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Abstract

Obtaining quality data on population health statistics in
developing countries is currently an expensive and infre-
quent process. Policy makers must rely on this sparse data
in order to decide where to provide aid. In the same di-
rection as recent works, we make efforts to automate this
data collection through the use of remote sensing with deep
learning. We use Convolutional Neural Networks (CNNs)
to directly predict poverty and malnutrition from satellite
imagery. We find that directly predicting malnutrition is dif-
ficult, but our model can successfully classify impoverished
regions with relatively high accuracy.

1. Introduction
Organizations such as UNICEF, the Bill and Melinda

Gates foundation, and many more typically use surveys to
assess where to allocate resources for humanitarian efforts
in third world countries. The surveys are costly and poten-
tially dangerous to collect, resulting in large temporal gaps
between surveys and large spatial gaps between survey lo-
cations. This makes providing aid a very slow, sparse, and
expensive process. Achieving more fine-grained health out-
come predictions is invaluable to these foundations.

Remote sensing data has promising potential to pre-
dict health-related statistics [1, 2, 3]. This data contains a
plethora of valuable information, from vegetation and land
cover to city quality and development. Brown et al. demon-
strate through case studies that remote sensing data can help
predict environmental change that may directly affect local
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economies and food production [1]. Both climate change
and short term weather patterns have been shown to be pre-
dictive of health in Africa and Nepal [4, 5]. Recent work
describes how land surface phenology directly affects food
security in Niger and Kenya [6].

We hope to expedite and cheapen the efforts by using
satellite images and auxiliary data to predict different in-
dicators of poor health, such as poverty, malnutrition, and
malaria. This would allow these organizations to obtain
much more frequent and cost effective global predictions
of human health, including areas in which they are unable
to obtain survey data. We congregate data from numerous
Demographic Health Survey (DHS) surveys and combine
them with Google Maps satellite images. We then use this
labeled dataset to train a deep CNN to predict population
health statistics from satellite images alone.

2. Related Work

Deep learning has been successfully applied to satellite
data. CNNs have been used to classify land use via satellite
images [7]. They use classes such as agriculture, buildings,
forest, golf course, and parking lot, and find that using pre-
trained models performs the best. In a similar direction,
CNNs have been used to perform the binary classification
building vs. non-building on satellite imagery [8]. This
works finds that using a fully convolutional neural network
works better for satellite data: the model makes dense pre-
dictions by enforcing that the output is a result of a series
of convolutions only. Another recent work uses ortho mul-
tispectral satellite imagery to effectively perform per-pixel
classification of vegetation, ground, road, building, and wa-
ter [9].
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Satellite data has also been used to predict crop yield in
the United States and Africa [10, 11]. You et al. combine
CNNs and Gaussian processes to predict county-level soy-
bean production in the United States. A similar technique
is applied on an area in western Kenya to predict crop yield
on corn for small half-acre to one-acre lots [11]. While es-
timating crop yield might be a good indicator of health, we
do not explore this task in this work.

There have been previous efforts to forecast malaria out-
breaks using satellite imagery [12, 13, 14], but to our knowl-
edge no work has used any form of deep learning. These
works use statistical techniques to predict the distribution
of malaria vectors (species of mosquitos which commonly
carry malaria) from satellite imagery. We believe remote
sensing data has potential to predict malaria outbreaks as
well as other diseases. We do not experiment on this task in
this work, however, as we could not obtain the data in time.

Remote sensing data provides a cheap and efficient way
to measure socioeconomic indicators which are especially
relevant for monitoring third word countries. One of the
large issues with this task is lack of data, which has recently
been circumvented by using transfer learning and proxies
[15, 16]. Their idea is to use a pretrained model on Ima-
geNet for extracting low-level features (like edges, for ex-
ample) and then use nighttime light intensity data, a much
more rich data source, as a proxy for economic activity to
further train the model. Another approach is to use mobile
phone data to track poverty [17] [18]. Unfortunately it relies
on proprietary datasets from mobile phone networks which
may not always be available. Our model trains directly on
image, health label (poverty or malnutrition) pairs without
the use of any proxies.

3. Dataset
We use Demographic Health Survey data [19] which

contains more than 300 surveys in over 90 countries, where
each survey contains health information from thousands of
households. Figure 1 shows the distribution of households
within the city of Harare, Zimbabwe in the DHS dataset.
The households are grouped into clusters, and each cluster
is assigned a latitude-longitude pair of its approximate cen-
troid. However, in order to ensure confidentiality, the cen-
troid is displaced up to 2km in urban areas and 5km in rural
areas. This requires us to examine 10km by 10km regions
for each cluster.

For poverty prediction, the particular statistic we use is
the wealth index which is a “composite measure of a house-
hold’s cumulative living standard” [20]. This score is com-
puted from various features, for example the presence of
televisions, materials used to construct the house, access to
water, and sanitation. The wealth index is then divided into
five buckets: poorest, poorer, middle, richer and richest. Ex-
amples of regions around a poorest household and a richest

Figure 1. Households from DHS in Harare, Zimbabwe. The left
image shows the households colored with their wealth label: red,
orange, yellow, yellow-green and green correspond to poorest,
poorer, middle, richer and richest households. The right image
shows the households colored with their WAZ label: red, orange,
yellow, yellow-green and green correspond to less than -1.5, -1.5
to -1, -1 to -0.5, -0.5 to 0 and 0 to 0.5 standard deviations around
the mean.

household are shown in Figure 2.
For malnutrition prediction, the DHS dataset contains

three relevant measures: height-for-age (HAZ), weight-for-
height (WHZ), weight-for-age (WAZ) z-scores. HAZ re-
flects health and nutritional conditions of development dur-
ing and after birth. Low HAZ (stunting) is a strong indi-
cator for long-term nutritional deficiency and/or repeated
illness. WHZ is a short-term measure and is more sensi-
tive to recent severe events. Low WHZ (wasting) is sub-
stantial weight loss, often due to recent disease or lack of
food. WAZ is combination of HAZ and WHZ. Low WAZ
(underweight) measures both chronic and acute malnutri-
tion. These z-scores are computed from global population
statistics. We bucket these scores into six classes: less than
1.5 standard deviations below the mean, between 1.5 and
1, between 1 and 0.5, between 0.5 and 0, between 0 and
0.5 standard deviations above the mean, and more than 0.5
standard deviations above the mean.

We can see from Figure 1 the relationship between the
poverty and malnutrition labels. While poverty is fairly con-
sistent across the city, malnutrition is much more sporadic
making it more difficult to predict. We encounter this issue
when experimenting with different models as well.

For clusters that contain more than one household, we
take the median label (wealth index bucket for poverty pre-
diction, WAZ bucket for malnutrition prediction) over all
households in that cluster and use that as the label for the
cluster. Additionally, we only use DHS cluster data which
was obtained in 2010 or later as the satellite images we
have access to are much more recent. 1. This results in

1We plan to obtain temporally correct images in the future.
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Figure 2. Example of a rich area (left) and a poor area (right).

around 31 thousand unique clusters clusters from over 45
different countries in Africa, Central America, South Amer-
ica, and South Asia. We split these clusters into training
(80%), validation (10%), and test (10%). For poverty pre-
diction, the class distribution of the training set is 18.8%
poorest, 24.5%poorer, 21.6% middle, 18.3% richer, 16.5%
richest. For malnutrition prediction, the class distribution
of the training set is (in the same order as presented in the
previous paragraph) 11.4%, 21.4%, 30.0%, 21.5%, 9.8%,
5.8%.

We use Google Maps Static API to pull satellite data of a
10km box surrounding each cluster. Since we are limited in
the size of images we can pull and also the number of im-
ages we can pull due to throttling we test several different
zoom levels. Each zoom level defines the resolution of the
image. Zoom levels are between 0 (where the entire world
is visible on the map) and 21 (where streets and buildings
can be seen). We experiment with three different zoom lev-
els: 13, 14 and 15. Each of these zoom levels correspond
to about 20, 10 and 5 meters per pixel in resolution respec-
tively when using 512 × 512 pixel sizes. At zoom level 13
we capture the entire 10 × 10 km square in a single image,
while at zoom level 15 we use sixteen images each cover-
ing 2.5×2.5 km squares. To reduce the number of required
images when using 2.5 × 2.5 km squares, we do not pull
the tiles corresponding to the corners of the 10× 10 km re-
gion, which results in twelve images per cluster. An exam-
ple of this tiling is shown in Figure 3. We found that higher
zoom levels improved the performance of the model. Un-
fortunately transitioning to even higher zoom levels would
require more resources, or would force us to substantially
subsample the regions, potentially hurting the models per-
formance. We use zoom level 15 in all of the experiments
and use twelve 2.5× 2.5 km squares per cluster.

While the Google Maps API provides us with quick easy
access to satellite data it is not perfect. Some regions did not
contain data with the correct zoom level. For example the
highest zoom level for some regions was 13 instead of 15.
Cloud coverage and merged images was also a small issue.
Certain regions were composed of several satellite images

stitched together, sometimes at different zoom levels, which
can be difficult for the algorithm to work with. We estimate
these flaws represent less than 5% of the data. Some exam-
ples are shown in Appendix B.

Figure 3. Example of tiling a single cluster region into twelve
higher resolution images. The red circle indicates the region where
the households may lie.

4. Methods
The basic structure of the model is a single CNN that is

run over each tile (twelve tiles where each tile is a 2.5× 2.5
km square as discussed in Section 3). A representation from
each image is then combined to produce a final output. We
explore several different convolutional architectures. The
simplest consists of three blocks of convolution, max pool,
ReLU followed by two fully connected layers.

We also experimented with a residual network (ResNet)
[21]. We chose ResNet because of its good performance
on common image classification datasets like ImageNet.
ResNet models have high accuracy relative to their num-
ber of operations and number of parameters compared to
other models such as VGG and Inception [22]. This is es-
pecially beneficial for our use case since we do not have
a large amount of training data which makes it more diffi-
cult to train networks with a large number of parameters.
ResNets use shortcut connections to improve gradient flow.
More precisely it introduces the following function:

y = F(x) + x

where x is the input into the residual block and F consists
of a convolution, batch normalization, ReLU, convolution,
batch normalization. These types of connections allow the
network to grow very deep without incurring common op-
timization issues associated with deep networks. Figure 4
illustrates a ResNet type block which has shown empirical
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Figure 4. Example of a standard ResNet block. Figure taken from
[23].

success in other works. We use this block in our ResNet
models.

We test several 18-layer ResNets. We train one end-to-
end and three others pretrained on ImageNet, where we tune
the final three, two, and last blocks (as well as the final fully
connected layer) on our dataset. Because ImageNet consists
of 224×224 images and the images in our dataset are 512×
512 we randomly crop a subsection of the image to run the
pretrained ResNet on.

One of the issues with running the model over twelve
images is that each image should not contribute the same
amount to the final output. For example, if one image con-
tains a town and the other images contain brush, only the
image containing the town should contribute to the final out-
put since the other images do not contain any signs of peo-
ple. Although the network should ideally learn to handle
this, we explore several methods to better equip the model
to combat this, described below.

In order to combine the tiles of the cluster to make a
single prediction, we explore different combining schemes:
spatial vs. scores and max vs. mean. In the spatial scheme,
we run each tile through the same CNN to compute a spa-
tial representation per each tile. These representations are
then combined through either a max or mean operation. In
the scores scheme, we run the network on each tile, but ad-
ditionally flatten the spatial representations and run those
through a two-layer, fully-connected neural network to pro-
duce scores for each tile. These scores are then combined
through either a max or mean operation. Figure 5 illustrates
the general combining method for four tiles. For the scores
scheme we have

ct = CNN(xt), t = 1, . . . , 12

ot = Average([c1, . . . , c12]), ot = Max([c1, . . . , c12])

where xt is one of the images, ct is the output of CNN for
image t and ot is the combined representation which is then
fed through another fully connected layer before it is fed
into a softmax.

In addition to the max and mean operations, we explore
combining the output representations from the CNN with
a recurrent neural network. The hope is that the model
could learn to retain information from images with signifi-
cant features and forget ones without relevant information.
As above each CNN produces some output ct which is then
fed into a long short-term memory network (LSTM)[24] to
produce a final output,

ot = LSTM(ct, ht−1), t = 1, . . . , 12

logits = Linear(o12).

Figure 5. Each of the tiles are fed through the network (ResNet
shown here) to compute either a spatial representation or a score
vector. The white node represents the combination operation using
either a mean or max operation or an LSTM.

5. Experiments
We experiment with three main models as described in

Section 4 with many different hidden layer sizes, kernel
sizes, model depth, and more. The validation and test ac-
curacies of the best models on poverty prediction are shown
in Table 6.

We only compare spatial and score combining schemes
on the non-ResNet models as those models output a flat-
tened, nonspatial representation. We find that combin-
ing the spatial representations in these models performs
marginally better than combining the scores (by around 3%
on average). Additionally, we find that there is minimal dif-
ference between the max and mean combining operations,
with mean slightly outperforming max (by around 1.5% on
average). We also test the LSTM combine scheme on the
pretrained ResNet model.
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Poverty
Model Valid Test
3 Conv/Max Pool/ReLU, 2 FC 34.541 32.681
ResNet Fully Trained 34.253 32.906
ResNet Pretrained, Mean 44.131 43.489
ResNet Pretrained, LSTM 34.092 32.970

Figure 6. Experimental results on the validation and test sets. Hu-
man gets 32% accuracy on a sample of 100 images.

Malnutrition
Model Valid Test
ResNet Pretrained, Mean, 0.0 28.726 21.738
ResNet Pretrained, Mean, 0.1 33.927 22.854
ResNet Pretrained, Mean, 0.2 29.773 21.982
ResNet Pretrained, Mean, 0.3 33.089 21.633

Figure 7. Experimental results on the validation and test sets for
malnutrition prediction. Model column displays the model, com-
bine operation, and dropout probability.

We then apply the model which performs the best on
poverty prediction (ResNet Pretrained with mean combin-
ing operation) to the malnutrition prediction task. The vali-
dation and test accuracies of this model tuned on malnutri-
tion labels with different values of dropout probability are
shown in Figure 7.

In all experiments, we use Adam with a learning rate of
0.0003, dropout probability ranging from 0.1 to 0.4, and L1
weight decay ranging from 0.0001 to 0.1. We use batch
sizes of 6, 12, and 32 depending on the model size, and
train for 50 epochs (the model begins to overfit within this
period in each of the experiments). We select the model
which achieves the best validation accuracy to run on test.

6. Discussion
Our best model does well predicting poverty, achieving

around 44% accuracy on both validation and test. It is inter-
esting to note that the pretrained model performs the best,
which somewhat challenges our intuition: although using
pretrained models on smaller datasets tends to perform bet-
ter than fully trained models, we did not expect many of
the feature extractors learned from the ImageNet dataset to
be useful in this setting. Satellite images are much differ-
ent than images in the ImageNet dataset. However, we see
in Figure 9 that the model can detect infrastructure such as
buildings and roads and, to a lesser extent, it can discern the
outline of farm plots. This is evidence that the first layer
filters of a ResNet model pretrained on ImageNet can be
useful for satellite images as well.

Figure 8 illustrates that most of the models mistakes are
off by a single class. For example, the model often confuses
poorer and poorest and has a very difficult time discerning

Figure 8. The confusion matrix for the ResNet pretrained on the
validation set. The y-axis is the true label and the x-axis is the
predicted label.

poorer and middle. These are reasonable mistakes; our hu-
man tester also struggled on these exact cases. We suspect
that higher resolution data could help mitigate these errors
as more fine-grained features such as the quality of rooftops,
presence of cars, etc. could make the task easier. It is worth
noting that the best model obtains a top-2 accuracy 72.417%
on validation and 72.996% on test, revealing that the model
does very well in predicting the correct class in the top 2.

Our models for malnutrition prediction achieve decent
validation accuracy but fail to generalize well to the test set
in every experiment, as shown in Figure 7. We hypothesize
the poor performance on malnutrition is mainly attributed
to two reasons. First, the data for malnutrition is noisy. The
WAZ scores (and other malnutrition metrics) are dependent
on other factors, such as genetics, which may not be per-
fect indicators of poor health. Moreover, malnutrition is
known to be well-correlated with poverty [25], but we find
that the wealth and WAZ scores have a Pearson correlation
coefficient of 0.17. Second, we hypothesize that there are
very few direct features present in satellite data that are pre-
dictive of malnutrition, and if they do exist, they likely ap-
pear at a much higher zoom level. We hypothesize that this
means there is little signal in the data. We believe the model
is essentially overfitting the training set (and validation set
since models are selected by validation score) and thus the
model cannot learn features which generalize. Note that for
this reason, increasing dropout does not relieve this issue,
which is verified by our experiments illustrated in Figure 7.

Predicting poverty can be more easily performed with
satellite images than with surveys as shown in this work
as well as others [16]. This is because physical features
that are correlated with poverty such as infrastructure can
be clearly observed from satellite images. However, survey
data still provides more accurate statistics. We believe this
gap can be closed with future work. Moreover, poverty is
one of the most influential risk factors for ill health [26].
Therefore effective poverty prediction may serve as an in-
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valuable feature for predicting other health issues as well.

Figure 9. The input image (left) is randomly cropped to a 224x224
image to feed into the pretrained ResNet model. Visualization of
activations (right) of the first layer of a pretrained ResNet model
tuned on our datset.

7. Conclusion and Future Work
We show that satellite images can be used to predict

poverty without the use of proxies. More notably, we
demonstrate that models can perform well with a relatively
small amount of data by using pretrained architectures.
While not as accurate as survey data, we can quickly and
cheaply obtain a fine-grained map of poverty levels for cer-
tain areas.

We hope to test models which are more selective about
where to look in the satellite image, rather than randomly
sampling a location. This could be accomplished by send-
ing a downscaled version of the larger satellite image
through an LSTM which outputs a location which is then
used to feed an image at that location through a CNN, and
then finally feed that output back into the LSTM and repeat.
This could be trained with reinforcement learning. We also
want to obtain higher resolution and higher quality satellite
images which are temporally correct. The Appendix B il-
lustrates a few of the issues with the current dataset. We
believe the performance of these models can be greatly im-
proved with the above changes and additions.

Moreover, we hope to extend this work to predict other
health outcomes such as malaria, which are more correlated
with physical features like wetlands, bodies of water, qual-
ity of rooftops, and highly dense populations. We are in the
process of obtaining malaria data for many countries. We
believe satellite images have promising potential to predict
these health-related outcomes and hope to greatly further
the progress in this direction.
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Appendix

A. Cross Entropy Loss and Accuracy Curves

Figure 10. Training and validation cross entropy loss curves as
well as the validation accuracy of the best pretrained ResNet
model on poverty prediction.

We plot the cross entropy training and validation loss
curves as well as validation accuracy of the best pretrained
ResNet model on poverty prediction in Figure 10. There is
a fair amount of variance in the loss. We believe this is due
to label noise in the dataset, some of which may be due to
problems described in Appendix B.

B. Problems with Satellite Data

Figure 11. Two bad images collected from the Google API. The
one on the left contains multiple zoom levels while the one on the
right contains different crops with clouds

While scraping satellite data from the Google API re-
lieves a lot of difficulties associated with satellite imagery
it does not eliminate all of them. Figure 11 shows some
of the bad images found in the dataset. Combining satel-
lite data from different providers and keeping the images
looking nice and consistent can be difficult. Fortunately,
we estimate that these bad images represent a only a small
portion of the dataset.
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infant mortality in africa,” 2012.

[5] P. Mulmi, S. A. Block, G. E. Shively, and W. A. Masters,
“Climatic conditions and child height: Sex-specific vulnera-
bility and the protective effects of sanitation and food mar-
kets in nepal,” Economics & Human Biology, vol. 23, pp. 63–
75, 2016.

[6] M. E. Brown, K. M. de Beurs, and K. Grace, “Global land
surface phenology and implications for food security,” in
Land Resources Monitoring, Modeling, and Mapping with
Remote Sensing, pp. 353–363, CRC Press, 2015.

[7] M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva,
“Land use classification in remote sensing images by convo-
lutional neural networks,” arXiv preprint arXiv:1508.00092,
2015.

[8] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Con-
volutional neural networks for large-scale remote-sensing
image classification,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 55, no. 2, pp. 645–657, 2017.

[9] M. Längkvist, A. Kiselev, M. Alirezaie, and A. Loutfi, “Clas-
sification and segmentation of satellite orthoimagery us-
ing convolutional neural networks,” Remote Sensing, vol. 8,
no. 4, p. 329, 2016.

[10] J. You, X. Li, M. Low, D. Lobell, and S. Ermon, “Deep guas-
sian process for crop yield prediction based on remote sens-
ing data,” AAAI Conference on Artificial Intelligence, 2017.

[11] M. Burke and D. Lobell, “Satellite-based assessment of yield
variation and its determinants in smallholder african sys-
tems,” Proceedings of the National Academy of Sciences of
the United States of America, 2016.

[12] D. J. Rogers, S. E. Randolph, R. W. Snow, and S. I. Hay,
“Satellite imagery in the study and forecast of malaria,” Na-
ture, vol. 415, no. 6872, p. 710, 2002.

[13] K. Pope, P. Masuoka, E. Rejmankova, J. Grieco, S. Johnson,
and D. Roberts, “Mosquito habitats, land use, and malaria
risk in belize from satellite imagery,” Ecological Applica-
tions, vol. 15, no. 4, pp. 1223–1232, 2005.

[14] M. C. Thomson, S. J. Connor, U. D’Alessandro, B. Rowling-
son, P. Diggle, M. Cresswell, and B. Greenwood, “Predicting
malaria infection in gambian children from satellite data and

bed net use surveys: the importance of spatial correlation in
the interpretation of results.,” The American journal of trop-
ical medicine and hygiene, vol. 61, no. 1, pp. 2–8, 1999.

[15] M. Xie, N. Jean, M. Burke, D. Lobell, and S. Ermon,
“Transfer learning from deep features for remote sensing and
poverty mapping,” arXiv preprint arXiv:1510.00098, 2015.

[16] N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and
S. Ermon, “Combining satellite imagery and machine learn-
ing to predict poverty,” Science, vol. 353, no. 6301, pp. 790–
794, 2016.

[17] L. Hong, E. Frias-Martinez, and V. Frias-Martinez, “Topic
models to infer socio-economic maps,” AAAI Conference on
Artificial Intelligence, 2016.

[18] J. Blumenstock, G. Cadamuro, and R. On, “Predicting
poverty and wealth from mobile phone metadata,” Science,
vol. 350, no. 6264, pp. 1073–1076, 2015.

[19] “The dhs program.” http://www.dhsprogram.com/
data/.

[20] “Dhs program wealth index.” http://www.
dhsprogram.com/topics/wealth-index/
Index.cfm. Accessed: 2017-06-06.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” arXiv preprint arXiv:1512:03385,
2015.

[22] A. Canziani, A. Paszke, and E. Culurciello, “An analysis
of deep neural network models for practical applications,”
arXiv preprint arXiv:1605.07678, 2016.

[23] W. Shang, J. Chiu, and K. Sohn, “Exploring normalization
in deep residual networks with concatenated rectified linear
units.,” in AAAI, pp. 1509–1516, 2017.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[25] Unicef et al., Strategy for improved nutrition of children and
women in developing countries. Unicef, 1990.

[26] M. Pena and J. Bacallao, “Malnutrition and poverty,” Annual
Reviews, vol. 22, 2002.

7

http://www.dhsprogram.com/data/
http://www.dhsprogram.com/data/
http://www.dhsprogram.com/topics/wealth-index/Index.cfm
http://www.dhsprogram.com/topics/wealth-index/Index.cfm
http://www.dhsprogram.com/topics/wealth-index/Index.cfm

