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Abstract

In this project a UAV is used to autonomously fly between
waypoints in a Pygame simulation. The UAV is constrained
to move only above concrete pathways while mapping the
surrounding area. A semantic segmentation neural net is
fed images from a gimbaled downward-facing camera and
outputs a same size array of categories; either road or not-
road. The resultant binary image is post-processed using
the Hough Transform to probabilistically fit line segments
to the road, and the closest line is followed by a low-level
flight controller. The best net obtained an overall accuracy
of 96%, with 72% true-positives in classifying road pixels.

1. Introduction & Problem Statement

The problem of autonomous navigation to a given way
point using a fixed-wing UAV is explored. The purpose
of this problem is to avoid buildings and collect all flying
traffic in one area without reliance on prior maps. Addi-
tionally, throughout its flight, the UAV collects a map of
the environment for future use. Because of the problem,
the UAV is constrained to fly above existing roadways only.
It is assumed that no prior map information is known, so
roads are sensed on board the plane. Sensing is performed
through a downward facing, body-fixed camera whose im-
ages are processed using a convolutional neural net (CNN).
The CNN performs semantic segmentation to partition the
image into areas of ’road’ & ’not-road’. The output is post-
processed using the Hough Transform into line segments
which best contour the curvature of the road. Finally, a
low-level flight controller uses the closest line segment to
fly above the road (Fig. 1).

The biggest requirements on our net is real-time forward
passes, and high road accuracy. To meet this, a GPU is used
for training and forward-passes, and many different nets are
trained using DIGITS, a training system webapp, to deter-
mine the best architecture. By utilizing a neural net in this
problem, we hope to increase the accuracy and robustness
of road detection, while allowing safer flight to occur.

Figure 1: Simulation of the UAV. Pygame is used to run the
game.

2. Prior Work
Segmentation, or classification on a pixel basis, is as

old as computer vision. The desire to segment images into
a small number of categories has applications in medical
imagery, aerial photography, file compression, and more.
Hard-coded techniques include k-means clustering in the
pixel-space, edge detection, thresholding, and more[1].

A more in-depth solutions was explored in 2000, where
areas of road can be connected through ’snakes’ even when
occlusion is present[14]. The paper uses a geometric vari-
ational principle method using a curve-energy functional to
calculate the ’snakes’.

The classic machine learning technique of support-
vector-machines was also used in 2007 by Huang et. al. to
extract road centerlines from high-resolution imagery[15].
This approach relies on defining features and taking advan-
tage of roads natural structures (eg. narrow width, long
length)

Recently, deep neural nets were utilized for segmenta-
tion with great success. The basic idea is to take the clas-
sic classifier CNN architecture and scale the output to give
pixel by pixel information on what category each fall into.
In order to obtain a pixel-to-pixel mapping from input to
categories, the output of a classic CNN must be upsampled
in smart ways and to the correct size in order to retain the
information gained in the downsampling layers.
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In 2013, Volodymyr Mnih explored many different net-
works for aerial image segmentation into roads and not-
roads [4]. Mnih studied fully-connected, factored, local un-
tied, and convolutional layers of varying depth. He also
researched the effects of the hyperparameters. His results
indicate that a three layer depth gives you the most perfor-
mance for computation, but further layers are subject to di-
minishing returns. At his best, Mnih received 90% recall
accuracy.

More recently in 2015, J. Long et al. improved the start-
of-the-art in segmentation by introducing the ’fully convo-
lutional net’ (FCN) [3]. High-resolution segmentation is
obtained by upsampling the outputs of the CNN at different
depths of the architecture and adding together the result.
This method allows the global information from deeper in
the net to combine with local information found shallower
in the net. The paper boasts state-of-the-art performance,
with up to 90.3% pixel accuracy on a subset PASCAL VOC
2011[12]. The upsamples are calculated by de-convolving
the layer, sweeping a filter over the matrix but with an ef-
fective stride of 1/f , f being an integer. J. Long converted
classic nets such as AlexNet, VGG, and Googlenet into
FCN nets and demonstrated their ability to fully segment
images.

In the same year, V. Badrinarayanan and A. Kendall in-
troduced the ”SegNet” architecture[2]. This architecture
also utilizes an encoder-decoder structure, where the en-
coder is topologically identical to classic nets. The decoder
portion is similar to FCN’s, but instead of de-convolving
the layers, it uses an upsample+convolve layer. Because the
SegNet approach uses a larger decoder, it boasts improved
performance over FCN. SegNet obtains state-of-the-art per-
formance, with 90.4% global testing accuracy on average
on the CamVid 11 dataset[11].

3. Methods

We chose to use the SegNet architecture due to its good
documentation, tutorials, and public github[5] with exam-
ples for training your own segmentation neural net. Our
project started with the the SegNet-basic architecture and
from there we tweaked the design to explore the changes in
behavior it created (Fig. 2).

Figure 2: The SegNet architecture developed by Alex
Kendall

There are some unique features of the SegNet which al-
low the architecture to segment an image into pixel-by-pixel
classifications. First is the max-pool masking, which saves
the exact indice a max-pool value is extracted from to be
used in the upsample layers. The upsamples are performed
using a bed-of-nails approach with locations given by the
corresponding mask.

The next novelty in this architecture is combination of
the max-pool masking with a post-upsampling convolution.
This eliminates the need for a typical upconvolution layer
and is intuitive in its performance. Deeper layers use the
max-pool value and repeat the process. During upsam-
pling the deeper layers max value is placed at the mask-
ing location. The effect this has is that the masking ob-
tains the positions which are identified most as ”road”, and
the upsampling-convolution then populates the surrounding
pixels with values similar to the max value. The physical
intuition is that if a human can identify the middle of a road
with very high probability, then most likely the immediate
area surrounding it is also road, with decreasing probability
as you move away from the epicenter.

Additional benefits include minimal parameters com-
pared to other segmentation techniques, meaning that full
end-to-end training can be performed using nothing but
vanilla SGD (or any other standard optimizer).

SegNet also allows each class to be weighted individu-
ally. This lets the user decide how much the loss is penal-
ized for incorrectly classifying certain classes. In our case,
we care very deeply about locations of road because those
pixels are not only sparse, but important for our application.
When training, the roads are weighted at 0.8, while ’not-
road’ is weighted at 0.2. This way the net is far more mo-
tivated to correctly identify the true-positives, but doesn’t
label every pixel as ’road’ either.

In order to test different variations on SegNet, we
utilized NVIDIA’s DIGITS deep learning GPU training
system[6]. The webapp lets users easily keep track of
datasets, and nets, and provides visualization tools for the
different filters, activations, and heatmaps.

Our best SegNet — coined ”RoadNet” — was obtained
from experiments discussed in section 5. It utilizes 4 en-
coding layers (conv1-conv4), followed by 4 decoding lay-
ers (conv5-conv8). Each layer consists of an 8 filter convo-
lution which maintains image size, batch norm, the RELU
non-linearity, and finally a max-pooling which divides each
image dimension by 2. The architecture is summarized in
table 1. First information is encoded down to 8 kernels of
size 24x24, this information is then scaled up to the image
input size during the decoder phase.

4. Dataset
We trained our models using images from the Univer-

sity of Toronto Road and Building Detection Datasets [4],
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Layer Type Size
Input RGB 375x375x3
Norm LRN 375x375x3

Conv1+BN+RELU 8 Filters 375x375x8
Pool1 2x2 Max 188x188x8

Conv2+BN+RELU 8 Filters 188x188x8
Pool2 2x2 Max 94x94x8

Conv3+BN+RELU 8 Filters 94x94x8
Pool3 2x2 Max 47x47x8

Conv4+BN+RELU 8 Filters 47x47x8
Pool4 2x2 Max 24x24x8

Upsample4 Bed-of-Nails 47x47x8
Conv5+BN+RELU 8 Filters 47x47x8

Upsample3 Bed-of-Nails 94x94x8
Conv6+BN+RELU 8 Filters 94x94x8

Upsample2 Bed-of-Nails 188x188x8
Conv7+BN+RELU 8 Filters 188x188x8

Upsample1 Bed-of-Nails 375x375x8
Conv8+BN+RELU 8 Filters 375x375x8

ConvClassifier 1 Filter 375x375x2
Softmax

Table 1: RoadNet architecture. 23,338 total parameters
were learned.

which labels road pixels in aerial photographs taken from
a relatively high altitude. To lower memory requirements,
we split every image into 16 smaller 375x375 RGB images,
for a total of 4500 data points. Figure 3 shows an exam-
ple image-truth pair used in training. The left shows the
input image and the right the ground-truth with white (”1”)
as road and black as not-road (”0”).

Figure 3: Training example: Image — Ground Truth

5. Experiments and Results

Described below are the results from the various config-
urations of SegNet we have experimented on.

Optimizer - Adam The Adam optimizer was chosen over
vanilla stochastic gradient descent because of the advan-
tages it provides [7]. Adam uses the moving average of
its parameters, allowing the optimizer to have a larger ef-
fective step size. The downside is that Adam requires addi-
tional memory and computation to store and use the moving
average of each parameter.

Batch Size. A GTX 970 GPU was used to train the net-
work. This GPU has 4 GB of RAM which can be used to
store images in the mini-batch. When using SGD, the GPU
can hold 6 input images taking up 3.8 GB of RAM. Due to
Adam’s higher memory requirements, 4 images were used
in the mini-batch for the 2-layer nets, and 2 images mini-
batch size for the larger 4-layer nets.

Evaluation Metric. As the class distribution on the data
is highly uneven — road density is usually between 0.0 and
0.2, a pixel-wise global accuracy is a poor metric, as clas-
sifying every pixel as ”not-road” would lead to an excellent
score. Therefore, to evaluate the performance of our mod-
els, we use a per-class accuracy (Eq. 1).

accroad =

∑
i 1{yi = ŷi = 1}∑

i 1{yi = 1}
, (1)

In this equation, road pixels are labeled as ”1” and not-
road pixels as ”0”. This accuracy function is representative
of the ability of the network to classify sparse road pixels
in an image mostly covered in fields, forests and buildings.
Note that false-positives and false negatives penalize the ac-
curacy, yet true negatives do not increase it. Moreover, most
of the noise created by false-positives and negatives is re-
jected during post-processing.

5.1. Network parameters

As suggested in [9], we established our best network
configuration using grid search. We focused on the kernel
size and the number of filters per layer and established per-
formance using the metric described above for 16 different
configurations. For these analyses, we used our standard
4-layer architecture and a learning rate of 0.01. Figure 4
shows the outcome of this tuning analysis. By inspection,
we conclude that a kernel size of 7x7 with 8 filters per layer
lead to the best road accuracy. Consequently, this config-
uration is named ”RoadNet” and is used for all subsequent
analyses and demonstrations. Moreover, we can observe a
few trends in the performance of these configurations. First,
networks with lower filter sizes seem to benefit from a high
number of filters per layer, which is typical for CNN’s [8].
Second, conversely to most classifying CNN’s, we obtain
better performance with medium-sized filters. This could
be explained by the spread-out nature of roads, which have
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very low feature resolution and are characterized by bands
spanning across a large number of pixels. In this case, larger
filters potentially capture more of this larger scale character-
istic and lead to less local over-fitting.

Figure 4: Sweep on kernel sizes and number of filters.

5.2. Learning Rate

The learning rate was varied to examine the effect it has
on the learned parameters. Most nets were trained with
η = 0.01 for 5-10 epochs, and many of the smaller nets con-
verged onto their final within 2-4 epochs. With this learn-
ing rate the 2-layer nets only took 1 epoch to converge. In
nearly all nets trained with the higher learning rate, dead
filters were produced by convergence (Figure 5). Dead fil-
ters may be caused by a vanishing gradient or through too
high of a learning rate. Additionally, the number of dead fil-
ters increases as the net becomes deeper. This means more
and more filters don’t contribute to accuracy but still require
computations during the forward pass.

5.3. Filters and Activations

The filters have very obvious affects on the image. Fig-
ure 6 shows the activation map for each filter after the first
convolutional layer. The dead filters can be ignored as they
do not contribute. The middle filter has become a ”gray”
filter. The corresponding activation shows a very high ac-
tivation for the road since its a solid gray chunk. Arbitrary
gray pixels also get marginally activated throughout the im-
age. In contrast, the top right filter is a ”green” filter which
highlights foliage and grass. The activation for this filter
highlights all the greenery around the road. Such a neural
net does an adequate job of identifying roads, but at its core
the net just bisects the image into pixels of grayish color and
greenish color. The level of grayness of the area around a
pixel determines if its labeled road. Hence, the net does not
learn abstractly what a road is. A cause of such behavior
may be not enough training data, over-fitting on the current

data, or too high of a learning weight. The common cause
is learning rate, so a new batch of nets were trained which
reduced this parameter.

Figure 5: Filters for conv1 (left) and conv8 (right) with high
learning rate.

Figure 6: Activation maps for each filter after conv1.

The second set of nets were trained with η = 0.0005, a
reduction of 20x. These nets were trained for 30 epochs, but
mostly completed their training within 15 epochs. Figure 7
shows the weights of these nets. The difference is immedi-
ately apparent. No dead weights are present, but the filters
are more difficult to physically interpret. Now the net has
learned much better what a ’road’ is abstractly.

This net is more robust to changes in environment, in
fact it performs better in areas with less trees. The reason
is because now the net looks for ’alleyways’; areas where
a similar feature continues in a mostly straight line and is
blocked on either side by different features. In fact, false
positives will appear in tree-filled images when the boughs
of the trees line up in a way that creates a natural pathway
through the forest.

Interestingly, the conv8 layer, which operates after the
upsample masking from conv1, appears to have edge de-
tector filters. This layer is the final convolution before the

4



Figure 7: Filters for conv1 (left) and conv8 (right) with
lower learning rate.

softmax, so it plays a major role in calculating the proba-
bility of each pixel. The edge detectors may act as a ’road
boundary decider’, where the network determines where a
road ends and the terrain begins. The shape makes sense, as
most every terrain-road boundary is locally a straight line.

5.4. Heatmaps and features

After the final layer, a heatmap of probabilities can be
examined (Fig. 8). The areas of bright red indicate high
likelihood of ’road’, and the blue indicates ’not-road’. Both
edges and color plays a role in determining the probability,
as can be seen in the lower part of the image, where some
parts of the foliage have decent probability due to the edges
present, but lack the right colors. In contrast, the highway
has both edges and grayish colors, so the heatmap shows a
very high probability in that area.

Figure 8: Final heatmap of RoadNet and the corresponding
inference.

5.5. Training epochs

The true-positive road accuracy was examined as a func-
tion of the epoch count for RoadNet. What was found is
that road accuracy follows a parabolic trajectory, where the
best accuracy occurs at epoch 11. Because of the large num-
ber of parameters learned in RoadNet, and the relative sim-
plicity of a two-class road segmentation problem. This is
indicative of the net over-fitting after many training epochs.

Figure 9: Road accuracy over many epochs.

5.6. Loss and Convergence

The Segnets were trained using the cross-entropy loss
over the total image, where each pixel contributes equally
to the total loss (Eq. 2). Backpropagation is executed nor-
mally, the only difference is now you have one loss per
pixel, which each add onto the full backprop gradient. Due
to the importance of correctly classifying roads, that class
was weighted 4x the not-road category.

loss = −
∑

i wi log(exp(fyi
))∑

j exp(fj)
(2)

Figure 10 shows the loss and validation accuracy over
30 epochs for a net trained with lower training rate (η =
0.0005). Notice that within two epochs the training loss
has reduced significantly, and validation accuracy is already
at 95%. As previously mentioned, validation accuracy is
not a good metric for road detection performance, so the
reduction in training loss is more focused on, as this takes
into account the weighting of the different classes.

Figure 10: Loss and accuracy convergence over 30 epochs
with low learning rate.

Throughout training the validation accuracy slowly de-
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creases, indicating that the net is still improving its total
accuracy, if only marginally. The oscillations in training ac-
curacy is due to the small batch size and variance in training
data.

5.7. Results

We now compare the performance of our best net to a
rudimentary version of SegNet. Global and road accuracies
are shown in table 2. We clearly observe the increase in
both global and local accuracy when compared to the litera-
ture. Moreover, these results justify the extra complexity of
adding two extra layers to the SegNet-2layer architecture.
In comparison, Mnih obtains a high of 90% global recall on
the same data set. It is fair to say we obtain similar perfor-
mance on binary road/no-road segmentation.

Network Global accuracy Road accuracy
SegNet-2layer 0.90 0.40

RoadNet 0.96 0.72

Table 2: Comparative results.

6. Simulation

To simulate using hardware-in-the-loop, a real-time sim-
ulation was implemented in the Python Pygame/OpenGL
environment. The ground images are scraped from Google
using their Maps static API and a GPS longitude-latitude
pair (x,y). Figure 11 shows the flow of information dur-
ing the simulation. A local image — representing what a
ground-facing gimbled camera would capture — is passed
on to RoadNet for segmentation. We then use the Hough
transform, a line segment regression algorithm described
in [10], to extract the individual lines longer than a certain
threshold from the inferred road pixels. Among the Hough
lines with highest score, we use the one closest to the air-
craft as an input to the line follower. This block determines
the command heading ψc by weight-averaging the direction
to the line and the direction to the objective (end of the line).
To fly closely above the road, the former is weighed with a
factor of 3.0. The command heading is fed into nested-loop
controller, which uses a gain on the heading error (ψc − ψ)
to set the the command bank angle φc, and another gain on
the bank error (φc−φ) to set the aileron deflection δa. This
aileron command is fed into the aircraft — a simplified 6-
DOF rigid body with actual UAV dynamics — and produces
the required rolling moment to turn and reach the command
heading, i.e. follow the road. An example of a real-time
simulation over CA-120 in Yosemite National Park can be
accessed on our YouTube page [13], here.

Figure 11: Hardware-in-the-loop simulation.

7. Conclusion

In the scope of this project, we trained convolutional
neural networks with Alex Kendall’s SegNet Encoding-
Decoding architectures to detect roads on aerial images
in real-time. Following a hyperparameter grid sweep, we
reached a peak road accuracy of 72% with RoadNet, a CNN
with 4 encoding-decoding, 8 filter deep layer pairs. Quan-
titative and qualitative analyses were performed, yielding
strong conclusions regarding the effects of learning rate on
filter convergence and general network performance. More-
over, we tested different network complexities and depths
to understand trends in overfitting. Finally, we integrated
RoadNet in a real-time simulation loop, allowing a realistic
UAV model to accurately navigate over roads.

8. Future Work

The next thing to do is implement RoadNet on the real
hardware we have (Fig. 12). For this setup, the sensing
is performed through a gimbaled downward facing, body-
fixed GoPro whose images are fed to an Arduino hooked up
to an onboard GPU for real-time inference.

Another big step would be implementing a higher-level
path-planner so that line segments can be converted into
nodes & edges for an algorithm such as A* to operate on
in order to determine which path to take when passing over
crossroads. Low-level controls would be handled by a pix-
hawk controller embedded on the plane.

Figure 12: UAV for real-life testing.
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