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Abstract

Many applications which analyze satellite imagery de-
pend on preprocessing - one important step is the identifi-
cation of atmospheric contamination (e.g. cloud cover) so it
can be ignored by downstream applications. Most solutions
so far (e.g. Hollstein et al. [16]) rely on pixel-level classi-
fication; we frame the problem as an image segmentation
task, and apply deconvolutional neural networks (Noh et
al. [24]) to identify several classes of atmospheric contam-
ination in Sentinel-2 satellite images. We experiment with
models that rely on multispectral data, as well as RGB-only
data, which is more generalizable.

We use a two-stage process in which we first produce
improved training data by using the Sentinel-2 proprietary
cloud mask to train pixel-level decision tree classifiers. We
then use the output of the decision trees as labeled training
data for deconvolutional models. With this setup, we learn a
generalized deconvolutional model which is capable of ac-
curate (≈ .90 per-pixel accuracy), fast (1M pixels per sec-
ond) cloud identification using only RGB data, which can
be used to conduct this task on any satellite platform.

1. Introduction
1.1. Motivation

Recent advances in satellite imagery and computer vi-
sion (particularly since the popularization of convolutional
neural networks (CNNs) by Krizhevsky et al. in 2012 [21])
present opportunity in the intersection of these two fields.
We cite as an example the work of Jean et al., who use satel-
lite images to predict poverty levels in remote areas [19].
For these applications, removing noise (especially clouds
and other atmospheric contamination) from satellite images
is a critical step in using these images to maximum effect.
This can be done via mosaicking over time, but for tem-
porally sensitive applications where mosaicking is not pos-
sible, an acceptable substitute is to identify and mask out
clouds in images, to allow downstream models to ignore

them. We develop a series of models for this task.

1.2. Task Definition
We frame our task as a semantic segmentation problem.

Given a satellite image, we predict a class of atmospheric
condition for each pixel. We explore several tasks, each of
which is defined by a different set of output classes:

1. 2-class task: {CLEAR, CLOUD}
2. 3-class task: {CLEAR, CLOUD, CIRRUS}
3. 4-class task: {CLEAR, CLOUD, CIRRUS, SHADOW}
4. 6-class task: {CLEAR, CLOUD, CIRRUS, SHADOW, WA-

TER, SNOW}

We present in figures 1 and 2 example input and output
for this task. In figure 1, the model in question (a base-
line cloud mask developed by the European Space Agency
for its Sentinel-2 satellites) is successful in identifying the
clouds in the image. In figure 2, it fails to recognize cirrus
clouds.

We track several metrics for evaluation, including cross-
entropy loss for probabilistic models, per-pixel accuracy for
all models, and inference time (measured in pixels per sec-
ond) for all models. Cross-entropy loss is computed by ap-
plying the softmax function to predicted logits for each out-
put class

Softmax(x)i =
exp(xi)∑
j exp(xj)

and taking the cross-entropy loss of the Softmax output q
with respect to the ground-truth distribution p (a one-hot
vector indicating output class)

JCross-Entropy(p, q) = −
∑
x

p(x) log q(x)

Accuracy is measured naively by number of pixels cor-
rectly classified over total number of pixels, or more ro-
bustly via multiclass F1 score. Inference time is included
to account for the fact that satellite data is generated very
quickly, and that fast models are necessary to keep up with
preprocessing demand.
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Figure 1: Sample cloud identification input (left) and output
(right). For output, black indicates clear sky, white indicates
cirrus or semitransparent clouds, and gray indicates opaque
clouds. (Source: Sentinel-2)

Figure 2: An example of poor cloud identification. As in the
previous example, black indicates clear sky, white indicates
cirrus or semitransparent clouds, and gray indicates opaque
clouds. Note that while almost all of the image is obscured
by semitransparent clouds, large portions are marked clear.
(Source: Sentinel-2)

Finally, we note that difficult evaluation will be a theme
throughout this paper. The Sentinel-2 cloud mask is inher-
ently noisy data, which means that even if a model is per-
forming exceptionally well, it will still be penalized by the
poor labels provided by the Sentinel-2 cloud mask. This is
also true in the case where we use the output of our deci-
sion tree pixel-level classifier as labeled input for our con-
volutional models. Thus, though we provide quantitative
evaluation metrics for the accuracy of our models, analysis
must also be strongly qualitative and visual, especially be-
cause the ultimate goal of the model is to mask out unuseful
information and preserve useful information - an inherently
subjective task.

1.3. Historical Methods and Related Work

We survey related work in both cloud detection in satel-
lite images and image segmentation in a broader context.

1.3.1 Remote Sensing Cloud Detection

To date, methods to identify clouds in satellite imagery have
been fragmented, platform-specific, and heavily dependent
on human-engineered features. We cite as an example the
work of Hallahan and Prepperneau [12], who employ a fea-
ture they describe as the “RGB values corresponding to
the darkest pixel of the coastal aerosol band” for Landsat-
8 cloud detection - other historical methods such as those
of Irish et al. [18] and Gao et al. [7] demonstrate similarly
overspecific features. Some more robust models, such as
those of Hagolle et al. [10] [11] or Zhu et al. [30] have re-
lied on temporal methods which analyze the same location
over time and use changes in appearance to detect cloud
cover. For temporally sensitive applications, such methods
are also infeasible.

Those models that achieve state-of-the-art accuracy
(such as the proprietary cloud mask for the Sentinel-2
dataset [5], seen in figures 1 and 2, or the expansion of the
Fmask algorithm by Zhu et al. [29]) rely on years of human
feature engineering. Even then, these models do not per-
form well in all cases (as seen in figure 2), do not perform
well with few spectral bands (e.g. RGB only), and do not
generalize to new satellite platforms. Perhaps one of the
most important challenges in this field at this point is the
development of a robust generalized cloud mask algorithm
- one which relies only on RGB bands and is thus extensible
to any new satellite platform.

1.3.2 Deep Semantic Segmentation

Almost all models developed to-date rely on pixel-level lin-
ear classification or other methods with limited predictive
power, such as decision trees. Neural networks, by con-
trast, have the potential to learn highly nonlinear decision
boundaries and eliminate tedious human feature engineer-
ing; CNNs in particular have the ability to take advantage
of spatial covariance in satellite image data. Having sur-
veyed current efforts in remote sensing, we turn to a survey
of image segmentation, in an attempt to marry the two.

Current state-of-the art methods for semantic segmenta-
tion include basic deep convolutional networks (employed
by Chen et al. [2] in conjunction with conditional random
fields), fully convolutional networks (Long et al. [23]), and
deconvolutional networks (Noh et al. [24]). Also of interest
are models originally intended for object detection (which
are frequently applicable to segmentation to some extent)
such as the R-CNN model developed by Girshick et al.
[8]. We adapt both fully convolutional and deconvolutional
models for our implementations.

Other techniques that have been shown to be effective
in image segmentation include atrous (dilated) convolution
[3], which we also employ to expand receptive fields for
large cloud structures. Also of interest are the methods of
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Chen et al. [4], who discuss methods for scale-aware se-
mantic segmentation, which also prove valuable for large
cloud structures.

Finally, given the importance of inference speed in this
task, we examine the methods of Iandola et al. [17], who
develop SqueezeNet - a model with AlexNet-level accu-
racy on the ILSVRC dataset [26] with orders of magnitude
fewer parameters and faster inference. We also examine the
work of Han et al. [14] [13], who pursue similar research
aimed at improving model efficiency while maintaining per-
formance.

1.4. Data

1.4.1 Sentinel-2 Proprietary Cloud Mask

We curate a dataset of satellite images from the Sentinel-2
satellite platform [5]. The Sentinel-2 dataset was selected
for several reasons. First, it features 13 spectral bands,
which provide considerably more information than standard
RGB data. Some bands, in particular the 1.375µm band,
colloquially the “cirrus band”, are targeted specifically at
detection of cloud cover. Secondly, it features 10 meter spa-
tial resolution and 5 day temporal resolution, allowing for
crisp images, and temporal analysis over short time spans.
Data from Sentinel-2 is initially analyzed and downloaded
through Google Earth Engine [9] before it is transferred to
a local platform.

We curate a dataset of 60 Sentinel-2 images, each of
which is roughly 10,000 by 10,000 pixels. These images
are sliced into smaller images of size 224 by 224 pixels
(“tiles”), which are split into training, validation, and test
data. As a precaution against mingling training and test
data, tiles from a single 10,000 by 10,000 Sentinel-2 image
are included in exactly one of the sets.

The Sentinel-2 dataset is bundled with a proprietary
cloud mask (seen in figures 1 and 2). That is, the Euro-
pean Space Agency (which manages Sentinel-2) calculates
its own cloud mask for these satellite images, and distributes
this information with the images. Each pixel is labeled us-
ing one of three classes: {CLEAR, OPAQUE, CIRRUS}.
Although the mask is far from perfect, it performs ade-
quately in expectation, and provides the closest thing to a
large labeled dataset for this task. We use this dataset as
noisy training data.

1.4.2 Hollstein Pixel-Level Dataset

Additionally, when training classifiers that operate on a
per-pixel level rather than on larger images, we use a public
dataset curated by Hollstein et al. [16]. The dataset features
3 million hand-labeled points from Sentinel-2 images.
These points are roughly evenly sampled from around
the globe and throughout the year, to ensure full climatic
coverage. Each point is labeled using one of six classes:

Dataset Train Size Val. Size Test Size
Sentinel-2 60 K Tiles 30 K Tiles 30 K Tiles
Hollstein 2.1 M Points 500K Points 500K Points

Table 1: Sentinel-2 and Hollstein dataset statistics.

X[1] <= 0.2885
gini = 0.7897

samples = 1962448
value = [660494, 258001, 100570, 326460, 311649, 305274]

class = Clear

X[9] <= 0.0199
gini = 0.6669

samples = 1335689
value = [658194, 256390, 99605, 290570, 30122, 808]

class = Clear

True

X[11] <= 0.2445
gini = 0.559

samples = 626759
value = [2300, 1611, 965, 35890, 281527, 304466]

class = Water

False

X[7] <= 0.0406
gini = 0.3135

samples = 312189
value = [4809, 253385, 51754, 2240, 1, 0]

class = Cloud

X[10] <= 0.0047
gini = 0.51

samples = 1023500
value = [653385, 3005, 47851, 288330, 30121, 808]

class = Clear

gini = 0.1166
samples = 244851

value = [31, 229747, 13325, 1748, 0, 0]
class = Cloud

gini = 0.546
samples = 67338

value = [4778, 23638, 38429, 492, 1, 0]
class = Shadow

gini = 0.2543
samples = 692971

value = [595574, 3005, 47525, 17325, 28921, 621]
class = Clear

gini = 0.2971
samples = 330529

value = [57811, 0, 326, 271005, 1200, 187]
class = Snow

X[2] <= 0.5559
gini = 0.1295

samples = 319353
value = [678, 1611, 965, 13435, 5067, 297597]

class = Water

X[11] <= 0.3456
gini = 0.1853

samples = 307406
value = [1622, 0, 0, 22455, 276460, 6869]

class = Cirrus

gini = 0.6889
samples = 30041

value = [595, 1611, 965, 13016, 4528, 9326]
class = Snow

gini = 0.0072
samples = 289312

value = [83, 0, 0, 419, 539, 288271]
class = Water

gini = 0.6254
samples = 41290

value = [232, 0, 0, 18104, 16348, 6606]
class = Snow

gini = 0.0443
samples = 266116

value = [1390, 0, 0, 4351, 260112, 263]
class = Cirrus

Figure 3: A decision tree of depth 3 learned on the data
provided by Hollstein et al., for classification of individual
Sentinel-2 pixels.

{CLEAR, CLOUD, SHADOW, SNOW, CIRRUS, WATER}.
Thus, for per-pixel classifiers, we can support a larger num-
ber of more precise classes. However, because these
datapoints correspond to labeled points on images, rather
than completely segmented images, this dataset cannot be
used for training convolutional models.

2. Baseline Methods and Results
All baseline model are implemented using the the Python

Scikit-Learn library [25]. All code is currently hosted pri-
vately on GitHub, but is available upon request.

Our baseline methods revolve around classification for
individual pixels. For this task, we use the dataset provided
by Hollstein et al. described in section 1.4.2.

2.1. Decision Tree

We reimplement the methods detailed by Hollstein et al.
[16] - namely using decision trees for pixel-level classifica-
tion. The inputs to the decision tree are the 13 spectral band
values corresponding to a single Sentinel-2 pixel, and the
output is one of the 6 given classes for the Hollstein dataset.
We train a decision tree of depth 5 with a minimum impu-
rity split of 0.01 (that is, no node derived in training contains
less than 1 percent of the samples in its parent node - a tac-
tic which prevents overfitting). Due to space constraints, we
present a decision tree of depth 3 learned on the same data
in figure 3.

2.2. Fully Connected Neural Network

Our second baseline method attempts to perform pixel-
level classification using a Multilayered Perceptron (MLP),
also called a fully connected neural network.

Our MLP features two hidden layers, each connected via
affine transformation and a RELU nonlinearity. The output
of the network is calculated via a final affine transformation
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Figure 4: The multilayered perceptron architecture used for
individual pixel classification.

followed by a softmax function. This architecture is visual-
ized in figure 4.

After careful attempts to improve upon the performance
of the decision trees using our pixel-level MLP (with tuning
of layer sizes, regularization constants, and other hyperpa-
rameters), we fail to achieve a boost in performance, while
significantly increasing inference time compared to that of
the decision tree model. This could be a result of improper
training or data preprocessing, but is more likely a conse-
quence of properties inherent in the task of pixel-level clas-
sification. The information presented by the band values for
a single pixel provides limited information and no spatial
context - it’s highly likely that any separability in the data
can be learned using decision trees and does not require the
more robust nonlinearities induced by an MLP.

2.3. Baseline Results

2.3.1 Decision Tree Results

We train decision tree models for both 3-class classification
and 4-class classification. We do not explicitly train a deci-
sion tree model for 2-class classification, but note that such
output can be achieved by combining the CLOUD and CIR-
RUS labels of the 3-class decision tree into a single CLOUD
super-class. We attempt to train models for 6-class clas-
sification, but note that the results of these models are in-
consistent (and thus unsuitable as input for a convolutional
model), and can be improved upon by simply treating the
SNOW and WATER classes as CLEAR (yielding a 4-class
problem).

We provide sample outputs for the 3-class and 4-class
decision trees in figure 5.

2.3.2 Baseline Output as Deep Network Input

We have discussed the tenuous reliability of the Sentinel-2
labels, and note that while they serve as noisy training data
(frequently wrong but accurate in expectation), they do not
provide good evaluation data. Their considerable inaccu-
racy means that even models which perform excellently are
penalized in evaluation.

In an effort to alleviate this, we use our decision tree
models to generate a more robust dataset. That is, we train
DT models on the Hollstein dataset, and apply these to
Sentinel-2 tiles. The output of this primitive segmentation

3-Class Decision Tree

4-Class Decision Tree

Figure 5: Example outputs of the decision tree classifier.
Key: {Green: CLEAR, Yellow: CLOUD, Purple: CIRRUS,
Orange: SHADOW}. The 3-class decision tree performs
well in expectation, and its outputs (rows 1 and 2) are used
as input for convolutional models. The 4-class decision tree
struggles to detect the SHADOW class in row 3. In row 4,
it is apparent that the introduction of a new SHADOW class
has diminished the classifier’s ability to label the original
three classes.

is used as labeled training data for our convolutional mod-
els. Readers may find this methodology initially flawed:
it’s possible that this will limit our convolutional models to
only be as good as our linear models. However, because
our convolutional models have the ability to take advantage
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of spatial covariance in our data, they are in fact capable of
significantly outperforming out linear models. In the same
way that the Sentinel-2 cloud mask provides noisy training
data (frequently wrong but correct in expectation) for train-
ing our DT models, the output of these DT models provides
considerably more accurate (but still somewhat noisy) train-
ing data for our convolutional models. This two-step setup
is also advantageous because DT models are trained on the
Hollstein dataset, which means we can augment training la-
bels to support all 6 output classes of the Hollstein dataset,
rather than the 3 used by the Sentinel-2 proprietary cloud
mask.

3. Methodology
3.1. Pre-Training

It is increasingly common for new convolutional archi-
tectures to incorporate a “pre-trained” network as part of
their model. We cite as an example Long et al. [23],
who in their work with deconvolutional networks train a
large architecture which first repeatedly condenses an im-
age using convolutional and max pooling-layers, and then
re-expands it using a series of transpose convolutional and
max-unpooling layers. The entire first half of the architec-
ture (the “convolutional” half) is initialized using weights
originally trained by Simonyan and Zisserman [27] for their
VGG-16 and VGG-19 models on the ImageNet Large Scale
Visual Recognition Challenge [26] (ILSVRC) dataset.

Unfortunately, we find such techniques to be relatively
unhelpful for our task. Models pretrained on ImageNet clas-
sification data (or even other image segmentation datasets,
such as Microsoft Coco [22] or PASCAL VOC [6]) are
adapted to the images commonly found in these datasets,
which are vastly different from satellite imagery. Addition-
ally, the most notable pretrained models often support only
3 RGB bands – another roadblock in transferring to segmen-
tation of Sentinel-2 images, which have 13 spectral bands.
Thus, we do not employ pre-trained models in the develop-
ment of our architectures.

3.2. Transpose Convolution

Both of our models employ transpose convolutional lay-
ers, which may be unfamiliar to some readers. We provide
a brief overview of these methods.

A standard convolutional layer learns a collection of n
filters f ∈ Rk×k×d, where k is the length-width dimen-
sion of the filter and d (the “depth”) is the number of fil-
ters in the input. Each filter is convolved over the image.
That is, it is unrolled, and its inner product fT r produces a
scalar output a ∈ R for some input region r ∈ Rk×k×d. By
contrast, a transpose convolutional layer develops n filters
fT ∈ Rk×k×1, which are multiplied by a scalar region of
the input r ∈ R to produce an output of size a ∈ Rk×k×1.

Figure 6: Convolution and transpose convolution. Source:
Noh et al. 2015 [24].

Figure 7: The AlexNet-FCN architecture used for image
segmentation.

These outputs are combined via convolution to produce an
output image. In this way, transpose convolution can be
thought of as an operation to “reverse” convolution, turning
one input into many outputs, where convolution turns many
inputs into one output. Convolution and transpose convolu-
tion are illustrated in figure 6.

3.3. Fully Convolutional Networks

For our initial implementation of a convolutional neu-
ral network for this task, we implement the AlexNet-FCN
model described by Long et al. [23]. This model is essen-
tially a decapitated adaptation of the AlexNet architecture
implemented by Krizhevsky et al. [21], where the final fully
connected layers of the original model have been replaced
with fully convolutional layers which preserve spatial di-
mensionality. These are followed by transpose convolution
to scale the output of the network up to the size of the orig-
inal image. This architecture is visualized in figure 7.

With only a single deconvolutional layer, the Alexnet-
FCN model learns to identify cloud structures with some
success, but produces coarse outputs. We seek to rectify
this with the deconvolutional models described in section
3.4.

3.4. Deconvolutional Neural Networks

3.4.1 Theory

Deconvolutional networks (Noh et al. 2015 [24]) have the
potential to improve on the results of fully convolutional
networks by employing multiple transpose convolution lay-
ers to improve the granularity of output. For the reader’s
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Figure 8: The deconvolutional net originally implemented
by Noh et al., on which our model is based. Source: Noh et
al. 2015 [24].

Layer Type Filters Kernel Size
Input # Bands –

Convolutional 64 5
Convolutional 128 5

Fully Convolutional 256 1
Fully Convolutional 256 1

Transpose Convolutional 128 5
Transpose Convolutional 64 5
Scores (Transpose Conv.) # Classes 1

Table 2: Our Deconvolutional architecture, designed to bal-
ance fast inference and robust prediction. All *Conv lay-
ers use RELU activations, and have inputs normalized with
batch normalization.

reference, we provide a diagram of the original architec-
ture implemented by Noh et al. in figure 8. Though our
model is considerably more lightweight, the convolutional-
deconvolutional structure remains the same.

3.4.2 Implementation

We provide our complete implementation of our decon-
volutional model in table 2. The output of any convolu-
tional (Conv) or fully convolutional (FConv) layer (but NOT
transpose convolutional (TConv) layers) is passed through
a RELU activation (popularized by Krizhevsky et al. 2012
[21]). The input of any Conv/FConv/TConv layer is normal-
ized using batch normalization (except the input to the first
Conv layer, which has already been normalized in prepro-
cessing). The inclusion of these batch normalization lay-
ers is found to significantly improve the performance of
the network (consistent with the original findings of Noh
et al. [24]). Noh et al. also employ layers of max-pooling
and max-unpooling (in which the argmaxes of the corre-
sponding max-pooling step are used to unpool later in the
network), but we find this technique has no effect on per-
formance and significantly increases inference time for this
task.

We also achieve a significant boost in qualitative perfor-
mance by weighting our cross-entropy loss function to place

greater importance on correct classification of non-CLEAR
output classes (noting that a CLOUD false positive is pref-
ererable to a CLOUD false negative, as the latter passes bad
information to a downstream application). That is, our loss
function becomes

JCross-Entropy(p, q) = −
∑
x

αxp(x) log q(x)

Where αCLEAR = 0.25 and all other values of αx = 1.
Our deconvolutional model is trained using the output of

the decision tree classifier. The model is implemented using
Google’s Tensorflow framework [1]. We employ ADAM
optimization (Kingma and Ba 2014 [20]) with a constant
maximum learning rate of 0.0005 and β1 = 0.9, β2 = 0.999
We find that decaying the learning rate using vanilla mini-
batch SGD does not improve performance. We train using
minibatches of size 20 (where minibatch size is chosen to
maximize usage of GPU memory), for two epochs over our
training set, at which point we achieve convergence. Train-
ing takes roughly 1 hour on an NVIDIA Tesla K40 GPU.

4. Results
4.1. Evaluation Metrics

We employ several metrics in evaluating our model, in-
cluding cross-entropy loss between predicted and ground-
truth distributions, per-pixel classification accuracy, infer-
ence time, and others. Unfortunately, our use of noisy train-
ing data (which is frequently wrong but generally correct in
expectation) means that though we’re able to learn accurate
models using inaccurate labels, we are not necessarily able
to fairly evaluate our models using these inaccurate labels.
Further complicating matters is the fact that cloud detection
is an inherently subjective task. Our goal is to mask out un-
useful parts of the image (clouds), so that downstream ap-
plications receive only useful information. However, what a
downstream application considers “useful” can vary widely.
Though we provide quantitative evaluation metrics in the
form of decision matrices, we remind the reader that these
metrics are only reliable to a certain degree. A hypotheti-
cal “best” model would perform considerably worse than a
model that was able to fit perfectly to the noisy labels.

4.2. Qualitative Results

For the reasons discussed in section 4.1, evaluation of
qualitative results becomes particularly important for this
task. We present in figure 9 a compilation of qualitative re-
sults. Hard convolutional output is obtained by taking the
probability of a given output class and thresholding it above
some value α (for figure 9, we use α = 0.5). This allows
a downstream application to vary α in order to vary what
degree of confidence in a predicted CLEAR label is accept-
able.
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Original Image Decision Tree Labels Deconv. Output Hard Deconv. Output
RGB Only

All Bands

Figure 9: Qualitative outputs of our deconvolutional output model for the 2-class problem with output classes {CLEAR,
CLOUD}. The inputs used for this analysis were not used in training or validation. The convolutional outputs for row 1 are
calculated using only RGB input data. The convolutional outputs for row 2 are calculated using all 13 Sentinel-2 spectral
bands. Decision tree values are always calculated using all 13 Sentinel-2 spectral bands.

4.2.1 RGB-Band Input vs. 13-Band Input

Comparison of the outputs of the convolutional models re-
veals that there is little to no qualitative difference between
those outputs generated using all 13 spectral bands and
those generated using only the RGB bands. This is some-
what intuitive, as ultimately the model should only mask
out atmospheric contamination that impedes visible light
(all 10 non-RGB frequencies lie on the edge of or outside
the visible spectrum). We note additionally that outputs of
the RGB-only model tend to be more robust and conserva-
tive (assigning more moderate probabilities for all output
classes) than those of the model trained on all 13 bands.
This likely signals a need for greater regularization in the
13-band model, which has more information on which to
make strong (possibly over-zealous) predictions.

Perhaps most importantly, qualitatively the outputs from
our convolutional models improve considerably on those of
our decision tree models (which were reimplemented from
the recent work of Hollstein et al. [16]). We note that quali-
tatively our results constitute an initial implementation of a
robust, generalized cloud-mask which uses only RGB data.
Thus, our model can be applied to data from a variety of
satellite platforms in addition to Sentinel-2.

Figure 10: Confusion matrices for our deconvolutional
model using all bands as input (left) and only RGB bands
as input (right).

4.3. Quantitative Results

We present in figure 10 confusion matrices for the out-
put of our convolutional models for the 2-class problem, us-
ing the output of our decision tree models as noisy ground
truth. As was our stated goal, we achieve an extremely
low false-negative rate for CLOUD pixels, at the cost of a
somewhat high false-positive rate for CLOUD pixels. Un-
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Model Inference Speed (Pix/Sec)
Hollstein Decision Trees 16.25 Million

Decision Trees 15.55 Million
Deconv. Net. (RGB Bands) 1.28 Million
Deconv. Net. (All Bands) 1.02 Million

Table 3: Inference speeds for our models. We include as
a reference point for other work in the field the results of
Hollstein et al., who also use decision trees for pixel-level
classification of satellite imagery.

derstandably, these accuracies decrease further (but remain
relatively high) for models that use RGB-only data rather
than 13-band data.

Finally, we present in table 3 the inference speeds of our
various models. Though our best model suffers a roughly
16x decrease in inference speed compared to state-of-the-art
models from the remote sensing academic community, we
note its potential for considerably more accurate output than
traditional methods, in addition to its potential for increased
inference speed with future model optimization.

5. Future Work

Our model makes progress towards a generalized cloud
mask, but many improvements are needed.

A More General Dataset The model was trained, tested,
and evaluated on about 120,000 tiles, representing 2000
tiles each from only 60 large Sentinel-2 images. This means
the model was trained on dataset with large, highly corre-
lated subsets (that is, all tiles generated from a single im-
age). A more general model can be achieved by training
on a smaller number of tiles from a larger number of initial
images.

More Efficient Inference In an effort to further im-
prove inference time, future work should explore techniques
for improving architectural efficiency (reducing number of
parameters and inference time while maintaining perfor-
mance), such as those employed by Iandola et al. [17] in
their SqueezeNet model, or those employed by Han et al.
[13] [14].

Improved Shadow Identification Currently, our model
is able to readily identify CLOUD and CIRRUS classes,
but struggles with SHADOW classes. This occurs primar-
ily as a result of a lack of training data (and the failure of
our intermediate decision tree models to produce reasonable
training data for the 4-class problem). Shadows can also in-
troduce significant noise in downstream applications, and
future work should focus on improving in this regard.

6. Conclusion
In this work we have shown that lightweight

convolutional-deconvolutional neural networks show
promise for the task of efficiently identifying cloud cover in
satellite images. We accomplish this via a two-step process
in which we first generate robust training data using deci-
sion trees, and then use this training data to train our deep
models. Deconvolutional models are well-suited to this
task for their ability to produce smoothly varying, highly
granular output, and further research in the intersection of
these fields will likely yield improved performance on this
task.
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