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Abstract

Convolutional Neural Networks (CNNs) coupled with
novel large image datasets offer ample hope for building
a computational understanding of the relationship between
humans and environment. CNNs are also particularly effec-
tive at learning complex sets of rules, such as the ones gov-
erning aesthetics. Here I present one potential application
of computational aesthetics to the detection of scenic by-
ways. To do so I use a dataset of Google Streetview images
collected alongside California State Highways, with labels
derived from the California Department of Transportation
official “scenic byway” designation. A CNN is trained on
a dataset of order-105 Streetview images, achieving moder-
ate accuracy against a validation set. The CNN is then in-
tegrated in an ensemble model, where training data is aug-
mented with data from two additional sources, the YFCC
100M dataset, as well as a dataset compiled from tradi-
tional GIS sources. With suitable refinement the approach
shows promise in quantifying the degree to which roadways
are aesthetically pleasing, a measure with potential appli-
cations in tourism, transportation, and urban planning.

1. Introduction

The modern human experience of nature takes place
on pathways. Whether roads, trails or boardwalks, paths
structure the landscape to create distinctive experiences.
The Camino de Santiago, Appalachian Trail, the Pacific
Coast Highway are but a few of the paths famous for their
beauty. Most roads are more ... pedestrian1, but their
beauty, or lack thereof is not inconsequential. American
commuters spend an average of 52 minutes daily traveling
to and from work[4], much of it on heavily-congested road-
ways, the character of which is likely to lower well-being.
Conversely, research has established a link between nature
drives [12] and lower levels of stress. These considerations
led me to the development of an algorithm for quantifying

1I hope the reader will forgive my pun.

the scenic nature of roads, combining new advances in data
collection (Streetview imagery) and in artificial intelligence
(convolutional neural networks). If successful, such an al-
gorithm could be used to optimize the everyday experience
of nature and improve well-being.

2. Related Work
Although this work is concerned primarily with the

beauty of rural locations, the computational literature it
draws on is squarely anchored in the urban environment.
Trivially, aesthetic consideration play a prominent role in
urban design and planning. A first attempt at the system-
atic study of “the precise laws and specific effects of the
geographic environment ... on the emotions and behavior
of individuals” was articulated by Debord as early as 1955
[1]. The term used by Debord, psychogeography [14, 1],
received renewed interest in the 1990s, primarily in urban
studies.

Digital data has shown enormous promise for improving
scientists’ understanding of human-environment interaction
from an aesthetic perspective. By eliciting user ratings of
photographed street scenes [13] establish a relationship be-
tween image features and the perceived “aesthetic capital”
of city locations. [14] expand on this line of work by show-
ing how metadata associated with digital photographs can
be used to predict an urban location’s perceived degree of
beauty.

A revolutionary computational approach to environmen-
tal aesthetics has become a possibility with the proliferation
of digital geolocated data. New techniques in image recog-
nition promise to help improve the methods and findings
of landscape aesthetics, which has already established the
existence of a positive relationship between human well-
being and the perceived beauty of the natural environment
[21, 16].

Of particular interest to the landscape aesthetic problem
are approaches using deep neural networks, a method which
in recent years has proven extremely effective in multiple
areas of machine learning research, and which has seen ex-
traordinary results in the field of image understanding [8].
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Satellite imagery has been successfully used in the esti-
mation of development indicators collected in the multina-
tional DHS program [6].

“Streetview” images, captured in a drive-by fashion by a
camera placed on a vehicle, have been another particularly
promising source of visual information to be used for the
understanding of human experience through artificial neural
networks. Multiple studies have demonstrated the effective-
ness with which Streetview imagery can be accurately ge-
olocated [9, 25, 10, 11]. More recently, Streetview imagery
has been used to explore social dimensions of local com-
munities. [3] established how such imagery can be com-
bined with existing geographically-specified data from the
American Community Survey to predict the characteristics
of urban communities. The model presented here further
draws on this approach of combining geospatial metadata
and photographic imagery to estimate the degree to which
roadways are aesthetically pleasing.

The topic of image scenicness has likewise been of inter-
est to the image recognition community. [23] combine data
from the ScenicOrNot dataset, as well as aerial imagery to
improve on scenic image classification.

[15] provide the most direct evidence that Streetview
imagery can be tagged with scenicness through a trans-
fer learning procedure leveraging tags provided by the
GoogleNet model [18] to predict the scenicness of
Streetview imagery and recommend scenic routes to
drivers.

3. Data and Methods
To understand roadway aesthetics I leveraged a publicly-

available source of labels, the list of scenic state highways
made available as an ArcGIS shapefile by the California
Department of Transportation2. I used the spatialEco R
package [2] to obtain a sample of points spaced 100 me-
ters apart alongside all California state highways. Spa-
tial sampling code is provided in the streetviewSampler
R package, released at github.com/bogdanstate/
streetview-sampler. A sampled point was consid-
ered to be “scenic” if covered by the California DoT scenic
byways shapefile and non-scenic otherwise.

This label-generation procedure makes a very coarse
simplifying assumption, namely that all points on a scenic
byways are aesthetically pleasing, while all points on a non-
scenic state highway are not. Despite the inherent limita-
tions of this assumption, which translate into both noisier
model training and lower maximal accuracy, the initial re-
sults appear sufficiently promising to justify this source of
labels.

Google Streetview images (at resolution 640x640) were
obtained for every sample point, through structured API

2Data is available at http://www.dot.ca.gov/hq/tsip/
gis/datalibrary/

calls.3 About 177,000 images were obtained through this
technique and were used in model training in a 17:1:2 train-
ing, validation, and test split. A convolutional neural net-
work was trained on the dataset, with images scaled to to
256x256 resolutions. The network used the following ar-
chitecture, implemented using the PyTorch library:

1. 2d convolutional layer, kernel size 3, depth 10, and
stride 1.

2. Leaky ReLu activation layer (p = 0.01).

3. 2d batch normalization layer. [5]

4. 2d max-pooling layer, kernel size 7 and stride 2.

5. 2d convolutional layer, kernel size 3, depth 3, stride 1
and dilation=3.

6. 2d dropout layer (p=0.5). [17]

7. 2d max-pool layer, kernel size 7 and stride 2.

8. ReLu activation layer.

9. 2d max-pool layer, kernel size 7 and stride 2.

10. Linear layer w/ 128 output neurons.

11. Linear layer w/ 2 output neurons.

The network thus specified was implemented using
starter code available in the PyTorch Github Examples 4.
An exponential learning rate scheduler was implemented,
following the model provided in the PyTorch Transfer
Learning Tutorial.5 The network was trained using the
Adam stochastic optimization algorithm [7], with a cross-
entropy loss function. Model training was performed on an
NVIDIA 1080-Ti GPU.

The best accuracy achieved on the validation accuracy
was 0.6173, after training for 11 epochs, time at which
whereas the training set recorded an accuracy of .5888. The
small, albeit consistent, training-validation discrepancy is
likely due to the use of an aggressive dropout layer which
removes half the weights after the 2nd convolutional layer.

3I used the scripts available at https://github.com/
robolyst/streetview.

4Available at https://github.com/jcjohnson/pytorch-
examples.

5Available at https://github.com/pytorch/tutorials/
blob/master/beginner_source/transfer_learning_
tutorial.py.
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4. Results

4.1. Visual Analysis

Despite the low accuracy achieved in training the sim-
plistic model presented before, results show good face va-
lidity. Batches of 16 images, labeled as most and least
scenic by the model are shown in Figures 2 and 1. Im-
ages identified as least scenic appear to be pictures of flat
landscapes, likely from California’s inland Central Valley,
a region known for industrialized agriculture. Images iden-
tified as most scenic present uphill climbs, vegetation and
narrower roadways.

Figure 1. Least Scenic Images

Figure 2. Most Scenic Images

The images ranked as most scenic by the model appear to
concur at least partially with existing research into the aes-
thetic perception of landscapes. In a 1986 synthesis, Ulrich
[21] summarizes the established characteristics of pleasing
landscapes:

“1. complexity, or the number of independently perceived
elements in the scene.

“2. the complexity is structured to establish a focal point,
or other kind of patterning is also present.

“3. a moderate to high level of depth that is clearly defined.

“4. the ground surface has even or uniform length textures
that are relatively smooth, and the observer judges that
the surface is favorable to movement.

“5. a deflected or curving sightline is present, conveying a
sense that new landscape information lies immediately
beyond the observer’s visual bounds.

“6. judged threat is negligible or absent

Of these criteria, Streetview images rated as scenic ap-
pear distinct in their complexity, or criterion (1). They
present higher contrast between roadway, vegetation and
sky. There is no focal point to speak of besides the road-
way, but the vegetation does provide texture. Indeed, the
model seems to have converged on the mottled shadows of
leaves as a characteristic feature of scenic roadways. Simi-
larly, the front-facing images rated as scenic show a higher
level of depth, and reveal a curving sightline, a result of
the hilly landscape in which the scenic roads are situated.
In contrast, non-scenic images are suggestive of flat urban
landscapes with very large roads.

Figure 3. Predictions on Sampled Images

Predictions on sampled images are shown in Figure 3,
ranging from yellow (least scenic) to black (most scenic).
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The model correctly identifies known scenic roads in the
northern part of the state, but very conspicuously misses
California’s coastal highways, traditionally known for their
scenicness.

4.2. Data Augmentation

Some limitations to the image-recognition approach
have become apparent in the previous section. While the
model correctly learns that most scenic roads are in moun-
tainous, forested areas, it does less well at developing a no-
tion of coastal scenic roads. A reasonable solution meant
to address these shortcomings involves data augmentation
with information about the geographic context, as suggested
by [19].

4.2.1 Baseline GIS model

Given that the visual analysis revealed that altitude, rurality,
as well as coastal locations are likely to play a role in deter-
mining the baseline scenicness of a location, a model was
developed to predict baseline scenicness using a number of
simple but powerful GIS features6:

• Elevation (based on DEM30 data).

• Distance to coast.

• Distance to nearest urban area.

• Distance to nearest wild or scenic river.

• Distances to nearest national, state, and county parks.

• Distance to nearest lake.

• Distance to nearest major stream.

The baseline GIS model was trained in PyTorch using the
same dataset, cross entropy loss function and optimization
strategy used for the image recognition model presented be-
fore. The GIS model featured a fully-connected architec-
ture, more specifically a linear layer with 10 input features
and 20 output features, followed by a hyperbolic tangent
activation and a linear layer with 20 input features and 2
outputs. The baseline GIS model achieved an accuracy of
.5709 against the validation set after 5 epochs of training.

6DEM data was obtained from the USGS National Elevation
Dataset, urban areas were obtained from the 2015 TIGER/Line
shapefiles, while all other features were downloaded from the GIS
Clearinghouse at the California Department of Fish and Wildlife,
https://www.wildlife.ca.gov/Data/GIS/Clearinghouse.

Figure 4. Average Flickr WOEID polygon scenicness. (Lower val-
ues translate to higher scenicness.)

4.2.2 Flickr YFCC100M model

Another potential source of information regarding the
scenicness of a particular location comes from social me-
dia. Given the wealth of geotagged information available on
social media platforms, it is quite plausible that the scenic-
ness of a location may be inferred from geotagged posts.
To this end I use data from the Flickr YFCC100M dataset
[20]. This dataset provides a set of “deep tags,” complex im-
age features detected using a model trained to predict Flickr
photo captions given image features. The dataset has been
used successfully by other teams to improve the accuracy
of Google Streetview geolocation [19]. Similar approaches
using photo captions (or in this case, features derived from
photo captions) have been used successfully to predict the
beauty of locations [24, 13, 14].

About half of the YFCC100M data also contains unique
geographic identifiers, in the form of WOEIDs (Where on
Earth IDentifier), and 1.5m of these examples are located
within the boundaries of California. It is possible to map ar-
bitrary geographic coordinates to WOEIDs using the Flickr
Shapefiles 2.0 dataset7. Thus we can compute an average
scenicness per WOEID polygon, shown in Figure 4.

The results in Figure 4 are suggestive of a further im-
provement. Given that each image in the Flickr 100M
dataset is embedded using a 1570-dimensional tag-space,
we can compute an average embedding at the WOEID level,
which can be mapped to Streetview images. Thus, each

7Released at http://code.flickr.net/2011/01/08/
flickr-shapefiles-public-dataset-2-0/
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Figure 5. Scenic and non-Scenic Flickr 100m tags.

image receives a tag typically associated with Flickr pho-
tos taken in the proximity. The most discriminative such
tags w/r to scenicness are shown in Figure ??. The tags are
quite revealing: scenic tags correspond to flowers (clipper
ship, nigella, chicory, passion flower, coltsfoot, brassavola),
outdoor sports (ski pole, climber, water skiing, jacket, cliff
diving, running shoe, rowing), or to animals (toucan, arc-
tic fox, cockatoo, brown bear, blue jay). Non-scenic tags
correspond to lawn decor (flamingo, cow parsely, rhodo-
dendron), and indoor or stadium sports (spar, contact sport,
football, goal net, boxing, sport fight, lacrosse, ballpark,
judo, podium).

With this model setup, it is possible to predict whether
a Streetview image is located along a scenic or non-scenic
California state highway given the average Flickr tag em-
bedding of its vicinity. About 125k of the 177k training im-
ages are covered by such Flickr vicinities and can be used in
training. A very simple linear model, with only 2 linear lay-
ers, a batch normalization layer and a linear layer with 1570
inputs was trained and achieved an accuracy of 64.51% after
2 epochs of training.

4.3. Ensemble model

The three models presented so far underscore the fuzzi-
ness of the “scenic” concept, which can be triangulated
using data from sources as diverse as Google Streetview,
Flickr, and traditional GIS systems. To strengthen infer-
ences regarding this concept an ensemble model can allow
different models to build on each other’s strengths. To set up
this model I use the pre-trained Streetview, GIS and Flickr
models. They each contribute equally to the predictions (for
the Flickr model, only where data is available). Addition-
ally, the loss function for the ensemble model introduces a
disagreement penalty in the form of the KL divergence be-
tween any pair of two models making a prediction.

4.4. Test Set

A test set comprised of 10% randomly-selected exam-
ples from the collected data was held out from model train-
ing. The held-out test set achieved 61.4% accuracy. An
ROC curve against the held-out set is shown in Figure 6.
The ensemble model achieved 0.66 AUC.

It is important to re-emphasize an earlier point made in

Figure 6. ROC curve for ensemble model (AUC=0.66)

the Data section. The intent of this paper is to show how
GIS data can be used as a source of labels for the scenic-
ness classification task. To leverage official scenicness des-
ignations as a source of labels, a very strong assumption is
made, namely that all points along a scenic route are truly
scenic, whereas all other points among all (eligible) routes
designated as non-scenic are truly non-scenic. This assump-
tion arguably holds for a sufficient number of points to be
useful from a statistical perspective. Sizeably more points
along scenic routes are truly scenic than points along non-
scenic routes. But this assumption is by no means always
true. Truck stops and quarries – not exactly pleasing road
features – do exist along routes designated as scenic, while
areas of natural beauty are also found alongside roads lack-
ing the non-scenic designation. Thus it is reasonable to be-
lieve that the maximal accuracy achieved by the model is
going to be less than 100%, since the training data does
not represent a real “ground truth” with respect to aesthetic
pleasingness, but rather a noisy version thereof.

4.5. Discussion

Geolocated digital data promise to radically change the
ways we understand the relationship between humans and
environment. The method presented here shows how expert
knowledge, distilled into painstakingly-developed datasets
can be generalized to new previously unexplored datasets.
Scenic state highways follow an official definition in Cali-
fornia, established through a cumbersome political process.
Pretty roads, however, can be anywhere, and we can boot-
strap their discovery through image recognition.
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4.6. Out-of-sample prediction

To illustrate a potential application of scenicness pre-
diction (also explored by [15]) I sampled points every 30
meters along all county-maintained roads in Santa Cruz
County8. This location was chosen for its varied land-
scape – coastal, mountainous and urban, which make it
a good candidate for out-of-sample generalization of the
model. An additional set of sample points was obtained
for primary and secondary roads in the San Francisco Bay
Area from the US Census Bureau’s TIGER database.9 The
previously-developed model was used to make predictions
on the “scenicness” of roads in Santa Cruz County and en-
virons.

Results are computed using the Streetview-only model
and are shown in Figure 7. The results are roughly consis-
tent with local knowledge of the area. Scenic road scenes
(blue points) predominate in the Santa Cruz mountains, and
are sparse in the urbanized areas of Santa Cruz and Wat-
sonville, colored red to indicate “unscenic” road scenes.
The mostly-suburban roadscape of the San Jose urban area,
shown to the north, is likewise judged to be low in aesthetic
pleasingness.

Figure 7. Predictions for Santa Cruz County and environs

A clear omission visible in the initial model concerns the
supposed lack of scenicness of coastal regions. Highway 1,
which skirts along the Pacific coast is shown to be low in
“scenicness,” despite being both a designated Scenic State
Highway, and a destination for many weekend road trips.

8Available at http://www.co.santa-cruz.ca.us/Departments/GeographicInformationSystems(GIS).aspx
9Available at https://catalog.data.gov/dataset/tiger-line-shapefile-2013-

state-%2D-california-primary-and-secondary-roads-state-based-shapefile

This arguable error is likely due to the model learning that
scenic landscapes are primarily forested, whereas coastal
landscapes often appear without tree cover.

This omission hints at the usefulness of data augmen-
tation improvements for a convolutional model to become
maximally useful at a task such as the detection of scenic-
ness, which requires both local information given by a
streetview image, as well as a more global context. Speci-
fying a deeper neural network that can learn more complex
relations beyond the presence of forested landscapes would
be essential to improving the model’s performance. Like-
wise, acquiring more image data can be useful, although
this strategy is limited by API constraints in acuiring image
data.

As the experiments performed in this paper suggested,
a promising avenue involves data augmentation using
geocoded tags. The YFCC100M dataset [20] contains about
50m geocoded photographs as well as their caption meta-
data. Especially when taken in rural settings such captions
are likely to be informative with respect to landscape aes-
thetics. Understanding how to integrate them into the model
is an important step to ensuring its usefulness. GIS features,
such as altitude, distance to nearest body of water) likewise
capture important information about scenicness.

Finally, deeper aesthetics may lie in sequences of con-
tiguous streetview images which may be better addressed by
more sophisticated architectures such as pointer networks
[22].

5. Conclusion

The algorithm presented here shows the promise of ar-
tificial intelligence for the better understanding of both the
natural environment, and of the human relationship with na-
ture. With some refinement, the algorithm could be used to
provide a map of all the scenic roads in the United States,
and potentially asses the environmental aesthetics of any lo-
cation on Earth where Streetview imagery is collected. This
algorithm could be used not only to improve everyday expe-
rience, but could also provide a means to monitor changes
in the natural environment, inasmuch as they appear on the
road.
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