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Abstract

Researchers like [26] have already trained Convolu-
tional Neural Networks to predict crop yields by county in
the US using satellite images. We aim to improve upon
and better understand [26]’s methodology and results. In
line with their work, we use nine spectral and tempera-
ture bands from relatively low resolution satellite images as
our features for predicting county-level corn and soybean
yields. To ease training, we reduce the dimensionality of
our data by assuming that the position of pixels doesn’t im-
pact the average yield (the permutation invariance assump-
tion), which allows us to use pixel intensity histograms as
features.

By making [26]’s model deeper, we achieve better pre-
diction accuracy, showing that there is still signal to extract
from the data. To better understand whether our models can
distinguish between crops, we compute saliency maps for
each image/crop pair and compare maps for various crops.
We find that our model distinguishes between crops, and
that, in line with previous yield prediction research, the in-
frared and temperature bands of images taken during peak
growing season contribute the most to discrimination abil-
ity.

1. Introduction
Being able to predict crop yields accurately allows gov-

ernments to plan the production, distribution, and consump-
tion of food more effectively, combat food insecurity, and
prepare for shortages and supply shocks well in advance.
Historically, prediction of localized crop yields has been im-
possible on a large scale due to a dearth of sufficiently gran-
ular yet globally available predictive data. As a result, enti-
ties interested in predicting crop yield have relied on expen-
sive and noisy agricultural censuses. However, the advent
of remote sensing data collected regularly by satellites or-
biting the globe and powerful image-processing techniques
like Convolutional Neural Networks (CNNs) promises in-
creased prediction coverage and even accuracy.

Remote sensing-based crop yield prediction at the US

county level using CNNs has already been demonstrated by
papers like “Deep Gaussian Process for Crop Yield Predic-
tion Based on Remote Sensing Data” by You et. al. [26].
In the paper, You et. al. [26] propose several novel tech-
niques to make prediction possible [26]. First, they reduce
the dimensionality of their relatively small imagery dataset
by using histograms of pixel values as features rather than
raw pixel values. Second, the output of their CNN is fed into
a deep gaussian process to account for spatial correlation of
yield between counties [26]. With these techniques, the au-
thors are able to drastically outperform existing prediction
techniques based on remote sensing data. By adding layers
to [26]’s vanilla CNN model, we were able to increase accu-
racy further even without including their Gaussian Process
layer. Thus, we were able to show that there was still signal
to be extracted from the satellite imagery dataset used by
[26].

In addition to being a powerful prediction technology,
CNNs have the potential to provide insight about the un-
derlying mechanisms that drive real-world phenomena such
as growth of different crops. By analyzing yield predic-
tion models trained on historical yields of several different
crops and their interactions with input data, we were able to
show that such models are able to distinguish between pix-
els important for predicting specific types of crop. We cor-
roborated both natural intuition and existing research about
which factors are most important for predicting the yields
of differing crops. In conducting the experiments described
in this paper, we were able to demonstrate that analyzing
trained CNN models could be used to understand the world,
not just predict the future.

2. Related Work

2.1. Remote-Sensing-Based Crop Yield Prediction

While the paper by You et. al. [26] uses CNNs for
crop prediction and forms the basis for our work, it is far
from the first to attempt to predict crop yield via an easily-
measurable proxy. Some of the most popular proxies are
normalized-difference vegetation indices (NDVIs), which
are positively correlated with crop yield [16]. As far back
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as 1983, researchers such as J.L. Hatfield used vegetation
indices from infrared and red wavelengths to predict poten-
tial yield (as given by genetics) and actual crop yield (as
measured in a harvest) [20, 5].

In 2013, David Lobell published a paper in which he uti-
lized MODIS satellite images to measure and analyze crop
yield gaps (the difference between the potential yield and
the actual yield). A key technique used by Lobell involved
determining relationships between crop yields and vegeta-
tion indices computed from “remote sensing measurements
of light at red and near-infrared (NIR) wavelengths” [15],
indicating that some wavelengths of light (and thus bands)
may be more significant for producing accurate yield pre-
dictions than others.

The simplest approach given by Lobell uses only vege-
tation indices, but these are not the only factors correlated
with crop yield. A 2014 paper by David Johnson discov-
ered that in addition to vegetation indices, “MODIS day-
time land surface temperature was negatively correlated” to
crop growth mid-summer [9], suggesting that prediction ac-
curacy can be improved by incorporating other remotely-
sensed measurements.

2.2. Visualizing Predictions

Once one obtains a model that attains high crop yield
prediction accuracy, a commonly-created visualization is a
nationwide map of predicted county-level crop yields [2].
However, such images provide little insight into how the
model interacts with the raw satellite data to produce its pre-
dictions. As a result, we visualize data not on the country
scale, but rather on the county scale.

One visualization for understanding which pixels of a
raw image contribute most to a complex model’s output is
the saliency map, as introduced by Karen Simonyan et al.
[21]. Here, a forward pass is performed through the model,
and then the gradients of the output with respect to the input
data (rather than the weights) are computed and plotted as
an image. While saliency maps are relatively simple to gen-
erate, other such “importance” visualizations exist as well,
such as occlusion maps (which measure error relative to the
position of an occluded region of the image) [27]. How-
ever, saliency maps are relatively inexpensive to generate
compared to some of these other visualizations, which is
why we focus on them in our paper.

2.3. Other Applications of Remote-Sensing Data

Crop yield prediction is only one of many applications
that were improved by the combination of satellite imagery
with machine learning models. In more environmental ap-
plications, reseachers have been able to use remote-sensing
data to detect oil spills [11], locate and assess the severity of
forest fires [18], and survey penguin populations from space
[3] even without deep convolutional neural networks. Satel-

Figure 1. Shown above are raw visualizations of the input data cor-
responding to Desha County, AR. On the left is an RGB visualiza-
tion of spectral data using the first, third, and fourth bands. On the
right is a heatmap visualization of daytime temperature data.

lite imaging and machine learning have inspired numerous
social and economic applications as well, such as poverty
detection [8], GDP estimation at sub-national scales [24],
racial makeup of city populations [17], and urban sprawl
measurement [23]. Given the effectiveness of such meth-
ods, predictions based on remote-sensing data will only be-
come even more ubiquitous and profitable in the future.

3. Dataset and Features
3.1. Raw Data

The input to our training pipeline consisted of raw
satellite images; we used remote sensing data collected
by NASA’s MODIS instrument, which is made publically
available through Google Earch Engine [4]. MODIS im-
ages are collected 46 times per year at 500 meter resolution
(i.e. each pixel in a MODIS image represents a region of
500 meters by 500 meters). Of these 46 times per year, we
used a subset of 32 times that occur during the growing sea-
sons for corn and soybeans.

The images we used had seven spectral bands (ranging
from 459-2155 nm) [14] and two temperature bands (day-
time and nighttime) [13] collected by the MODIS instru-
ment. In addition, we used landcover masks to ignore re-
gions within a county not corresponding to cropland [12].
Our final dataset included images from counties located
in 11 different agriculturally-important states in the United
States.

While MODIS’s 500 meter resolution may initially seem
quite coarse, the average size of a corn farm in Iowa is 349
acres [19], which equates to approximately 1.5×106 square
meters. At 500 meter resolution, this means that each farm
will actually consist of approximately four pixels.

As we were predicting crop yields at the county level, we
used data from the National Agricultural Statistics Service
(NASS) for the ground truth county-level crop yield corre-
sponding to the various crops that we studied. In order to
enable reuse of raw satellite image data between crops, we
restricted ourselves to using yields of soybeans and corn,
since they are grown in similar regions of the US. We used
yield data and images from 2003 through 2012 as our train-
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ing set, and data from 2013 as our validation set.

3.2. Features

As explained by You et al. [26], there were only ap-
proximately 7,500 usable county/year pairs in the train-
ing dataset we assembled. As a result, training on the
raw images taken of each county over the course of each
year (roughly 100 pixels tall×100 pixels wide×9 bands×
32 images/year = 2, 880, 000 pixels per county/year pair)
would be somewhat infeasible, since the dimension of the
raw features would be much larger than the size of our train-
ing set.

To avoid this dimensionality problem, we employed You
et al.’s permutation invariance assumption, which states
that each pixel’s value determines its contribution to the
county’s yield, not its location. Intuitively, this assumption
means that a farm is the same farm no matter where it is in
relation to other farms, and thus produces the same yield re-
gardless of where it is. Of course, it is possible that a model
trained on raw images could pool information from neigh-
boring counties to make more accurate predictions, but by
invoking permutation invariance we assume there is little
predictive signal to be extracted by doing so.

Leveraging this assumption, we a constructed 32-bucket
histogram of pixel values for each band of every multispec-
tral input image, thus allowing us to represent each image
instead as a 32 × 9 histogram matrix. Since there were
32 images taken of each county every year, for a given
county/year pair, we stacked the histogram matrices con-
structed from the 32 images taken over the course of the
year to create a 32 × 32 × 9 tensor representing the pixel
values across all times and bands for that county and year.
We then used these histogram tensors as our inputs to our
models. In short, by assuming permutation invariance as
You et al. [26] did, we were able to reduce the dimension of
the inputs to our model from approximately 3 million fea-
tures to only 9216 features, rendering model training much
more feasible on a smaller dataset.

4. Methods
4.1. Crop Yield Prediction

For this project, we focused on predicting soybean and
corn yield in 2013 by training on satellite images and yield
data collected for counties in our 11 states of interest be-
tween 2003 and 2012.

4.2. Model Architectures

Figure 2 describes various architectures that we imple-
mented for this project. The reference architecture is the
one described in [26]. We also explored building deeper
networks to determine if we could achieve higher accu-
racies than the original reference network, thus indicating

that there was still signal to be extracted from the data.
In the table, each layer CONV(c, f, s) represents a con-
voutional layer with c filters of size f × f with stride s,
followed by a ReLU nonlinearity, a batch normalization
layer, and a dropout layer with keep probability p. We de-
note the number of consecutive layers of a given type (i.e.,
CONV(c, f, s) by the respective number in the table. For
example, in the reference architecture, the network has one
CONV(128, 3, 1) layer, followed by a CONV(128, 3, 2)
layer, etc. The final layer for all architectures that we ex-
perimented with was a fully connected layer of size 2048.
We used batch normalization [7] and dropout layers [22]
after each convolutional layer in order to reduce overfitting.
For training, we used the Adam optimizer [10] to minimize
the training loss. We used

L2 =
1

2

N∑
i=1

(predi − reali)2

as our training loss between our predicted yield and our real
yield labels. We used

RMSE =

√√√√ 1

N

N∑
i=1

(predi − reali)2

as our error metric on our validation set.

4.3. Crop Differentiation

In their paper, You et al. focused exclusively on crop
yield prediction for soybeans, mostly “since it [was already]
widely investigated in prior work” [26]. Given the relatively
low resolution of the input images however, we wanted to
determine whether models trained on these images were ac-
tually able to distinguish between farms that grow differ-
ent types of crops, or whether the models were only able
to identify which pixels were most likely to be farms pro-
ducing any sort of crop at all. If these models were in fact
able to meaningfully discriminate between crop types when
making yield predictions, then we could be more confident
that the model was not just taking advantage of circum-
stantial correlation between yields of common crops in the
same counties and instead using meaningful differences in
the characteristics of multispectral images that were most
predictive of different crops’ yields to make its predictions.
As a result, we focused the rest of our work on character-
izing the discriminability of corn and soybeans using the
models above.

We chose corn as our alternative crop because it is an
extremely common agricultural product in much of the US.
In particular, its ubiquity means it is grown in many of the
same counties as soybeans, allowing us to compare predic-
tions of each crop for the same counties. All of the ex-
periments described below were conducted by training two
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Reference [26] Deep1 Deep2 Deep3 Deep4
CONV(128, 3, 1) 1 1 1 2 2
CONV(128, 3, 2) 1 1 1 1 1
CONV(256, 3, 1) 1 1 2 2 2
CONV(256, 3, 2) 1 1 1 1 1
CONV(512, 3, 1) 2 3 3 3 3
CONV(512, 3, 2) 1 1 1 1 1

CONV(1024, 3, 1) 1 1 1 1 1
FC(2048) 1 1 1 1 1

Figure 2. The CNN model architectures that we implemented to predict yield

models based on the reference model architecture described
by You et al., a soybean model trained using the soybean
yield for each county as histogram tensor labels and a corn
model trained using the corn yield for each county as his-
togram tensor labels. We then compared attributes of the
models themselves as well as their predictions to try to de-
termine the degree to which the architecture proposed by
You et al. is able to discriminate between crops.

4.3.1 Output Rescaling

As a first test of the differentiation ability of the model pro-
posed by You et al., we attempted to predict corn yield in
2013 for each county by first standardizing the distribution
of soybean yield predictions made using the soybean model
to zero mean and unit variance using the mean and stan-
dard deviation of soybean yield in our validation set and
then rescaling the distribution to the mean and variance of
corn yield in our validation set, and vice versa. More for-
mally, if µ̂soy and σ̂soy are the estimated mean and vari-
ance of soybean yield in our validation set, µ̂corn and σ̂corn
are the mean and variance of corn yield in our validation
set, and ŷsoy and ŷcorn are the predicted yields for corn and
soybeans using their respective models, then the predictions
made using this rescaling technique can be expressed as fol-
lows:

ỹcorn =
ŷsoy − µ̂soy

σ̂soy
· σ̂corn + µ̂corn

ỹsoy =
ŷcorn − µ̂corn

σ̂corn
· σ̂soy + µ̂soy

In some sense, this technique can be thought of as an ex-
tremely crude form of transfer learning. Instead of the final
layer of the network being a fully-connected layer with bias
of 0 ∈ Rn and weight matrix In that acts as the identity
transformation, it is instead “retrained” manually to have

weight matrix
σ̂soy
σ̂corn

In and bias
( σ̂cornµ̂soy

σ̂soy
+ µ̂corn

)
·1 ∈

Rn.
Having rescaled the outputs of the original models to the

scale of the other crop, we then computed the RMSE of

these predictions on the validation sets for the new crops
and compared them to the RMSE of the original models.
If there was a meaningful drop in performance between the
original and rescaled models, then we could conlude that at
least to some degree, the original architecture could learn
to predict yield based on characteristics of the data unique
to the crop whose yield it was trained to predict. If there
was little decrease in performance, then there might be a
high degree of similarity between characteristics of the two
crops in the input data that confounded the architecture’s
ability to distinguish between them. However, similar pre-
diction accuracies could also result from a particularly high
degree of correlation between the yields of the two crops
between counties, rather than a meaningful lack of discrim-
inative ability, meaning other tests would be needed to con-
firm indistinguishability.

4.3.2 Saliency Maps

In addition to examining the transferrability of predictions
from one crop to another, we wanted to determine which
attributes of the data were the most predictive of soybean
or corn yield specifically. In particular, we wanted to ask
whether or not our models could identify which pixels from
each histogram tensor were the most informative for pre-
dicting the yield of one crop but not the other crop. If
the architecture learned meaningful differences in the im-
portance of various pixels to yield prediction accuracy be-
tween crops, then we could say with some confidence that
the architecture was able to distinguish between crops when
learning to make predictions. To determine whether or not
the model did in fact learn different representations for dif-
ferent crops, we computed saliency maps inspired by Zeiler
et al.[27] for each image and yield prediction model. We
then scaled the entries of the saliency maps for each model
appropriately to account for different yield magnitudes be-
tween crops and compared the maps using several differ-
ent distance metrics. Intuitively, if the differences between
saliency maps were large, then it would be clear that the
pixels that needed to change the least to positively or nega-
tively impact loss ereifferent from crop to crop. If they were
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small, then the pixels that needed to change the least to pos-
itively or negatively impact loss would not be meaningfully
different from crop to crop.

More formally, ifLc is theL2 loss function for crop c and
Iiy ∈ R32×32×9 is the set of pixel histograms for county i
in year y, the saliency map for featureset Iiy and crop c is
defined as

Sciy =
∂Lc

∂Iiy

We then normalize each entry of Sciy by its maximum mag-
nitude entry as follows:

S̃ciy =
Sciy

max
jk`
| Sciy, jk` |

To compare the impacts of different pixels on the losses
corresponding to two crops c1 and c2, we used three dif-
ferent distance metrics. First, we computed the RMSE of
saliency map entries for crops c1 and c2 across counties
i = 1, . . . , N in year y:

Ds(c1, c2, y) =

√
1

N

∑
i,j,k,`

(
S̃c1iy, jk` − S̃c2iy, jk`

)2
Next, we computed the L1 norm of the difference between
the saliency maps for crops c1 and c2 across counties i =
1, . . . , N in year y:

D1(c1, c2, y) =
1

N

∑
i,j,k,`

| |Sc1iy, jk` − S̃c2iy, jk`

∣∣∣
Finally, we computed the average percent difference be-
tween the saliency maps for crops c1 and c2 across counties
i = 1, . . . , N in year y:

Dp(c1, c2, y) =
1

N

∑
i,j,k,`

∣∣∣S̃c1iy, jk` − S̃c2iy, jk`

∣∣∣∣∣∣S̃c1iy, jk`

∣∣∣
5. Results
5.1. Accuracy Improvements

You et. al. trained their data on various architectures in-
cluding a CNN, a CNN with Gaussian Processes, an LSTM,
and an LSTM with Gaussian Processes [26]. They found
that the best results came from the CNN and the CNN with
Gaussian Processes. For our project we used You et. al.’s
base CNN architecture as our reference architecture and ex-
perimented with improving accuracy using deeper models.

In figure 3, we summarize the training and validation
loss over the 25, 000 iterations for the reference architec-
ture with different dropout keep probabilities. Note that we
plotted the moving average of these losses as opposed to
the actual data points in order to capture the general trend

of the loss and eliminate some noise. We found that increas-
ing our dropout keep probability to 0.5 caused overfitting.
This is reflected by the divergence of the training and val-
idation loss; training loss continues to decrease while vali-
dation loss flattens. On the other hand, we observed that the
simple model (p = 0.1) didn’t overfit since the training and
validation loss are quite similar, plus or minus some noise.

Figure 3. CNN model training and validation loss for different
dropout parameter values

In figure 4, we summarize the validation accuracies for
the year 2013 of the models we trained. For each of our
experiments, we list the minimum achieved RMSE on the
validation error during the 25, 000 training iterations. We
also provide a unitless measurement of loss called “% Mean
Yield,” which measures what percent the RMSE for a given
model and crop is of the true mean yield for that crop in
2013.

The Deep3 architecture performed the best of all mod-
els that we experimented with based on the 2013 validation
set. Further, several of the deeper architectures performed
better than the baseline from the original paper on the same
training and validation sets. This suggested that there was
still signal to be extracted from the data by making the ar-
chitectures more complex.

5.2. The Linear Model and Histogram Sums

As one of our experiments, we trained a linear model that
predicted yield for a given histogram tensor Iiy for crop c,
county i, and year y as ŷciy = WcIiy + bc. The reason we
tested such a simple model was to see whether or not pre-
dictions were summable, i.e.

∑
i,y ŷciy =Wc

∑
i,y Iiy+bc.

Intuitively, if this relationship were true, then we could seg-
ment each raw satellite image into many small “patches,”
generate a histogram tensor of the same dimensions for
each patch, and then predict yield for each patch separately,
providing predictions at much finer geographies that would
still be accurate when summed back up to the county level.
However, the superior performance of deep models indi-
cates that yield is likely a highly nonlinear function of his-
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Architecture Crop Min RMSE % Mean Yield
Baseline [26] Soybean 5.50 12.10%
Ref. p = 0.25 Soybean 5.82 12.80%
Ref. p = 0.5 Soybean 5.37 11.81%
Ref. p = 0.1 Soybean 5.79 12.74%

Deep 1 Soybean 5.74 12.63%
Deep 2 Soybean 5.57 12.25%
Deep 3 Soybean 5.24 11.53%
Deep 4 Soybean 5.28 11.61%
Linear Soybean 7.37 16.21%

Ref. p = 0.25 Corn 18.49 11.73%
Ref. p = 0.50 Corn 18.67 11.84%

Figure 4. 2013 validation set min RMSE and percent error of mean
yield for various architectures. The dropout keep probability (p) is
0.25 unless otherwise specified.

togram counts, meaning it would be difficult to achieve high
prediction accuracy on finer geographies without retraining
a model specifically for those geographies.

5.3. Output Rescaling

After making predictions using the rescaled outputs, we
found that the accuracy of the rescaled predictions was
roughly comparable to the predictive performance of the
original models. As shown in 5, the RMSE computed from
predictions made by rescaling soybean yield predictions on
2013 data to corn yield scale was only 2.825% percent of
average corn yield larger than the RMSE of the original
model. More surprisingly, the predictions made by rescal-
ing corn yield predictions to soybean yield scale marginally
outperformed the original model’s predictions; the RMSE
for the rescaled predictions was 0.638% of average soy
yield smaller than the RMSE for the predictions produced
by the original model. The similarity of predicted yield dis-
tributions to the true yield distributions can be seen in 6;
the real distributions of corn and soybean yield in the val-
idation set (shown in green and blue, respectively), differ
only slightly from the predicted distributions for those crops
using the rescaling technique (shown in red and yellow),
demonstrating the effectiveness of the rescaling technique.

Model RMSE % Mean Yield
Original Corn 19.90 12.62%
Rescaled Corn 24.35 15.44%

Original Soybean 5.94 13.07%
Rescaled Soybean 5.65 12.43%

Figure 5. The results of our output rescaling experiment. % Mean
Yield is computed by dividing RMSE by the mean yield of the
relevant crop in the validation set.

While we were tempted to conclude that the results of

Figure 6. The real distributions of crop yields compared with the
predicted yield distributions computed by rescaling predictions for
one crop to predictions for the other crop. The rescaled predictions
are quite similar to the true yield distributions.

this test point to a lack of discriminatory ability on the
part of the reference architecture, we thought there were
other explanations for why performance seemed unreason-
ably high. In particular, the correlation between corn and
soybean yields (as measured by Pearson’s correlation co-
efficient) is ρ = 0.818, meaning the two quantities are ex-
tremely collinear. It would make sense then that since coun-
ties that produce lots of corn also tend to produce lots of
soybeans, simply changing the magnitude of a yield predic-
tion for a different crop to match the scale of the crop yield
actually being predicted would provide a prediction quite
similar to the desired quantity.

Of course, this explanation doesn’t completely explain
why corn predictions rescaled to soybean yield scale out-
performed the original soybean model. While we can’t be
sure that this explanation is sufficient, we hypothesize that
rescaling the outputs acted as an extremely crude form of
post-training regularization. Using the corn model to pre-
dict soybean yield introduced some random noise into pre-
dictions since corn and soy predictions are not perfectly cor-
related. Thus, if the soybean model overfit the training data
at all, using this rescaling process instead would likely re-
sult in a more generalizable model. However, it is also pos-
sible that the validation set we selected (namely 2013 yield
data) happened to yield corn predictions particularly similar
to the set of true soybean yields.

5.4. Saliency Maps

5.4.1 Individual Maps

First, we computed the distances between saliency maps us-
ing the distance metrics defined above. The results are dis-
played in 7.
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Distance Metric Distance
Ds 0.141%
D1 0.092
Dp 1151.93%

Figure 7. The distances between saliency maps computed using
different distance metrics

While the Ds and D1 distances appeared small, it turned
out to be an illusion due to the fact that the entries of the
normalized saliency maps were bounded between −1 and
1. In fact, the average percent distanceDp was over 1100%,
indicating that there were actually very large differences be-
tween saliency maps on average. Thus, our results demon-
strate that the model architecture was able to distinguish be-
tween pixels important for corn yield prediction and pixels
important for soybean yield prediction.

Once a scaled saliency map S̃ciy had been computed for
a given crop, county, and year, we found it useful to visu-
ally and qualitatively analyze it in the context of the original
raw image Riy ∈ RH×W×(32×9), rather than the histogram
tensor Iiy . Letting Iiytb ∈ R32 be the slice of histogram Iiy
corresponding to time t and band b and Riytb ∈ RH×W be
the slice of histogram Riy corresponding to time t and band
b, we constructed the saliency map visualization Vciytb of
the yield of crop c for county i in year y at time t and band
b like so:

Vciytb =

[(
S̃ciy, tb

)
b(m,n)

]H,W

m,n=1,1

where b(m,n), the bucket corresponding to the pixel
(Vciytb)m,n is given by:

b(m,n) =
⌊(

(Riytb)m,n − 1
)
· 32/4999

⌋
To aid with interpretation, we created visualizations that

corresponded to the maps that minimized and maximized
the distance Ds between S̃1iy, tb and S̃2iy, tb) computed
over i, y, t, b. Large negative gradients (which decrease loss
and improve accuracy) are shown in white, while large pos-
itive gradients (which increase loss and hurt accuracy) are
shown in black.

We found that while counties with the smallest saliency
map differences had nearly identical visualizations for both
crops (as expected), the counties with the largest saliency
map differences displayed visible inversion, in which white
pixels in the soybean saliency map visualization were black
in the corn visualization, and vice-versa. This pattern indi-
cated to us that the model was able to distinguish between
soybeans and corn.

Figure 8. This figure visualizes the saliency maps with the small-
est and largest differences. The images on the left depict Furnas
County, NE, in 2013, at time slice 0 and band 3, while the images
on the left depict Muskingum County, OH, in 2013, at time slice
20 and band 2.

5.4.2 Physical Factors Determining Distinguishability

Having discovered that the reference architecture was in
fact capable of distinguishing between pixels important for
corn yield vs. soybean yield with widely varying confidence
(as demonstrated by the two example saliency maps pro-
vided above), we wanted to understand what physical phe-
nomena might contribute to such differences in the distin-
guishability of the two crops. To do so, we hypothesized
that distinguishability would vary across times of year and
bands. To test whether or not there were differences in the
informative power of time and bands in distinguishing be-
tween crops, we computed the average distance between
saliency maps for each band and time of the year separately.
Note that we omittedDp distances from our plots below be-
cause they were not any more informative than the Ds and
D1 distances, and being orders of magnitude larger than the
other distance metrics made them difficult to include on the
same plots.

As can be seen in 9, images taken between May and Oc-
tober exhibited the largest differences in saliency maps be-
tween corn and soybeans, thus indicating that, somewhat
intuitively, images taken from the middle to the end of the
growing seasons for corn and soybeans were the most in-
formative for distinguishing between different crops when
predicting yield. This trend was qualitatively corroborated
by the minimally and maximally different saliency maps in
8; the minimally different saliency maps were computed
for an image taken around March, and the maximally dif-
ferent saliency maps were computed for an image taken
around July. These results were also consistent with You
et al.’s experiments [26], which show that including im-
ages taken later in the growing season in the set of features
improves predictive accuracy in general; if images taken
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Figure 9. The Ds and D1 distances between every county’s
saliency map computed for each time of the year separately

later in the growing season improve predictive power, they
should likely also help in discriminating between crops.

Figure 10. The Ds and D1 distances between every county’s
saliency map computed for each band separately

We also investigated the relative impact of different
bands on the architecture’s ability to discriminate between
crops by determining which bands had the largest differ-
ences in saliency maps across counties according to our dis-
tance metrics. As demonstrated in 10, bands 2, 8, and 9–the
infrared band and the two temperature bands–had the largest
differences in saliency maps across distance metrics. These
results are in line with the findings of [15] and [9] which
state that infrared and temperature are the most informative
types of data for yield prediction models.

6. Future Work
In the future, the most important work we could do

would be to test the efficacy of the permutation invariance
assumption. In principle, one could build a convolutional

model that was trained on the raw images themselves but
had a similar number of parameters to the models we trained
on histogram tensors. If we were to train a model on raw
images and achieve higher accuracy than the models exam-
ined in this paper, we would be able to demonstrate that
there was important signal to be extracted from the location
of pixels within each image. Unfortunately, the images in
our dataset were of varying sizes and aspect ratios, making
it more difficult to construct a model since any architecture
we used would have to be able to handle variable image
sizes. Several ideas we had to circumvent such difficulties
included making use of the Spatial Pyramidal Pooling layer
developed by [6] or standardizing image sizes by padding
them to be the size of the largest image and then passing
in the original width and height of each image as additional
features. Of course, if we were not able to achieve better
results by training on raw images, we would not be able
to rule out the importance of pixels’ locations in providing
accurate crop yield predictions. However, we would have
demonstrated that avoiding the permutation invariance as-
sumption does not provide a de facto advantage over models
that do leverage the assumption.

7. Conclusion
In this paper, we demonstrated that it is possible to

achieve better crop yield prediction accuracy using MODIS
satellite imagery by employing more complex models. This
finding indicates that there was still meaningful signal to be
extracted from the data we collected. As was made clear by
the experiments we conducted, the model architectures we
studied were able to distinguish between pixels important
for predicting corn yield and pixels important for predict-
ing soybean yield. In particular, the infrared and tempera-
ture bands of images taken between May and October were
the most informative features for differentiating between
corn and soybean yield. Further, these findings matched
what one might expect based on understanding the physical
phenomena that underly crop growth. In some sense, we
discovered that the architectures we studied were able to
learn something about how interactions between real-world
phenomena impact the growth of different crops. While
these experiments were not empirical enough to determine
whether the representations the network learns were actu-
ally based on physical processes as opposed to pure corre-
lation, they point to a future in which neural networks are
used not just for prediction, but also for building models
that help us better understand important physical and social
processes at the structural level.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

8



R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
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8. Supplementary Material
The code that we wrote ourselves and

repurposed from [25] can be found at
https://github.com/brad-ross-35/
crop-yield-prediction-project
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