
Neighborhood Watch:
Using CNNs to Predict Income Brackets from Google Street View Images

Ambika Acharya
aacharya@stanford.edu

Helen Fang
hfang9@stanford.edu

Shubha Raghvendra
sraghven@stanford.edu

Abstract

The US government spends millions of dollars every year
collecting income-level data, a time-intensive and expensive
process. Due to recent advancements in computing technol-
ogy and increased availability of open-source images, our
group proposes a deep learning framework for predicting
the income level of a neighborhood given a Google Street
View image. Using transfer learning on pre-trained VGG16
and ResNet18 models, we experiment with retraining dif-
ferent layers and hyperparameter tuning to determine the
model that will yield the highest accuracy. We then perform
a post-processing procedure to encode geographic informa-
tion to our classifications. Our best model attained a vali-
dation accuracy of 72.0% prior to post-processing, which is
on par with results in related papers[7, 16, 10]; it consisted
of a transfer learned ResNet18 model with layers 3 and 4,
as well as the final fully connected layer, retrained. Training
was conducted using an Adam optimizer and softmax cross
entropy loss. Generating saliency maps, confusion matri-
ces, and other visualizations provide valuable insights into
improving the model and understanding its behavior.

1. Introduction
The US government spends millions of dollars each

year attempting to collect income-level data throughout the
country. This process is not only expensive, but also time-
consuming and often inaccurate. Moreover, as Blumen-
stock et. al write, the accurate and timely collection of eco-
nomic data is critical to crafting relevant research and policy
[4].

We are interested in predicting the income levels of dif-
ferent communities within a city based on images gathered
by Google Street View cars [3]. While this is a regres-
sion task, we will simplify the problem to predict whether
a neighborhood lies in a specific income bracket, as com-
puted by thresholds derived from income distributions. We
also narrowed our problems space by concentrating our ef-
forts on a single city, Oakland, CA, which we chose on the
basis the high variance in residents incomes.

The input to our algorithm is a Google Street View image
of a location in a neighborhood collected in Oakland. We
then use a transfer-learned convolutional neural net (CNN)
to predict an income bucket for the neighborhood in ques-
tion, and lastly perform post processing to improve results
using geographic clustering. The importance of this work
comes in not only the data collection applications men-
tioned above, but also in the potentially interesting socioe-
conomic conclusions we can draw in asking the question:
“What observable features predispose a locale to low or
high poverty levels?”

2. Related Work
In formulating our approach, we looked at papers that

used deep learning architectures to predict a wide range of
properties of urban locales based on collections of images.
For instance, Dubey et. al trained a Siamese-like convolu-
tional neural architecture on a new crowd-sourced dataset
containing image pairs and their comparison across six at-
tributes to predict human assessments of a set of images.
Their best performing net has an accuracy of 73.5% [7]. Ol-
ligschlaeger used a pre-trained artificial neural network to
process data from geographic information systems to fore-
cast the emergence of drug hot-spot areas. The model’s
best result is a mean absolute error of 110.98%, which can
be improved with incorporating more optimized neural net
features as well as genetic algorithms, which we looked to
incorporate. In the same vein, Blumenstock et. al modeled
income levels using phone records in Rwanda [4]. Though
these papers either had different training data, different pre-
diction objectives, or both, we found their methods instruc-
tive in crafting our own approach.

Research in the realm of parsing satellite imagery to dis-
cern socioeconomic trends was relevant to our work as well.
Weng and Hu also used an artificial neural network and in-
corporated linear spectral analysis to map impervious sur-
faces from satellite imagery for a RSME of 12.3%[15]. Jean
et. al extracted large-scale socioeconomic indicators from
high-resolution satellite imagery by combining CNN and
transfer learning and applying this combination on daytime
images. This produces an accuracy of 71.6%[16, 10].

1

However, the most immediately useful literature we con-
sulted was that authored by those who had also worked with
a Street View dataset. Rundle et. al explored the viability of
using Google Street View images for auditing neighborhood
environments and found high levels of concordance for over
half of the items [14]. Gebru et. al use deep learning-based
computer vision techniques to estimate demographics from
vehicles found in Street View images as a proxy for predict-
ing political affiliation[8] 1.

We also consulted papers which discussed supervised
learning techniques to learn more about pre- and post-
processing methods, visualizations, and error analysis tech-
niques that could be used to understand and improve the
accuracy of our deep learning approach. Ordonez and
Berg[13] applied classification and regression models on
image features using computer vision techniques to predict
wealth, uniqueness, and safety, prediction joint features and
found that their results correlates with crime statistics. Naik
et. al. use supervised learning on Google Street View im-
ages and found that Geometric Texton, Color Histograms,
and GIST are the best performing features for the prediction
of the perceived safety of a street[12]. Indeed, as discussed
below, we found that our saliency maps were activated in
regions of dense greenery; in our further research, we’d like
to attempt a more explicit use of any of the aforementioned
features. Zhou et. al use SVMs to recognize the identity of
a city based on attribute analysis of geo-tagged images[18].
They generated visualizations to determine salient attributes
in city identification, which will help us in determining the
most salient features in our neural net.

Additionally, a paper by Zeiler et. al argues that using
visualizations of imagery throughout the training process
can aid in improving model performance.[17] We used the
ideas for visualizations mentioned here, including confu-
sion matrices, to better interpret our models. Another paper
discusses the use of image segmentation to improve perfor-
mance of CNN’s for object oriented tasks.[11] While our
task isn’t strictly object oriented, being able to put bound-
ing boxes around particular objects in an image could highly
correlate with wealth. While we don’t address this work in
our paper, we assessed the added benefits of incorporating
segmentation and found that most images have similar ob-
jects, such as car and greenery, which would not be distinc-
tive across classes. Lastly we draw inspiration for method-
ology in predicting sentiment from pictures using CNN[5],
as income level can be described parallel to sentiment as a
descriptor across different neighborhoods.

1Timnit Gebru advised much of our progress on this project

Figure 1: A sample Street View image at latitude
37.714439, longitude −122.214456 and rotation 0.000000.

3. Data

3.1. Collecting Google Streetview Data

The Google Street View data was provided by Timnit
Gebru [9] and the Vision group at Stanford. The dataset
is a list of url links to images displayed from 6 different
angles (0, 60, 120, 180, 240, 300 degrees rotation) for a
given latitude-longitude point. We wrote a script to auto-
mate the downloading of 40,000 random images of Oak-
land Street View. These raw images will be the input of
our CNN, an example of which is in Figure 3. We elected
to begin with Oakland because its income datasets showed
significant variance relative to other cities in California, our
primary state of interest. Using images of Oakland, we ran-
domly split them into 70% training examples, 20% valida-
tion examples, and 10% testing examples. Each image is
224x224x3, where the depth dimension has RGB values.

3.2. Collecting Census Data

In order to label our dataset, we needed to obtain in-
come data corresponding to each lat/long pair specifying
an image. To do so, we utilized datasets compiled from the
most recent census, obtained from the United States Census
Bureau [2]. Specifically, we used data which contain 2015
mean and median household income. Utilizing this data in
relation to the Google Street View data required mapping
census tract numbers to lat/long coordinates, which we did
by automating queries to the FCC’s Census Block Conver-
sions API [2]. This produced a set of lat/longs correspond-
ing to the images in the dataset, mapped to average median
household income for the year 2015. For the purposes of
our baseline approach, we elected to tackle a multi-class
classification problem prior to attempting a more difficult
regression problem. To do so, we bucketed income levels
into three classes, using the following boundary conditions:
≤ 75, 000, 75 − 150, 000, ≥ 150, 000. We selected these

2

Figure 2: Histogram of 2015 Census income level data
for the regions of Oakland, California which make up the
40,000 images in our preliminary training set.

Figure 3: A geographic representation of the Street View
imagery, organized by the income buckets we use for clas-
sification.

boundaries on the basis of the data distribution of the in-
come level data, shown in the histogram given in Figure 2.

4. Methods

4.1. Baseline Approach: VGG16

For a convolutional baseline, we used a VGG16 model
with weights pre-trained on ImageNet images.[6] The
model has 16 layers, including convolutional, maxpool and
fully connected layers. It uses softmax cross-entropy loss
with an Adam optimizer to train the last fully connected
layer for 10 epochs. The softmax loss defined for one ex-
ample i with j classes, where f is a vector for class scores,

Figure 4: A diagram of the topmost layers of the ResNet18
model. We had 3 separate models fine-tuning FC, the last
conv block +FC and the last two conv blocks +FC.

and yi is the true label is:

Li = fyi
+ log

∑
j

efj

We froze weights at all convolutional layers, and mapped
the last fully connected layer of the network to three classes,
for the three income brackets. Additionally, we made mod-
els fine-tuning up until the last convolutional layer and up
until the last two convolutional layers to compare perfor-
mance.

4.2. ResNet

Next, we ran ResNet18 models trained on ImageNet im-
ages. ResNet18 has only one fully connected layer at the
very end, and uses the concept of stacking small convolu-
tional layers (3x3) as residual blocks to train. We trained
the model using the pre-trained default of learning rate 1e-
3, Adam optimizer and softmax cross entropy loss for 10
epochs. We made different models, fine-tuning the last fully
connected layer to map to 3 classes, then a model adding
on the last convolutional block, and finally a model adding
on the last two convolutional blocks, as seen in Figure 4.
When doing this, we first retrain the layers we wish to fine-
tune on our imagery for 10 epochs, then retrain the entire
model for another 10 epochs. The residual architecture of
the ResNet18 model and its overall performance statistics
on other large datasets suggested that it would be a better
model choice for this task.

3

4.3. Hyperparameter Tuning

To improve our best performing model, we tuned the hy-
perparameters of the model, particularly learning rate and
the choice of optimizer. Since the ResNet model was al-
ready pre-trained for ImageNet, we decided to only slightly
vary learning rate, from 1e-2 to 1e-4, since it was likely to
not have a significant affect on model performance. Ad-
ditionally, we experimented with using Adam, SGD, and
SGD+momentum=0.9 optimizers.

4.4. Post Processing

To incorporate geographic information into the classifi-
cation, we used post-process clustering on the results. Af-
ter running the model tuned on hyperparameters on the val-
idation set, every image in the set gets a predicted label.
We run a modified k-nearest neighbor clustering on the la-
bels: For a given point A we find its k-closest neighbors
using the haversine distance for geographic distance, where
φ1, φ2 are the latitude, longitude of point A in radians and
λ1, λ2 are the latitude, longitude of point B in radians:

haversine(A,B) = 2arcsin∗(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1)cos(φ2)sin2

(
λ2 − λ1

2

))
Then, we take a majority vote on the predicted labels of the
k-closest points, and if there is a majority, we assign A the
majority label, and otherwise we keep A’s predicted label.
Because a point is likely to be in the same income bracket
as those around it, namely as those in its neighborhood, we
use this as a proxy for incorporating neighborhoods into the
classification. We run clustering with different values of k
to find which gives us the best improvements in accuracy.

4.5. Visualizations

We used saliency maps to visualize what pixels of an
image our model was using to classify it 2. Saliency maps
take the absolute value of the gradients of an image and map
this to act as an activation map of image features used for
classification.

5. Results
5.1. Baseline: VGG16

Using transfer learning on a VGG16 model with weights
trained on ImageNet images 3, we removed the last fully
connected layer and re-mapped it to our three income
classes. We experimented with removing and retraining the
last layer (FC8), last 2 layers (FC7, FC8), last 3 layers (FC6,

2We adapted the PyTorch starter code from Assignment 3 to create
saliency maps

3VGG16 Tensorflow starter code provided by CA Olivier

FC7, FC8), and last four layers (Conv5, FC6, FC7, FC8).
Each layer was retrained with a learning rate of 1e− 3 and
a SGD optimizer with a softmax cross entropy loss func-
tion. The best performing model, which removes the last
two fully connected layers, reached a validation accuracy
of 62.5% The results can be seen in Figure 5.

Figure 5: VGG-16 Architectures: Validation accuracy over
ten epochs.

While V16-FC-8-7 significantly outperforms a random
baseline accuracy of 33.33% (probability of guessing the
correct class), we were unable to obtain better results by
further changes in the architecture and hyperparameter tun-
ing. VGG16 pre-trained on ImageNet imagery is optimized
for image segmentation, and is therefore likely segment-
ing the images and using segments highly associated with
low income neighborhoods to differentiate from those with
higher income. We built on these segmentations for our fi-
nal model.

5.2. ResNet

Using transfer learning on a pretrained ResNet-18
model4 trained on ImageNet images, we were able to
achieve better accuracies through experimenting with dif-
ferent architectural changes.

With our initial parameters, a learning rate of 1e−3 with
an Adam optimizer with a softmax cross entropy loss func-
tion, the best performing architecture is RN18 - FC8-Conv4
with a validation accuracy of 71.6%. We chose these pa-
rameters to remain consistent with the parameters chosen in
the original ResNet-18 model.

On our top performing model, we plotted the geographic
locations of the correct and incorrect classifications in Fig-
ure13b and generated a confusion matrix seen in Figure
7. From these two figures, we can see that accuracy on
medium income level street views is the lowest at 59.7%,

4ResNet18 Pytorch starter code provided by Justin Johnson:
https://gist.github.com/jcjohnson/6e41e8512c17eae5da50aebef3378a4c

4

Figure 6: ResNet18 Architectures: Validation accuracy
over ten epochs, twice. The first ten epochs (0.1 - 1.0) train
just the re-initialized layers at a slightly more aggressive
learning rate (for this figure, lr = 1e−3. The next ten epochs
(1.1 - 2.0) tune the parameters of the whole model at a more
conservative learning rate (1e−5). Please note that any other
figures with a scale from 0.1 - 1.0

Figure 7: Confusion matrix of our best performing model,
RN18-FC-Conv3-4 with learning rate 1e-4, Adam opti-
mizer on the validation set.

with 25% being confused for low income and the remain-
ing 15.2% confused for high income. This could be due
to the boundaries for our income brackets. We categorized
low, medium, and high income based on the overall distri-
bution of the incomes in Figure 2, but the medium income
boundaries of $75 - $150k probably overlap significantly
with both lower and higher incomes. If we redrew the in-
come boundaries to more accurately reflect socioeconomic
divisions, our accuracy will likely improve.

5.3. Hyperparameter Tuning

For hyperparameter tuning, we focused on adjusting the
learning rates and the optimizer to determine the highest

performing model in terms of accuracy. We found that us-
ing a learning rate of 1e − 4 and an Adam optimizer on
ResNet18 removing conv block 3, conv block 4, and fully
connected layer 8 increased the accuracy to 72.0%, in Fig-
ures 8 9. Lowering the learning rate results in ”less” learn-
ing over each epoch, but much lower likelihood of over-
shooting the optimal result. Additionally the adaptive learn-
ing rate method Adam is generally the default algorithm
used and outperforms methods like SGD and momentum
which both manipulate the learning rate globally.

Figure 8: The effect of learning rate on validation accuracy
of our best performing model, RN18-FC-Conv3-4.

Figure 9: The effect of optimizer choice on validation accu-
racy of our best performing model, RN18-FC-Conv3-4.

5.4. Post Processing

After performing k-nearest neighbors on the CNN out-
put, we were able to achieve a final accuracy of 85.78%
with a k value of 50 in Figure 10. Full results across all
models can be found in Table 1.

Generally, the income distribution is relatively uniform
in a given neighborhood. As a result, KNN is able to im-
prove our results because through a majority vote proce-
dure, we are able to correct misclassifications on outliers in
a neighborhood. However, this method will also misclassify

5

previous correct labels if that majority of the neighborhood
was misclassified by the CNN. Visually, sparser regions of
misclassification are corrected while dense regions become
more misclassified 13c. The latter case is less common, re-
sulting in an overall increase in accuracy.

Figure 10: The effect of choice of k for KNN post-
clustering on validation accuracy of our best performing
model, RN18-FC-Conv3-4.

Figure 11: Confusion matrix of our best performing model,
RN18-FC-Conv3-4 with learning rate 1e-4, Adam opti-
mizer on the validation set with KNN post clustering with
k=40.

5.5. Visualizations

One visualization technique that was instrumental to our
data analysis was the creation of saliency maps seen in Fig-
ure 13. Saliency maps color pixels in an image proportional
to the absolute value of the gradient produced by applying
the final layer to an image.

From the low income images presented above the
saliency maps, it is evident that many of the locales classi-
fied as low-income are industrial areas in Figure 13a. Based

on highlighted regions, it is evident that concrete is strongly
activated in low-income areas, a trend which we noted in
several other images whose ground truth label was low-
income. Moreover, we found it interesting that in these and
many other images, the vehicles pictured show very low lev-
els of activation. This result potentially suggests that the
presence of a vehicle alone is not sufficient to lend mean-
ingful information to the classification of an image; consid-
ering that the afore mentioned paper by Gebru et al, which
described a classifier specialized for the task of car model
recognition, was trained on a much more vast data set. Also
notice that in one of the low-income images presented, a
patch of graffiti is present; it is significant that this patch is
brightly activated in the pictured saliency map. This obser-
vation reinforces intuitions we have about the prevalence of
graffiti in low-income areas.

The activation of concrete in the low-income saliency
maps could be conceptually explained by the fact that of-
ten urban areas are dominated by concrete and structures
with facades in colors similar to concrete.

From the high-income saliency maps, it is evident that
areas of greenery are activated, suggesting that the presence
of foliage is strongly correlated to the presence of high-
income neighborhoods from Figure 13c. This finding vali-
dated our hunch, based on our own anecdotal experiences,
that in cities, greener areas tend to have higher average in-
comes, and more urban areas have lower average incomes.
To us this was a particularly intriguing finding, given that if
urban areas lack greenery they also likely lack parks and
other public recreation facilities, potentially re-inscribing
the income gap in terms of long-term healthcare outcomes.

The medium-income saliency maps were the least con-
clusive of the set seen in Figure 13b. We believe this may
be a result of the fact that the boundaries drawn for the high,
medium, and low buckets were drawn somewhat arbitrarily
by looking at the histogram of income data. Perhaps split-
ting into more categories or drawing different boundaries
would improve our results; this is worth investigating in our
further research. For the purposes of our three-class clas-
sification, medium-income saliency maps showed generally
high levels of activation; pixels representing both greenery
and concrete were activated.

5.6. Results and Error Analysis

We ran our best performing model, RN-18-FC-Conv3-
4 with a learning rate of 1e-4 and an Adam optimizer on
a held-out test set accounting for 10% of the data, 4,000
images. We then ran post-clustering on these results and
report all results in Table 2.

Our validation and test accuracies are very close in num-
ber, suggesting that the model did not over-fit to the train nor
validation sets and performs well on unseen data. To better
understand some of the test examples we didn’t learn cor-

6

(a) True income distribution of images. (b) RN18-FC-Conv3-4 results. (c) Post-clustering results.

Figure 12: From left to right we show (a) the geographic distribution of the image data, (b) classification results across all
classes, and results after post-process clustering based on geographic location.

Accuracy Baseline(V16-FC8) RN18-FC RN18-FC-Conv3-4 Post-Clustering
Train 0.6225 0.7396 0.7237 -
Validation 0.555 0.7069 0.7201 0.8577

Table 1: Table of train and validation accuracy results across all models. All models used a learning rate of 1e-4 and Adam
optimizer for 10 epochs on both fine-tuning and the full model. The post-clustering model was run on the results of the
RN18-FC-Conv3-4 model and only has a validation accuracy since it was computed post-training.

Accuracy RN18-FC-
Conv3-4

Post-
Clustering

Validation 0.7201 0.8577
Test 0.7045 0.8271

Table 2: Table of validation and test accuracy results across
the best performing model, RN-18-FC-Conv3-4 with a
learning rate of 1e-4 and an Adam optimizer before and af-
ter post-clustering.

rectly, we did error analysis across our three classes. Since
’med’ is in between the two classes, the imagery often looks
as a overlap of the features detected in the other two classes.
Because of this, the majority of our misclassifications came
for the med income level. The most interesting misclassifi-
cations were between high and low income.

In Figure 14, this image from our test set was classified
as high income, when it actually comes from a lower in-
come neighborhood. Because this image contains a lot of
greenery, much more than most training images from the
low income bracket, we believe the model used this fea-
ture as a large predictor during classification. Additionally,
the latitude and longitude of this picture put it in a neigh-
borhood which is in between income brackets, meaning re-
clustering using geographic location did not change its la-
bel.

In Figure 15, this image from our test set was classi-

fied as low income, when it actually comes from a high in-
come neighborhood. Because there is mainly concrete and
a small shop with a partially metallic structure, the model
used these features to determine it was low-income. Specif-
ically, the low income class was mainly driven by learning
building surfaces and concrete, which was highly activated
by this image.

Overall, the main improvement in our model will come
when better accounting for the medium income level. While
adding post clustering based on geographic location im-
proved med class performance, further improvement could
be seen with more medium-specific feature extraction.

6. Conclusion and Future Work

Starting with a VGG16 baseline, we saw a great im-
provement in performance moving to a ResNet18 architec-
ture. The use of residual blocks and many layers of small
convolutional layers are better tuned to the dataset because
our dataset was of landscapes, rather than objects mean-
ing it wasn’t very similar to ImageNet. Therefore tuning
more convolutional block layers was useful to best learn
the features of the imagery. RN18-FC-Conv3-4 with a low
learning rate of 1e-4 and an Adam optimizer performed the
best. Lastly, we saw great improvements (close to 0.15 in-
crease in accuracy) when adding post-clustering based on
geographic location. We believe geographic location is es-
sential to this classification problem because areas in one

7

(a) Saliency maps for low income.
(b) Saliency maps for med income.

(c) Saliency maps for high income.

Figure 13: From left to right we show saliency maps highlighting which parts of the images RN18-Fc-Conv3-4 used to
classify each image for the given class.

Figure 14: An image at latitude 37.814938, longitude
−122.259700 from our test set which was classified as low
despite being from a high income neighborhood.

neighborhood are very likely to be in the same income
bracket 12, 1. Another significant finding from this work
is the types of features the models learned from images re-
lating to each class, as demonstrated in the saliency maps.
In particular, we found that vehicle identification was not
important(most saliency maps did not activate where there
were automobiles), but rather greenery and building sur-
faces were the most representative of a class. The high in-
come bracket showed a high correlation with greenery, the
low income bracket with open concrete spaces and metallic
structures, and the med income bracket a combination of the
two. Geographically, most of our mistakes were in medium
regions, as expected, with high and low income neighbor-
hoods looking very different.

Figure 15: An image at latitude 37.848662, longitude
−122.252871 from our test set which was classified as high
despite being from a low income neighborhood.

Moving forward, we would focus on using image seg-
mentation to isolate parts of images we believe are highly
correlated with income, such as building type and infras-
tructure. Additionally, we would like to add other cities in
California and explore how well our model performs when
trained on the data of one city, and tested on others, or
if training on data of multiple cities will affect the perfor-
mance on the Oakland imagery. Overall, the task of classi-
fying income based solely on imagery is quite challenging,
and the use of supplementary data such as geographic loca-
tion and building identification can be extremely useful in
aiding this important task. [1]

8

References
[1] https://github.com/ragggster/neighborhood-watch.
[2] Census block conversions api, Oct 2015.
[3] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon,

R. Lyon, A. Ogale, L. Vincent, and J. Weaver. Google
street view: Capturing the world at street level. Computer,
43(6):32–38, 2010.

[4] J. Blumenstock, G. Cadamuro, and R. On. Predicting
poverty and wealth from mobile phone metadata. Science,
350(6264):1073–1076, 2015.

[5] V. Campos, B. Jou, and X. Giro-i Nieto. From pixels to sen-
timent: Fine-tuning cnns for visual sentiment prediction. Im-
age and Vision Computing, 2017.

[6] F. Chollet. keras. https://github.com/fchollet/
keras, 2015.

[7] A. Dubey, N. Naik, D. Parikh, R. Raskar, and C. A. Hidalgo.
Deep learning the city : Quantifying urban perception at A
global scale. CoRR, abs/1608.01769, 2016.

[8] T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, E. L. Aiden,
and L. Fei-Fei. Using deep learning and google street view to
estimate the demographic makeup of the us. arXiv preprint
arXiv:1702.06683, 2017.

[9] T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, and L. Fei-
Fei. Fine-grained car detection for visual census estimation.
In Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[10] N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and
S. Ermon. Combining satellite imagery and machine learn-
ing to predict poverty. Science, 353(6301):790–794, 2016.

[11] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3431–3440, 2015.

[12] N. Naik, J. Philipoom, R. Raskar, and C. Hidalgo.
Streetscore – predicting the perceived safety of one million
streetscapes. In Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition Workshops,
CVPRW ’14, 2014.

[13] V. Ordonez and T. L. Berg. Learning high-level judgments
of urban perception. In European Conference on Computer
Vision, pages 494–510. Springer, 2014.

[14] A. G. Rundle, M. D. Bader, C. A. Richards, K. M. Neck-
erman, and J. O. Teitler. Using google street view to audit
neighborhood environments. American Journal of Preven-
tive Medicine, 40(1):94 – 100, 2011.

[15] Q. Weng and X. Hu. Medium spatial resolution satellite im-
agery for estimating and mapping urban impervious surfaces
using lsma and ann. IEEE Transactions on Geoscience and
Remote Sensing, 46(8):2397–2406, 2008.

[16] M. Xie, N. Jean, M. Burke, D. Lobell, and S. Ermon.
Transfer learning from deep features for remote sensing and
poverty mapping. CoRR, abs/1510.00098, 2015.

[17] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In European conference on com-
puter vision, pages 818–833. Springer, 2014.

[18] B. Zhou, L. Liu, A. Oliva, and A. Torralba. Recognizing City
Identity via Attribute Analysis of Geo-tagged Images, pages
519–534. Springer International Publishing, Cham, 2014.

9

https://github.com/fchollet/keras
https://github.com/fchollet/keras

