
Predicting Land Use and Atmospheric Conditions from Amazon Rainforest
Satellite Imagery

Rohisha Adke ∗

Stanford University
radke@stanford.edu

Joe Johnson ∗

Stanford University
jjohnso3@stanford.edu

Abstract

We apply convolutional neural networks to predict land
cover and atmospheric conditions from satellite images of
the Amazon rainforest. We experiment with CNNs, transfer
learning, ensemble models, and a ResNet model. We find
that an 8-layer CNN performs the best, and achieves a val-
idation set accuracy of 95.8% and test F2 score of 0.9077.
ResNet and the ensemble model also perform near the level
of the CNN.

1. Introduction
Deforestation in the Amazon Basin is happening at an

alarming rate - and currently, governments and local stake-
holders do not have enough information to diagnose and
address the situation. With our project, born out of the
”Planet: Understanding the Amazon from Space” Kaggle
Competition, we label satellite imagery with atmospheric
conditions, type of land cover, and land use occurring. With
our algorithm, officials will be able to use satellite imagery
to characterize global deforestation.

The input to our algorithm is a satellite image of the
Amazon rainforest. We use a CNN to output multiple pre-
dicted land cover and atmospheric condition labels for each
image.

2. Related Work
In recent years, a number of papers related to deep learn-

ing on satellite imagery have emerged. Researchers have
created benchmark datasets, feature extraction and data
augmentation methods, benchmarked pretrained networks
used for transfer learning, and recently, proposed new ar-
chitectures specifically for satellite imagery.

2.1. Related Large Dataset

[1] introduces two large satellite imagery datasets - the
SAT-4 and SAT-6 airborne datasets (DeepSat) - which have

1Both authors contributed equally to this work.

been used for research related to our project. Together, the
datasets contain about 1 million images encoded as Matlab
(.mat) files. Each sample image is 28x28 pixels, with four
channels (red, green, blue, near infrared). Image labels are
1x4 and 1x6 (SAT-4 includes barren land, trees, grassland,
and other; SAT-6 includes barren land, trees, grassland,
roads, buildings, and water bodies), with a single one value
in each vector to indicate the correct class label. While the
images contained in these datasets are more similar to the
images we work with than others, such as the ImageNet
dataset, the DeepSAT dataset labels are more simple than
those we work with, and the images are smaller than our
raw input images.

2.2. Feature Extraction

[2] proposes different techniques for feature extraction
from satellite imagery. These include features based on
SIFT, co-occurrence kernels, bag-of-visual-words, spatial
partitioning via various unsupervised and clustering meth-
ods, and color histograms.

2.3. Data Augmentation

[16] introduces a data augmentation method for enhanc-
ing remote sensing datasets using flipping, translation, and
rotation. We use some of these methods to augment and
expand our dataset of Amazon rainforest satellite imagery
for use in training the final layers on top of the pretrained
network we use for transfer learning.

2.4. Existing CNN architectures for classifying
satellite imagery

A number of papers in the last year or two have exper-
imented with using CNN architectures for land use classi-
fication on DeepSat [1] [2] [8] [9] [10] [17] and the UC
Merced Land Use [15] dataset.

[1] applies a convolutional neural network to classify
barren land, trees, grassland, roads, buildings and water
coverage from satellite imagery. For our baseline model we
take a similar approach, using a CNN to classify an image
into multiple potential groups.

1



2.5. Transfer Learning

Recently, transfer learning and pretrained models have
become popular tools for land use classification. [11] shows
that models pretrained on images of everyday figures, which
are very dissimilar from land cover images, can still achieve
state of the art results on the UC Merced Land use dataset.

Similarly, [2] evaluates CaffeNet and GoogLeNet [13]
CNN architectures on the UC Merced Land Use and Brazil-
ian Coffee Scenes datasets; they find that using a pre-trained
GoogLeNet with fine-tuning on the two datasets yields an
accuracy of 97.10%.

[9] uses the trained model Overfeat (an improved version
of AlexNet) and a custom CNN component to classify im-
ages in the UC Merced Land Use dataset with an accuracy
of 92.4%. The custom component accepts the derived 2D
features and class labels into two convolutional layers, two
fully connected layers, and a Softmax classifier trained with
SGD with momentum. The custom component also uses
max-norm, dropout, weight-decay, and data augmentation.

Instead of using the UC Merced dataset, [8] uses a
DCNN based on Inception modules (with inspiration from
GoogLeNet), with hyperparameters chosen using a genetic
algorithm, to classify DeepSat. The model attains 98.4%
accuracy on SAT-4, and 96.0% on SAT-6.

[10] uses the deep learning library of Torch to benchmark
a number of existing networks and methods on DeepSat at
once: AlexNet [5], AlexNet-small, VGGNet [12] (with hor-
izontal and vertical flips for data augmentation), Deep Be-
lief Networks, Stacked Denoising Autoencoders, and other
semi-supervised frameworks. [10] found that Alex-Net
and VGGNet achieved classification accuracy rates above
99.9%.

[14] uses transfer learning on a CNN similar to AlexNet
with the UC-Merced land use data. The CNN extracts fea-
tures of the images, then an additional ”Extreme Learning
Machine” component completes image classification. Their
model achieves 95.62% accuracy on the data set. This sug-
gests some benefit to trying out various schemes for fine-
tuning neural network models to our data.

2.6. Novel Architectures

[17] proposes SatCNN, an agile CNN architecture
specifically for high-spatial resolution remote-sensing im-
ages, as opposed to borrowing from natural image scene
classification or other CNN architectures. This architec-
ture involves deeper convolutional layers with smaller fil-
ters than the previously described approaches, and achieves
99.65% and 99.54% accuracies on DeepSat. Features of the
network include data normalization, convolutions, ReLUs,
pooling, fully connected layers, dropout, and the cross-
entropy loss function optimized by SGD with momentum.

2.7. Ensemble Models

Ensemble models have also proven useful for land cover
classification. Early work has used bagging, boosting and
AdaBoost methods to classify satellite images. [6] shows
that when applying this approach to landsat images with ra-
dial basis function neural networks, the ensembles outper-
form any individual classifier. [7] uses multi-layer percep-
trons, CNNs, random forests, and ensembles of CNNs to
classify land cover and crop use on satellite images. They
find that the ensemble of CNNs performs the best on the
dataset, and achieves 85% accuracy on the crop data.

The prior body of work that successfully uses CNNs on
land cover data motivates our decision to use neural network
models for this task. The success of transfer learning, state-
of-the-art models, and ensemble models motivates us to try
similar approaches on our dataset.

3. Dataset and Features
Our dataset contains 256x256 pixel images of the Ama-

zon basin, retrieved from Kaggle.com [4]. The original
dataset (which was divided into easy and hard to identify la-
bels) contained over 150,000 images. Each image is labeled
with an atmospheric condition (clear, partly cloudy, cloudy,
and haze), and land cover/use observed (types of rainforest,
agriculture, rivers, towns/cities, and roads). There are mul-
tiple possible covers/uses for each land area. There are 17
total classes. 3.

haze primary clear habitation primary 
road

artisinal_mine clear 
primary clear primary

clear primary road 
selective_logging water

agriculture clear 
primary water

Figure 1. Sample images and their labels.

We divide the dataset into 35,000 training, 5,479 valida-
tion, and 61,191 test images.

We augment the data by flipping the images, and by sub-
tracting the per-color mean. For VGGNet transfer learning
we crop the images to match the 224x224 initial size of the
pretrained model.

For our networks besides those based on transfer learn-
ing, we scale the images to 32x32 pixels. Upon scaling,

2



individual images look like this:

Figure 2. 32x32 scaled dataset images.

An important characteristic of the data is that the class
distribution is heavily imbalanced. The most common class
is primary forest, which consists of 92% of the sample. The
least common class is conventional mine, which is only
0.25% of the sample. The label distribution is displayed
in Figure 3.

0

25

50

75

100

pr
im

ar
y

cle
ar

ag
ric

ult
ur

e
ro

ad
wat

er

pa
rtl

y c
lou

dy

cu
ltiv

at
ion

ha
bit

at
ion

ha
ze

clo
ud

y

ba
re

 g
ro

un
d

se
lec

tiv
e 

log
gin

g

ar
tis

ina
l m

ine

blo
om

ing

sla
sh

 bu
rn

blo
w d

ow
n

co
nv

en
tio

na
l m

ine

P
er

ce
nt

 o
f T

ra
in

in
g 

S
am

pl
e

Figure 3. Label Distribution

4. Methods
4.1. Expected results & evaluation

This is a multi-label classification problem, so our ex-
pected result is a set of labels for each image indicating
atmospheric condition and multiple possible land cover la-
bels. We evaluate these predictions using the same evalu-
ation criterion as the Kaggle competition, which is the F2

score. The F2 score is a combined measure of the precision
and recall of the classifier, with recall receiving a higher
weighting. This implies that we will consider false neg-
atives, where we label a positive class as negative, more
heavily than we weight false positives, where we label neg-
ative class as positive.

When working with a dataset with an imbalanced label
distribution, it makes more sense to use evaluation measures
such as recall, precision, and the F2 Score instead of accu-
racy (if evaluating on accuracy, your classifier may learn to
simply predict the dominant class for all images). The F2

score is defined as below, and is equal to one if all images
are classified correctly.

F2 = (1 + β2)
pr

β2p+ r
with β = 2

p =
tp

tp+ fp

r =
tp

tp+ fn

where p is the precision, r is recall, tp is the true positive
rate, fp is the false positive rate, and fn is the false negative
rate.

Since we are working on a multi-label classification, we
use a sigmoid cross entropy loss function for each model.
For n observations and K classes, the form of this loss is:

E = − 1

n

n∑
i=1

K∑
j=1

[pn,j log p̂n,j + (1− pn,j) log(1− p̂n,j)]

Where p̂n,j and pn,j are the estimated and true probabilities
of class j. This treats each label as a separate classifica-
tion problem, and, unlike the more commonly used cross-
entropy loss, does not normalize the probabilities of each
class to be equal to one. If a class probability is above a
pre-specified classification threshold, then we label it as be-
longing to that class. For our CNN and ResNet models,
we achieve good performance with a threshold of 0.20. For
transfer learning we use a grid search to find the best thresh-
old on the training data.

4.2. Network Architecture

4.2.1 Convolutional Neural Network

We use a standard CNN network as a baseline result. We
stack sets of two convolutional layers, followed by max-
pool layers, ReLu activation layers, and dropout layers. We
repeat this between 2 and 4 times. At the final layer we have
two MLP layers and a final sigmoid activation to output pre-
dicted probabilities for each class.

4.2.2 ResNet

ResNet is an architecture that supports the training of very
deep neural networks [3]. This architecture improves on
normal CNNs by using residual learning, where every three
convolutional layers there is a residual layer that combines
the output of the last layer and the output from three convo-
lutional layers ago. The residual layer is

y = F (x, {Wi}) + x

where y is the layer output, x is the layer input, and
F (x, {Wi}) is the residual mapping.

3



4.3. Pretrained VGGNet

We also experiment with fine-tuning a pretrained VG-
GNet model on our data. The VGGNet model was proposed
by [12] and is similar to AlexNet, but has more layers and
smaller convolutions. In its original application to the 2014
ImageNet challenge it achieved first place results in image
localization. To fine-tune the model we replace the fully
connected layers with various specifications to fit our prob-
lem and train on the new layers and fine-tune the VGGNet’s
convolutional layers.

4.4. ResNet-CNN Ensemble

We combine our two best performing models, ResNet
and CNN-8. We combine these models by taking their pre-
dicted class probability estimates and averaging them to
produce our predicted label probabilities.

5. Experiments

We begin by implementing three different neural net-
work models: a baseline CNN, an 8-layer CNN, and a
ResNet model. For each model we use random hyperpa-
rameter search to select the learning rate, batch size, and
dropout probabilities if applicable. We use an Adam gradi-
ent update rule.

5.1. Baseline Model

As a baseline model, we run a standard CNN model di-
rectly on the training set. This consists of two sets of layers
as described in the model architecture section, resulting in
four convolutional layers.

This model achieves a validation accuracy of 94% and
F2 score of 0.86. While the accuracy is very high, this is
partially due to class imbalance in the data, since primary
rainforest is by far the most common type of forest cover.
This indicates that there is still room to improve on this
baseline, and we can improve performance by increasing
the number of CNN layers.

5.2. Deeper CNN

We next implement a CNN model with 8 convolutional
layers. We increase the number of filters for our model at
each set of convolutional layers. We decay the learning rate
every 15 epochs and implement early stopping. The hyper-
parameters we select via random search are 0.0013 learning
rate, .0.295 dropout probability on the convolutional layers,
0.562 dropout probability on the fully connected layer, and
128 batch size.

This model substantially improves our performance
above the more shallow model. This reaches a validation
accuracy of 95.8%, and a validation F2 score of 0.9072.
The progress is displayed in Figure 4.

0.10

0.15

0.20

0.25

0 10 20 30 40
Epoch

lo
ss

Validation Loss Training Loss

0.88

0.89

0.90

0.91

0.92

0.93

10 20 30
Epoch

V
al

id
at

io
n 

F
2 

S
co

re

Figure 4. Training for 8 layer CNN

The validation and training loss are fairly close to one
another, so while training loss is slightly lower than valida-
tion loss, overfitting does not appear to be a major problem.

This is our best performing model, so we also use it on
our final test set. On the test set the model achieves a F2

score of 0.9077, which is approximately the same as our
CNN-8 validation result.

To get a better sense of how our model is performing, we
break down our performance by class. Table 1 shows the
accuracy and F2 score for each class:

Class Accuracy F2-Score
agriculture 0.862 0.8827

artisinal mine 0.995 0.6904
bare ground 0.969 0.3053
blooming 0.993 0.0633

blow down 0.998 0.0
clear 0.939 0.975

cloudy 0.976 0.8705
conventional mine 0.998 0.0

cultivation 0.873 0.6543
habitation 0.901 0.5886

haze 0.951 0.781
partly cloudy 0.962 0.9293

primary 0.964 0.9903
road 0.86 0.7995

selective logging 0.991 0.1269
slash burn 0.993 0.0

water 0.865 0.7144
Table 1. Model performance by class.

The F2 Score is very low for the very rare classes like
blooming and selective logging. Blow down, slash-burn,
and conventional mine receive F2 scores of zero because
they are not ever predicted. These classes do still have very
high accuracy because they are so rare. The more com-
mon classes like primary, clear, and partly cloudy are well-
identified. Water and road are two fairly common classes
that our model struggles to classify.

Figures 5 and 6 display two images that our model mis-

4



classifies. 5 is labeled cultivation, haze, primary, and slash
burn. Our model labels it as agriculture, clear, cultivation,
and primary. Considering that agriculture and cultivation
are pretty similar, our model seems to be picking up on
some important characteristics. Slash-burn is one of the
rare classes so it is not surprising that our model misses
this class. Since our images are compressed to be 32x32 it
may also be harder for our model to perceive the haze in
the image. 6 is agriculture, clear, cultivation, primary, road,
and water. Our model sees agriculture, cultivation, habita-
tion, partly cloudy, primary, and road. The model correctly
labels primary and road, but misclassifies the atmospheric
condition as partly cloudy. This may be because some of
the land area is colored white, and the model interprets this
area as clouds. The bending shape and darker green color
of the forest may also be misinterpreted by our model as a
river, causing it to label the image as water.

Figure 5. Misclassified Image

Figure 6. Misclassified Image 2

5.3. ResNet

We implement a ResNet model with 18 layers. We select
a learning rate of 0.000085 and a batch size of 128 from
random search.

This model does not improve upon the 8-layer CNN.
This reaches a validation accuracy of 95.3%, and an F2

score of 0.89.3. The progress is displayed in Figure 7. The
model tends to overfit the data more than the 8-layer CNN.

0.1

0.2

0.3

0.4

0 10 20
Epoch

lo
ss

Validation Loss Training Loss

0.85

0.86

0.87

0.88

0.89

0.90

5 10 15 20 25
Epoch

V
al

id
at

io
n 

F
2 

S
co

re

Figure 7. Training for ResNet.

The CNN-8 model has dropout so it is more heavily regu-
larized than our ResNet model which does not have dropout
and is more complex, so this result is not surprising. While
it is not implemented here, Stochastic Depth may help with
this problem. We use early stopping to save and use the
model before significant overfitting has occurred, so this
should mitigate some of the problem.

5.4. Model Ensemble

The model ensemble performs well, but is slightly below
that of the CNN-8 model. It achieves a validation set F2

score of 0.904.

5.5. VGGNet-16 Transfer Learning

Noting the successful usage of transfer learning in a
number of related papers on land use classification, we ex-
periment with several network architectures involving trans-
fer learning from the pre-trained VGGNet-16 (taken from
TensorFlow’s contrib.framework model zoo). We choose to
train on top of VGGNet because VGGNet has been success-
fully used on land-use classification problems in the past,
and the input size to the VGGNet architecture is close to
that of our satellite images.

For our architectures involving transfer learning we ex-
perimented with various hyperparameters:

- Learning rates on the final layers of the pretrained
model or extra layers: 1e-3, 5e-5 - Learning rates for train-
ing the entire network (pre-trained and additional compo-
nents) for a few epochs: 1e-5, 1e-6, 1e-7 - Dropout proba-
bilities for dropout layers: 0.4, 0.5, 0.3, 0.25 - Weight de-
cays: 1e-4, 5e-4

For the most part, with the architectures listed below, we
found that the following worked best: - Learning rate on
final components: 1e-3 - Learning rate on entire network:
1e-5 - Dropout probability: 0.4 - Weight decays: 1e-4

The five main architectures we experimented with were:
1. Retraining the final fully-connected layer of the

VGGNet on our dataset of 17-class labels. After training
both stages of the model (final layer and entire network) for
5-10 epochs (where one epoch involves passing the entire

5



training dataset through the network) each, our network had
an F2 score of around 0.55-0.65, depending upon the itera-
tion. We found that scores jumped around quite a bit during
training, depending upon the labels of images that were in a
specific batch. Generally, we found that only retraining the
final fully-connected layer of the VGGNet was not enough
to bridge the gap between the data the model had been pre-
trained on and our dataset.

2. VGGNet with final two layers replaced by four
fully-connected layers of decreasing size. After observ-
ing the results of the first transfer learning architecture, we
added additional fully-connected layers to the end of the
network, with numbers of neurons that decreased to our fi-
nal 17 classes. We trained the final four layers for 5-10
epochs, then the entire network for a few additional epochs.
This architecture yields an improved F2 score of 0.64 - 0.69.
However, we hypothesized that fully-connected layers were
not able to learn meaningful features from our data, or there
were too many parameters to optimize, and the network was
falling into local optima that did not perform well on the
validation set.

3. Training the final four layers of the VGGNet on
our dataset. We try an architecture that involves retraining
the final four layers of the VGGNet on our dataset. We
observe a loss function that doesn’t bounce around as much
as others do during training, but a similarly low F2 score
compared to the previous standalone models.

4. Removing the final two layers of the VGGNet, and
adding a 5-convolutional component onto the pretrained
network. In order to assist our network in capturing nonlin-
ear patterns amongst pixels in the data, we removed the final
two layers of the VGG network, then added a network com-
ponent with: a fully-connected 4096-unit layer, batch nor-
malization, a convolutional layer with 32 5x5 filters, leaky
ReLu activation, max pool, a convolutional layer with 64
5x5 filters and leaky ReLlu, max pool, a fully connected
layer, then a final fully connected layer with sigmoid acti-
vation. We saw an improvement in our loss function dur-
ing training with this network (below); the loss function de-
creased for the first part of training. However, after around
1000 iterations, we stopped seeing much improvement in
the loss, indicating that either the capacity of the network to
learn was exhausted, or the network had found a local op-
tima in the loss landscape. With this architecture, we saw
an F2 score around 0.66-0.71.

5. Removing the final two layers of the VGGNet, and
adding our best-performing CNN-8 as a component onto
the end of the pretrained network. After the success of
our deeper CNN-8 network, we experimented with adding
the CNN-8 as an additional component after the pre-trained
VGGNet. With this architecture, we feed the output of the
VGGNet’s fc6 layer into the following layers: batchnorm,
two convolutional layers, max pool, dropout, two convo-

Figure 8. Iteration vs Loss for VGGNet + CNN-5 Unit

lutional layers, max pool, dropout, fully connected, batch-
norm, dropout, fully-connected. The dropout probabilities
are 0.25, 0.25, and 0.5, the convolutional layers involve 32
filters and 3x3 kernels with ReLu activation, and the max
pool layers have 2x2 kernels. With this architecture, we
saw F2 scores around 0.67. The biggest advantage with this
network was that the optimal threshold for our logit to class
0/1 indicator was 0.5, which indicated that the batch nor-
malizations were helping calibrate the network and avoid
saturated sigmoids and/or dead ReLus in each layer. Be-
low, we see that the loss function during training is steadily
decreasing - perhaps, with more extensive hyperparameter
tuning, and more time, the network would reach similar or
better performance than the CNN-8 alone.

Figure 9. Iteration vs Loss for VGGNet + Best-performing CNN-8

Below, we show a comparison of the training losses
for our different transfer learning architectures. We see
that the networks involving adding fully connected layers
to the end of the network, or training the final four lay-
ers on our dataset, have lower starting losses than others
(lower red/orange lines), but, lacking flexibility in their
fully-connected layers, do not decrease across iterations as
compared to the others. Architecture 4, with five layers of
CNNs and other layers, has the steepest decrease in loss, but
then plateaues (yellow/green middle lines). Finally, archi-
tecture 5, with our best performing CNN component added
to the pretrained network, steadily decreases in loss, and
may work well given enough time to train, or with an in-
creased learning rate.

We hypothesize that transfer learning using VGGNet
didn’t work as well as standalone CNN and other architec-
tures with our dataset for several different reasons. Firstly,

6



Figure 10. Iteration vs Loss for Transfer Learning Architectures

VGGNets are complex networks with many parameters to
train. This means that we may need more time, and con-
current hyperparameter tuning, to tune the network. In
fact, existing papers that use VGGNets for transfer learn-
ing train for 100 epochs, while we trained for a maximum
of 30 epochs. A related concern is that the VGGNetwork
is trained on a dataset that is too different from our dataset
to transfer well without significant time spent training the
base pretrained network component. In this case, pretrain-
ing existing architectures on large datasets like DeepSAT
may improve performance. It may be the case that using
large 224x224 images made it difficult for the network to
separate signal from noise (as compared to using 32x32 im-
ages in our standalone networks). Perhaps using a different
optimizer to avoid the network becoming stuck in local op-
tima, or better hyperparameter tuning, would improve the
F2 score.

6. Conclusions and Future Work

We test several different CNN model architectures, and
ultimately a relatively simple 8-layer CNN performs best. It
achieves an F2-score of approximately 0.907 on the valida-
tion and test sets. A simpler model may perform well here
because we only have 17 classes, images are similar to one
another, and there are fewer distinct features in the images.
Transfer learning may not have worked as well because the
ImageNet images it was trained on are very different from
our satellite images, and because the complex VGG net-
work requires significant time and tuning to train well.

The ensemble model also seems promising as its perfor-
mance is very close to the 8-layer CNN. Adding more mod-
els and choosing a more principled approach to weighting
each model may further improve its performance.

Future work could include trying out a wider variety
of pre-trained models. Models trained on the DeepSAT

datasets, which are more similar to our dataset than Ima-
geNet, may be better able to distinguish relevant features in
our images. Other architectures, like a pretrained ResNet or
GoogleNet, may also work better than the VGGNet.

References
[1] S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano,

M. Karki, and R. Nemani. Deepsat: a learning framework
for satellite imagery. In Proceedings of the 23rd SIGSPA-
TIAL International Conference on Advances in Geographic
Information Systems, page 37. ACM, 2015.

[2] M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva.
Land use classification in remote sensing images by convo-
lutional neural networks. arXiv preprint arXiv:1508.00092,
2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[4] Kaggle.com. Planet: Understanding the amazon from space,
2017.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[6] S. Kulkarni and V. Kelkar. Classification of multispec-
tral satellite images using ensemble techniques of bagging,
boosting and adaboost. In Circuits, Systems, Communication
and Information Technology Applications (CSCITA), 2014
International Conference on, pages 253–258. IEEE, 2014.

[7] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov. Deep
learning classification of land cover and crop types using re-
mote sensing data. IEEE Geoscience and Remote Sensing
Letters, 14(5):778–782, 2017.

[8] Z. Ma, Z. Wang, C. Liu, and X. Liu. Satellite imagery classi-
fication based on deep convolution network. World Academy
of Science, Engineering and Technology, International Jour-
nal of Computer, Electrical, Automation, Control and Infor-
mation Engineering, 10(6):1113–1117, 2016.

[9] D. Marmanis, M. Datcu, T. Esch, and U. Stilla. Deep
learning earth observation classification using imagenet pre-
trained networks. IEEE Geoscience and Remote Sensing Let-
ters, 13(1):105–109, 2016.

[10] M. Papadomanolaki, M. Vakalopoulou, S. Zagoruyko, and
K. Karantzalos. Benchmarking deep learning frameworks
for the classification of very high resolution satellite mul-
tispectral data. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, pages 83–88,
2016.

[11] O. A. Penatti, K. Nogueira, and J. A. dos Santos. Do deep
features generalize from everyday objects to remote sensing
and aerial scenes domains? In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 44–51, 2015.

[12] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

7



[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015.

[14] Q. Weng, Z. Mao, J. Lin, and W. Guo. Land-use classifica-
tion via extreme learning classifier based on deep convolu-
tional features. IEEE Geoscience and Remote Sensing Let-
ters, 14(5):704–708, 2017.

[15] Y. Yang and S. Newsam. Bag-of-visual-words and spatial
extensions for land-use classification. In Proceedings of
the 18th SIGSPATIAL international conference on advances
in geographic information systems, pages 270–279. ACM,
2010.

[16] X. Yu, X. Wu, C. Luo, and P. Ren. Deep learning in remote
sensing scene classification: a data augmentation enhanced
convolutional neural network framework. GIScience & Re-
mote Sensing, pages 1–18, 2017.

[17] Y. Zhong, F. Fei, Y. Liu, B. Zhao, H. Jiao, and L. Zhang.
Satcnn: satellite image dataset classification using agile
convolutional neural networks. Remote Sensing Letters,
8(2):136–145, 2017.

7. Base Code References
Data Loading: https://www.kaggle.com/

anokas/simple-keras-starter
ResNet : https://github.com/raghakot/

keras-resnet
CNN: https://github.com/EKami/

planet-amazon-deforestation
Transfer Learning: https://

gist.github.com/omoindrot/
dedc857cdc0e680dfb1be99762990c9c

8

https://www.kaggle.com/anokas/simple-keras-starter
https://www.kaggle.com/anokas/simple-keras-starter
https://github.com/raghakot/keras-resnet
https://github.com/raghakot/keras-resnet
https://github.com/EKami/planet-amazon-deforestation
https://github.com/EKami/planet-amazon-deforestation
https://gist.github.com/omoindrot/dedc857cdc0e680dfb1be99762990c9c
https://gist.github.com/omoindrot/dedc857cdc0e680dfb1be99762990c9c
https://gist.github.com/omoindrot/dedc857cdc0e680dfb1be99762990c9c

