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Abstract

This paper details the application of fully convolutional
neural networks to the problem of land cover classification.
Specifically, high resolution satellite imagery was used to
train several models that performed image segmentation in
order to map the location of tidal salt marshes. Included are
detailed results of several experiments using a simple con-
volutional architecture, along with the results from a modi-
fied version of the more complex U-net architecture. While
the more complex U-net far outperformed more basic mod-
els on the validation set, both model types performed simi-
larly on an unseen test set.

1. Introduction
Tidal salt marshes are one of the most effective natural

habitats for sequestering carbon [7, 21], yet the best esti-
mate for global salt marsh area is 2.2-40 million hectares[3].
A more accurate estimate could facilitate political advocacy
to preserve and restore salt marshes, support movements
to incorporate them into carbon offset markets, and enable
tracking of salt marsh area change over time.

By using pixel-wise image segmentation, our models
can generate accurate maps of the locations of salt marshes
along with generating an estimate of the percentage of land
covered by salt marsh within an area.

For the sake of tractability, rather than pursuing a global
mapping of salt marshes, we trained models that could iden-
tify California salt marsh. The hope is that this project can
contribute to a global estimate somewhere down the line, or
inspire others to take the next step and apply these models
to a broader data set.

The input to our models is a multispectral Planet Labs
satellite image. We use a convolutional neural net to pro-
duce a pixel-wise classification map: [1 - Salt Marsh, 0 -
Other]. Thus, the output from our model is a binary image
of the same two dimensional size as the input.

2. Related Work
In the past, most land cover classification has been done

using random forest models[16], decision trees [17], hier-

Figure 1. Map of San Francisco Bay Salt Marshes. Marsh colored
in orange.

archical graphs [2] [14] and support vector machines [9].
People have also used one of several proprietary software
packages that offer image classification and segmentation
tools [13][14].

Recently, convolutional neural networks (CNNs) have
produced excellent land cover classification results [5],
demonstrating the efficacy of using convolution as a tool
to interpret satellite imagery. However, we were interested
in image segmentation rather than just image classification.

Recently, there has been a lot of recent activity in the
realm of semantic segmentation using neural nets[11][22].
One interesting approach relies on Conditional Adversar-
ial Nets to translate an input image into an output image of
any type, including a semantic segmentation [10]. Another
approach relies on fully convolutional neural networks (FC-
NNs) [20, 6, 12], in which a series of convolutional down-
sampling layers is followed by a series of upsampling layers
to achieve an output with the same two-dimensional shape
as the input. In the model proposed by Long et al. in 2014,
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the researchers performed upsampling to the original image
size at several layers among the standard convolutions. This
let their model learn to combine coarse, high layer informa-
tion with fine, low layer information, and identify differ-
ent features for classification of the same target at distinct
depths [20]. Since satellite imagery is captured from only
one depth, the multiple upsamplings is less important, but
the efficacy of an FCNN is applicable.

One successful model architecture for image segmenta-
tion using an FCNN is the U-net [19]. This architecture con-
sists of a contracting path of convolutional downsampling
layers, and an expansive path of upsampling layers. Along
the contracting path, outputs from each layer are passed to
the corresponding layer on the expansive path. Last month,
the U-net architecture was tweaked and applied to multi-
class satellite image segmentation [15].

3. Methods
3.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of
feed-forward artificial neural networks that are especially
designed to operate on visual inputs, i.e. images and video.
CNNs make explicit 3 properties that are useful for the vi-
sual domain.

1. 3D volumes of neurons. Neuronal layers are mod-
eled as tensors of shape (W, H, D), where W is layer
width, H is layer width, and D is layer depth. For the
input layer, WxH are the input image dimensions, and
D is the number of channels (e.g. D = 3 for standard
RGB images).

2. Local connectivity. Tunable weights come in the form
of filters, which are also modeled as tensors, of shape
(WW, HH, D), where WW is filter width and HH is
filter width. A sliding dot product is taken between a
filter and a region of layer activations, with the sliding
(i.e. convolution) ocurring across the spatial dimen-
sions. A number of different filters can be applied on
a given layer, forming the D dimension for the next
layer. Local connectivity enforced by this formulation
promotes the extraction of spatial structure.

3. Parameter sharing. The same filter is applied across
all regions of a layer, thereby dramatically reducing
the number of parameters used (compared to a differ-
ent weight for each neuron in the activation layer). Pa-
rameter sharing enforced by this formulation promotes
spatial invariance, i.e. making the model more robust
to slight positional changes in visual features.

There are several types of layers in CNNs, including
CONV (convolution; the linear operation described above),

POOL (pooling; reduces spatial dimensions), RELU (acti-
vation function; introduces nonlinearity), CONVT (convo-
lution transpose; transpose of linear operation described
above.), and BATCHNORM (batch normalization; normal-
izes layer activations). Micro-architectural decisions in-
volve setting the hyperparameters of these layers: filter di-
mensions, filter count, stride, dialation, pool size, activation
function, etc.

Convolution can be leveraged in architectures suited
for different tasks. Configurations of layers are ab-
stracted into modules, each with its own micro-architecture.
Macro-architectural decisions involve connecting modules
together: network depth and width, stacking, skip connec-
tions, auxiliary loss signal injection.

Currently, CNNs dominate on virtually all computer vi-
sion tasks compared to traditional approaches.

3.2. Image Segmentation

In an image classification problem, the task is to use a
CNN to transform an image tensor of shape (W, H, D)
into an score vector of shape (C) of normalized softmax
scores over C object classes.

In an image segmentation problem, the task is to use a
CNN to transform an image tensor of shape (W, H, D)
into a label tensor of shape (W, H) that attaches labels
to each pixel of the input. If there are more than 2 labels
(multi-class), an intermediate label tensor of shape (W, H,
C) is created, with normalized softmax scores over the C di-
mension used to produced a per-pixel argmax label. If there
are only 2 labels (binary), the intermediate label tensor is of
shape (W, H), with a sigmoid activation function applied
to translate the values to between 0 and 1, and a threshold
applied to discretize.

For this project, the segmentation problem is a binary
one: a value of 1 means a satellite image pixel corresponds
to a saltmarsh, a value of 0 means it does not. Therefore, the
loss function most appropriate for the task is binary cross
entropy.

Let ŷ be the predicted label tensor of shape (W, H),
and let y be the ground-truth label tensor of the same shape.
The binary cross entropy loss is:

L = −
∑
w

∑
h

(ywh) log (ŷwh) + (1− ywh) log (1− ŷwh)

3.3. Optimization

Optimizing neural networks is a highly non-convex
problem; as is standard practice, we optimize using a vari-
ant of Stochastic Gradient Descent (SGD).

We used the Adaptive Moment Estimation (Adam) vari-
ent, which is a method that computes adaptive learning rates
for each parameter. In addition to storing an exponentially
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decaying average of past squared gradients like Adadelta
and RMSprop, Adam also keeps an exponentially decaying
average of past gradients similar to momentum.

In addition to loss and accuracy, we also evaluated our
models using precision, recall, and the F1 score. Precision
is the proportion of predicted positives that are actual:

precision =
true positive

true positive + false positive

Recall is the proportion of actual positive that are pre-
dicted:

recall =
true positive

true positive + false negative

The F1 score is a weighted average of the precision and
recall, and is attractive because it gives a single number that
can be compared across models:

F1 = 2 · precision · recall
precision + recall

3.4. Experimental Environment

We built our models using Keras [8], an open-source
modular wrapper on top of Tensorflow [1]. Using Keras
allowed us to write high-level, modularized Python code to
define our model and run experiments. At the same time, it
afforded us the ability to take advantage of efficient, GPU-
optimized backend implementations of our model during
training and validation.

We use instances on Google Cloud, with 1 attached GPU
to perform our experiments. Each experiment is encapsu-
lated in a separate Jupyter Notebook, which allowed us rich
scripting, visualization, and documentation functionality.

4. Dataset and Features

Raw data for this problem comes from the Planet Labs
Open California dataset[18]. Planet labs has many satel-
lites capturing images of California on a daily basis. Since
each satellite type captures distinct imagery, we exclusively
used RapidEye data: 5x5m per pixel resolution with 5 in-
formation bands (Blue, Green, Red, Red Edge, and Near
Infrared). For reference, Red Edge and Near Infrared bands
are particularly useful for capturing information about veg-
etation and its characteristics[23].

In the Open California dataset, no composite images are
available, so mitigating noise due to cloud cover was a mat-
ter of image selection. Images chosen had no visible cloud
cover and less than 10% cloud cover according to the Planet
Lab filter. We expected all 5 information bands to change
based on the season, so images chosen were captured by the
satellite in the middle of March of 2017.

The data was delivered from Planet Labs as sets of Geo-
Tiffs with a 25*25 km area and 1 km of overlap with neigh-
boring images in every direction. GeoTiffs were stitched
into mosaics, large continuous images, using gdal. Labels
for this mosaic came from the California Department of
Fish and Wildlife Marine Resources GIS map of California
Coastal Wetlands[4].

Images and labels for 4 locations on the California Coast
(San Francisco Bay, Port Hueneme, Morro Bay, and Chula
Vista) were read into numpy arrays, fractured into smaller
tiles, and split into train, validation, and test sets. Tiles con-
taining any null data (appearing black in Figure 1 were dis-
carded. Since we were interested in a model’s ability to
generalize to regions of unmapped salt marsh, SF, Huen-
eme, and Chula Vista were split 80:20 into the train and
validation sets. Morro Bay in its entirety was held out for
testing.

Dataset Num Pixels % Salt Marsh
train 374,210,560 0.036
validation 93,569,024 0.035
test 1,572,864 0.063

Table 1. Train, val, and test data metrics.

5. Experimental Analysis

Unless otherwise specified, all experiments described in
this section were performed with the following model: a tile
of size 128x128 is fed into two successive convolutional
layers with ReLu activation. In between these two lay-
ers is a batch normalization layer and a max pooling layer.
Next, there are two up sampling (up conv) layers so that
the model’s output is of the same two-dimensional size as
the input. Finally we perform a single convolutional output
layer (a convolution with a single filter) in order to obtain
our final output. This “basic model” is drawn out in figure
2.

All precision and recall numbers in the following section
were computed using a cutoff of 0.5 (any predicted score
equal to or above 0.5 was considered a prediction of 1 and
any predicted score below 0.5 was considered a prediction
of 0).

5.1. Training Set Sub-sampling

Train Set % Salt Marsh (Train) Val F1
all tiles 0.04 0.320
50% salt marsh tiles 0.13 0.327
100% salt marsh tiles 0.16 0.372

Table 2. Training set sub-sampling experiments.

3



Figure 2. The “basic model” used in many of our experiments. See
appendix for more details.

The most immediate problem with this data set was the
extreme class imbalance. As can be seen Table 1, only 3.6%
of our pixels are labeled as Salt Marsh pixels. In order to
help our model learn to actually output predictions of Salt
Marsh, we decided to experiment with training on a sub-
sample of the available data. Table 2 details the results
of this experiment. Each model was trained using a dif-
ferent sub-sample of the total available training data. The
model trained using “50% salt marsh tiles” was trained us-
ing all available tiles containing at least one pixel of salt
marsh, and another equally sized set of tiles containing no
salt marsh. The model trained using “100% salt marsh tiles”
was trained using only the tiles that contained at least one
pixel of salt marsh. All models were evaluated on a single
validation set, containing all available validation data (i.e.
containing 3.5% salt marsh pixels).

This experiment shows that training on a sub-sample of
the available tiles increases the performance of the model,
even when the model is evaluated using the initial distri-
bution of salt marsh tiles. This is likely because using a

smaller subset of the training data helps eliminate the class
imbalance, while still preserving enough negative exam-
ples. Even among just the tiles containing salt marsh, only
16% of the total pixels were labeled as salt marsh.

5.2. Patch Size

Experimenting with patch size served two purposes: - in
combination with the tile sub-sampling method described
above, it addressed class imbalance by capturing the salt
marsh pixels with more or less of the surrounding area. - it
allowed us to adjust our dataset to the breadth of informa-
tion the model needed to make it’s predictions.

We experimented with four tile sizes, using the basic
model described above to evaluate each. Training data was
comprised of 100% salt marsh tiles (as described above).
Results from this experiment are shown in Table 3. Exper-
imental results marked by a * were not run with a train/val
split consistent with the rest of the experiments in this sec-
tion.

Patch Size % Salt Marsh (Train) Val F1
64x64 0.40 0.226
128x128 0.26 0.372
256x256 0.17 0.404*
512x512 0.02 0.286*

Table 3. Patch size experiments.

Although Table 3, indicates that we should tile size of
256x256, the inconsistency between the 128x128 and the
256x256 data set splits and the relatively small improve-
ment in F1 score led us to prioritize training time over F1
score. With 128x128 tiles, a single epoch training the Sim-
ple Conv-net took 37s, while an epoch took 63s for the
256x256 tiles.

5.3. Model Depth

Num Layers Val Precision Val Recall Val F1
3 0.275 0.343 0.305
5 0.368 0.375 0.372
7 0.302 0.409 0.347

Table 4. Model depth experiments.

We also experimented with the complexity of our model.
Table 4 contains the results of training models with different
numbers of convolutional layers. We found that our initial
architecture containing five convolutional layers performed
the best.

5.4. Data Set Diversity

All experiments described above were performed just us-
ing data from the Bay Area. In order to test how well these
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Train Dataset Test precision Test recall Test F1
Bay Area Only 0.0 0.0 0.0
Three Regions 0.321 0.598 0.418

Table 5. Data diversity experiment. The “Three Regions” data set
includes data from the Bay Area, Port Huenene, and Chula Vista.
The test set includes only data from Morro Bay

models could generalize, we created a test set using data
from a separate region of California (Morro Bay). Using a
model trained entirely on data from the Bay Area led to ex-
tremely poor performance on the Morro Bay test set. This
model failed to recognize, or even report, a single pixel of
Salt Marsh.

In order to remedy the model’s inability to generalize,
we decided to train a new model on a more diverse data set.
Using data from three separate regions of California (Bay
Area, Port Huenene, and Chula Vista), we trained a model
with the same architecture as before. This model performed
considerably better on the Morro Bay test set, achieving an
F1 score of nearly 0.42.

5.5. U-Net

Model Val Precision Val Recall Val F1
U-Net 0.742 0.667 0.703
Base-Net 0.368 0.375 0.372

Table 6. Validation results for “U-Net” model.

Model Test Precision Test Recall Test F1
U-Net 0.29 0.77 0.419
Base-Net 0.321 0.598 0.418

Table 7. Test results for “U-Net” model.

We also decided to experiment with a simplified version
of the U-net architecture (see Figure 3). This model far out-
performed our base model on both the “Three Region” and
“Bay Area” train and validation sets. Despite these impres-
sive results, the U-net based model did not outperform the
basic model in all metrics on the Morro Bay test set.

The test results indicate that the U-Net architecture
might be sufficiently complex such that it could overfit to
the three separate train/val locations and not generalize well
to the unseen train location. To continue with U-net, we an-
ticipate needing a larger, more diverse dataset.

Figure 3. The “U-Net” model used for our experiments. See
appendix for more details.

5.6. Coarse Ground Truth Labels

Figure 4. Top: ground truth labels. Bottom: basic model predicted
labels. From let to right: satellite image, labels (salt marsh in
black), composite (salt marsh in purple).

One unexpected challenge we encountered was discover-
ing that the ground truth labels labels[4] were not as truthful
as we had hoped. When examining results from the Sim-
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Figure 5. From left to right: ground truth labels, basic model predictions, and U-net predictions for Morro Bay.

ple Conv-net, it became clear that the ground truth labels
were not matching up with the satellite imagery on a pixel-
by-pixel scale. Probably, this is because the labels were
not generated by evaluating high resolution data, but rather
by some method of geo-referencing polygons that represent
mapped salt marshes. As shown in Figure 4, this means that
even for predictions that seem qualitatively solid, we take
small hits in precision and recall metrics.

5.7. Best Area Estimation: Morro Bay

Base Model U-net Ground Truth
Salt Marsh 4.09 km2 6.12 km2 2.49 km2

Table 8. Salt marsh area estimates on Morro Bay test set.

We tested our model’s ability to accurately estimate the
total area covered by tidal salt marshes on the Morro Bay
test set. We generated a naive estimate of the total area cov-
ered by salt marsh by taking the product of the number of
pixels classified as salt marsh, and the real-world area cov-
ered by each pixel (25m2). Sadly, neither of our best per-
forming models generated an accurate estimate for the area
covered by salt marshes in Morro Bay. However, this was
largely expected given the relatively poor F1 scores for both
models on this test set.

From both Table 8 and 9, it’s clear that we are over-
predicting salt marsh, and it appears the more complex the
model, the more likely we are to pick out salt marsh in a
satellite image.

Pred Marsh Pred non-Marsh
True Marsh 80408 19062
True non-Marsh 164513 1308881

Table 9. U-net confusion matrix of pixels in the Morro Bay test
set.

6. Conclusion and Future Work
Overall, we are pleased with these results. Using a mod-

ified version of the U-net architecture, we were able to
achieve an F1 score of just over 0.7 on our validation set.
This is a promising result, especially considering the prob-
lems of coarse labels and imbalanced classes inherent in this
data set.

However, in spite of with these promising results on our
validation set, more work must be done before these models
can be used to accurately estimate the total global coverage
of tidal salt marshes.

• We would also like to compare our model’s perfor-
mance to a human labeled data set. This would give
us a better idea of our current performance given the
noise present in the current data set.

• Find better ground truth labels: the coarseness of our
labels led to uncertainty in our training and evaluation.
Additionally, there are ongoing efforts to restore salt
marsh and coastal development can easily obliterate
salt marsh, so a closer match in time between ground
truth label creation and satellite imagery capture could
be impactful.
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• Augment current dataset: One issue that came to light
during our test set experiments was that many of our
models had trouble accurately predicting the class of
pixels on or near the edges of tiles. A potential ex-
periment in response would be to train and evaluate a
model using overlapping tiles in order to alleviate the
problems associated with lack of data near the edges of
images. Other future directions that we would like to
explore include training the models described in this
paper using a much larger data set, and augmenting
that data set using the horizontal and vertical flips of
each tile.

• Expand dataset: It is clear that more training data leads
to a more robust model. There are excellently mapped
salt marshes in the UK and in regions of South Amer-
ica. It would be interesting to see how drastic diversity
in the training set would affect test set predictions.

• Re-experiment with sub-sampling: Our experiments
with sub-sampling were performed before we had di-
versified our dataset. The main problem encoun-
tered in the test set predictions is over predicting salt
marsh. Although our original experiments indicated
we should exclude all non-salt-marsh-containing tiles,
it seems as if including more diverse, non-marsh ex-
amples would be one way alleviate this problem.
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