12] with
identity mapping by shortcuts for every two convolutional
layers, as is shown in Fig. (3). Since we are only classify-
ing images into five classes a 10-layer network is sufficient
in practice. Each convolutional filter recognizes 3 × 3 ac-
tivation patterns of previous neurons around each pixel in
image (for example the first convolutional layer seems to
detect edges); shortcut connections act as highways of gra-
dients in back-propagation and hence make training of the
network more efficient.

We have also preprocessed and augmented data for
ResNet. Note that average intensity of pixels is much larger
in the middle so for numerical stability, we renormalize the
image to zero mean value and unit variance across all train-
ing data. This helps amplify stripe patterns in images as
well (see Fig. (4)). Also to improve efficiency we only keep
128×128 pixels in the center of the image for classification.
Furthermore images are horizontally and vertically flipped
to enlarge the dataset.



Figure 3. Network architecture. Each convolutional layer is ap-
pended with a batch normalization, a dropout and then a relu layer.

Figure 4. Single hit (left) and double hit (right) with mean im-
age subtracted and normalized to unit variance. The interference
stripes are more evident than that in Fig. (2).

Figure 5. Transfer learning network architecture. The yellow block
represents the adopted structure.

4.2. VGG 16

In our project, VGG 16 [1, 22, 25, 3] is utilized as the
base model for transfer learning. The transfer learning
is based on source code on github https://github.
com/machrisaa/tensorflow-vgg. As is shown in
Fig. (5), we keep all convolutional layers and the first two
fully connected layers frozen, use the output from the two
fully connected layers as features of the diffraction patterns
and train a logistic regression classifier on the 8192D fea-
tures.

One of the basic guidelines for transfer learning is to use
pre-trained model over similar training set. This can guar-
antee that useful features are extracted. Since the diffraction
patterns are significantly different from the training data of

VGG 16 on ImageNet. Special justification and preprocess-
ing are required for this approach.

First we inspect the diffraction patterns at different in-
tensity scales, as is shown in Fig. (6) and Fig. (7).

Figure 6. A typical good diffraction pattern viewed at different
intensity scales. From left to right, from top to bottom, the highest
intensity per pixel are respectively 1,2,5,10,20,50,100,1000

Figure 7. A typical bad diffraction pattern viewed at different in-
tensity scales. From left to right, from top to bottom, the highest
intensity per pixel are respectively 1,2,5,10,20,50,100,1000

Obviously, at different scale, different features emerge.
It seems to us that scaling being 10 keeps enough features of
the patterns while suppressing the noise to a decent degree.
So we save the diffraction patterns with maximal intensity
scale being 10 in .jpg format. In this way, we also finish the
normalization procedure.

A lot of information is lost during the format transforma-
tion. But we can still justify the procedure. The only desired
information in our project is whether the diffraction pattern
is good or not. This transformation doesn’t seem to de-
stroy this information. Also through this transformation, we
obtain an analogy between diffraction pattern and training
samples in ImageNet. We can deem the diffraction patterns
as a ”special family of flowers”. Some of the kinds have
regular petals while the others have irregular ones. Since
VGG 16 can successfully distinguish much more compli-
cated categories, there is no doubt that fine tuned VGG 16
can meet the requirement.
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5. Results and Discussion
5.1. ResNet

As a preliminary experiment we train the network over
58000 simulation images and reserve 1000 images for val-
idation and 1000 for test. These 60000 images contain
30000 single hit images of icosahedron and soccer-shaped
particles, 10000 double hit, 10000 triple hit, 5000 four hit
and 5000 bad hit images. The loss, training accuracy and
validation accuracy profiles are plotted in Fig. (8). The ac-
curacy quickly gets over 0.95 and there is no significant
overfitting (although there is a dip in validation accuracy
at the beginning of training). A final test accuracy as high
as 99% seems to suggest that such classification task of sim-
ulation data is too easy for a deep neural network.

Figure 8. Loss averaged over each epoch is drawn as the gray line
with values on the right. The blue line is training accuracy and
the orange line is validation accuracy, averaged over each of 20
epochs of training over 58000 simulation images. A 25 percent
dropout is adopted with learning rate 1e-3 and regularization 0.01.

Nevertheless, to better understand the performance of
ResNet, it should be helpful to analyze some unsuccessful
classification results. In Fig. (9) we present some misclassi-
fied images and compare them to successful ones. It should
be noted that the more particles hit by X-ray the more dif-
ficult it is to determine the number of particles involved be-
cause then noise would destroy details of the intricate inter-
ference pattern. Hence images with higher resolution may
be needed in order to recover such details.

Figure 9. Left: a four hit images wrongly classified as bad hit;
right: a bad hit correctly identified. When many particles are hit
by X-ray the interference pattern gets complicated and easier to be
misclassified as bad hit.

However, when the ResNet trained on simulation data is

tested on experiment images, its accuracy drops to 62.0%.
First we observe that this is not the result of incapacity of
ResNet, as for the same network trained and tested both
on experiment data, it reaches an accuracy of 94%, and in-
crease of network depth leads to significant overfitting as is
shown in Fig. (10).

Figure 10. Training and validation accuracy for different number
of convolutional layers in ResNet. (n,m) are the numbers of con-
volutional layers with 32 and 64 channels respectively.

Although the overall test accuracy on experiment snap-
shots is only 62%, the false positive (non-single hit mis-
taken as single hit) rate nearly vanishes. Hence the prob-
lem is our ResNet trained on simulation data tends to clas-
sify single-hit images in experiment data as multiple-hit.
By studying misclassified examples, we conclude that such
failure of transferring from simulation to experiment data
may be a result of several artifacts in our simulation dataset.
From Fig. (11) we observe that simulation data is more sym-
metric and lacks large-scale fluctuations. Also intensity of
fringes in simulation data is visibly lower than that in real
images. These discrepancies may fool our ResNet to regard
less clean experiment single-hit snapshots as multiple-hit.

Figure 11. Examples of experiment diffraction patterns (top) and
simulation patterns (bottom).

Another concern is robustness of our network to parti-
cles not present in training set. In our simulation data for
training, the particles are highly symmetric (icosahedra and
soccer) but in real experiments particles can take a variety
of geometries. It should be good to test the model over
some new particles. In such an experiment our ResNet 10
is trained on simulation data composed of half single-hit



and half multiple-hit images from diffraction of icosahedra,
and tested on simulated diffraction from other types of
particles (soccer and tori). The result is as follows. Note
that false positive rate (a bad image wrongly identified as
good), which almost vanishes, deviates from false negative
rate (a good image wrongly identified as bad), which is
high.

Although our program does not perfectly generalize to
arbitrary species of particles, if it decides that one image is
good, the image is good with high confidence. This would
suffice in practice since for a clean electron density recon-
struction a low false positive rate is more important than the
overall accuracy.

5.2. VGG 16

We use scikit-learn package [22, 3, 1] to implement the
logistic classifier since the data set is small. Only experi-
ment data is investigated. The default parameters are uti-
lized and the regularization strength for L2 penalty is set to
1. The training is carried out on 2 × 105 randomly chosen
real experiment samples, while the test is over 2000 ran-
domly chosen real experiment samples. The final test accu-
racy is 98.2%. Considering that the accuracy of the ground
truth is not this high, it seems to us that to pursue an even
higher accuracy in current situation is meaningless.

Prediction statistics over 2000 randomly chosen test
data is listed below. There is no obvious bias for either kind
of mis-prediction.

We inspect all of the misclassified samples. The ground
truth for these samples are correct and thus these are true
mis-classifications. For good diffraction patterns misclas-
sified as bad ones, it seems that X-ray intensity is a major
effect. Because most of the misclassified good diffraction
patterns have low X-ray fluxes as is shown in the first image
in (12). For our specific purpose, this is actually beneficial.
Since too many diffraction patterns with low X-ray fluxes
can potentially impede the next reconstruction procedure.
As for bad diffraction patterns, we do not see any particular
reason leading to the mis-classification.

To get a hint of what the pretrained neural network is
looking at, we inspect the output of middle layers. It seems
that at the first several layers, the neurons mainly looks for
major color blocks while at higher layers, neurons tends to
look for edges.

Since the precision is very high, it seems reasonable to
assume that the extracted feature is highly separable. So we
inspect the 2 component t-SNE mapping over the extracted

Figure 12. Up:Good diffraction patterns predicted to be bad.
Down: Bad diffraction patterns predicted to be good

Figure 13. Selected output from neurons at various layers. From
top to bottom, neurons respectively are located at 1st, 2nd, 3rd and
4th convolution layer.

Figure 14. t-SNE embedding of 2000 8192D test sample features

8192D features of the 2000 test samples [22]. Clearly, the
embedding shows a very good separation (See Fig.(14)).



This indicates that our normalization methods is well suited
for transfer learning with VGG 16.

6. Conclusion and Future Work
In this project, binary classifiers implemented with

ResNet and VGG 16 are constructed for dataset from SPI
with XFEL. A binary classification accuracy as high as 98%
of VGG 16 is suffcient for immediate application in pro-
cessing data from XFEL diffraction experiments. Transfer
learning of VGG 16 shows advantages of higher accuracy
with limited dataset. However we believe that with our sim-
ulator improved and dataset enlarged, we would be able to
deepen our ResNet and achieve higher accuracy and robust-
ness, as ResNet is specially trained on diffraction images
and it has already shown advantages in other image classi-
fication problems.

In the future, one major concentration should be to im-
prove the simulator. With better simulator, it is possible to
train a better ResNet from scratch and improve its general-
ization ability. Another concentration should be fine tuning
VGG 16 or doing transfer learning with pretrained ResNet.
Besides, improving the labeling condition in the training set
is an urgent task now, since currently, the accuracy of the
labeling in real experiment data is not high enough to cor-
rectly reflect the classifiers’ performance.

For this project, source code can be obtained from
https://github.com/JustPhyCs/cs231n_
proj

7. Appendix A
By eigenfunction representation, we refers to a special

way of representing data points over the data manifold.
Supposing that our data points are images with pixel

values representing the coordinates, then initially our data
points are embedded in a very high dimensional space. But
we may know or assume that the data points are parameter-
ized by only a few parameters and only occupy a low dimen-
sional manifold of the high-dimensional space.For simplic-
ity, we assume that the low dimensional manifold is a 2D
torus T 2.

Then with GTM[7, 21], the extracted information would
be the positions of the data points over the torus under cer-
tain parameterization of the torus. With diffusion maps [9],
the extracted information would be very different. Suppos-
ing that φn is the nth non-trivial eigenfunction of Laplacian
operator over the torus with the nth lowest eigenvalues, then
the nth component of the extracted information is the value
of the nth eigenfunction over the specific data point. Math-
ematically, it can be proved that for 2-D manifold [14], only
when the genus of the manifold is 0 can we infer the topo-
logical structure of the manifold uniquely. But there’s only
one such 2-D topological manifold in the world, S2. Thus

unless we know the shape of the manifold before-hand, we
can not interpret the extracted information.
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