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Abstract

Having an accurate and up-to-date rail network data is
the foundation of any mapping application that supports
public transportation. Traditionally, creating such a net-
work needs manual digitization of satellite imagery and
building the network with human intervention. The goal
of this project is to segment the rail network from aerial
imagery using Deep Learning. In this project, we study
different techniques to classify and segment rail networks
in the aerial imagery. We implement ConvNets as well as
combination of ConvNets and DeConvNets to classify and
segment the rail network. We also share the insights that we
derived from analyzing the results.

1. Introduction

Having an accurate and up-to-date rail network data is
the foundation of any mapping application that supports
public transportation. Traditionally, creating such a network
needs manual digitization of satellite imagery and involves
human intervention. The goal of this project is to segment
the rail network from aerial imagery using Deep Learning.
This project has three main contributions: First, we classi-
fied images into two classes of rail and non-rail using a net-
work of 7 ConvNets and three fully connected nets; second
we did a coarse-level segmentation using ConvNets by re-
ducing dimensionality of images to the label space, we also
improved the results dramatically by using ConvNets and
DeConvNets, and finally we did a fine-level segmentation
by using ConvNets and DeConvNets.

2. Data Preparation

For this project, we needed both aerial imagery and la-
bel dataset. Aerial imagery data can be downloaded from
providers such as USGS. For label dataset, we used an
open source mapping data platform called Open Street Map
(OSM) where we obtained labels for our learning algorithm
as well as for evaluation.

Figure 1. Example of images, two top images do not have rail
track, two bottom images have rail tracks in them

2.1. Aerial Imagery

Aerial imagery should be converted to tiles so that the
input data have a uniform size. We followed a standard
tiling systems used in the mapping industry. The image
size for classification and coarse segmentation are 60x60
meters. For the fine segmentation, we used 30x30 meter
images as the data instance. As for the pixel size, in coarse
segmentation, each pixel is 3.5x3.5 meters, while for the
fine segmentation we used the actual pixel of the image that
is about 10cm.

2.2. Label Dataset

In order to prepare the labels we processed OSM rail net-
work for the entire USA. We used Spark, Scala, and JTS and
ran our Spark job on a cluster of machines. For the 3.5x3.5
meter tiles, it took about one hour to create the label tiles.
This time was longer for 10cm labels, as we used a differ-
ent technique using Python on a single machine. Figure 1
shows some examples in the dataset.
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3. Related Work
We used neural network to classify and segment rail net-

work from satellite images. So we first discuss the work
on image classification and segmentation. Image classifica-
tion is the task of assigning one label to each input image
from a fixed set of categories. Krizhevsky et al., in [7] used
ConvNets and dropout ( 5 layer CNNs and 3 layer fully con-
nected layers), and achieved 15.3% top-5 test error rate in
ILSVRC 2010 challenge which is significantly better than
26.2% top-5 test error rate by the 2nd place. This marks the
turning point for large-scale object recognition, and since
then deep neural networks outperforms traditional machine
learning methods. Simonyan et al., in [16] further improved
the top-5 test error rate to 6.8%. They used deep and narrow
CNN filters (14 CNN layers, 3 FC layers). Szegedy et al.,
in [17] introduced GoogLeNet, a 22 layers deep network
with efficient inception module and no FC layers. They
achieved 6.7 % top 5 erorr and won 2014 ILSVRC chal-
lenge. In 2015, [4], He et al., proposed Residual Network
and improved the top-5 test error to 3.57% and surpasses
human performance. Using Residual Network, they can use
very deep network (152 layers). Zagoruyko et al., in [18]
introduced wide residual networks (WRNs) and show that
they are far superior than deep residual networks in both ef-
ficiency and accuracy. They achieved new state-of-the-art
results on CIFAR, SVHN, COCO and significant improve-
ments on ImageNet.

Image segmentation is the task of partitioning image into
multiple segments, and each segment belongs to one cat-
egory. Pohlen et al., in [14] proposed a network archi-
tecture for semantic segmentation in street scenes. It used
ResNet encoder/decoder architecture and residuals remain
at the full input resolution throughout the network. He et
al., in [3] introducted Mask R-CNN method to efficiently
detect objects in an image and generate high-quality seg-
mentation mask for each object. They extends Faster R-
CNN method, [15], by adding a branch for predicting an
object mask at the same time. Mask R-CNN outperforms
all exsisting, single-model entries on every task, and won
COCO 2016 challeng.

Mnih et al., in [13] proposed a large-scale learning ap-
proach to detecting roads using a neural network. They
used much larger labelled datasets, and introduced a post-
processing method to significantly improve the results. In-
stead of predicting each pixel is road or not, they predict
a small block of pixels is road or not, and they are able
to get around 87% test accuracy. Acar et al., in [19] us-
ing classification algorithms to detect road from satelite im-
ages. They used a method consisting of two stages. They
first preprocess the image by using greyscale transformation
and thresholding process and obtained a binary image, then
they use K-nearest neighbours and Naive Bayes classifiers
on images by using colour features. They got around 70%

to 80 % recall and about 33% to 40 % precision in detecting
if 15 x 15 pixel block is part of a road. Kahraman et al., in
[6] studied road detection from satellite images using neural
networks. The used Multilayer Perceptron (multilayer neu-
ral network). For every pixel, they used 27 features from 3
x 3 x 3 pixels around it, and predict if the pixel is part of a
road. They were able to get accuracy between 87% and 93%
for different settings. Maboudi et al., in [9] introduced a
multi-stage object-based approach for road extraction from
VHR satellite images. They use Edge-preserving guided fil-
tering to improve the segmentation quality. They also pro-
posed a skeleton based linearity index called SOLI. They
have achieved more than 84% accuracy for the datasets they
studied. Marmanis et al., in [12], proposed a deep learning
approach to semantic segmentation of high resolution aerial
images. They used Fully Convolution Networks (FCNs)
and aggressive deconvolution with recycling of early net-
work layers, and finally converted into a pixelwise classifi-
cation at full resolution. They achieved 86% accuracy on
their dataset.

They are very few research in detecting and segmenting
rail network from satellige images. Maqsood et al., in [11]
developed an algorithm to detect railway track from images
taken from Google maps. They studied only a small region
instead of whole state, country or world. They combined
edge detection and line detection algorithms to detect rail-
way.

To make deep neural network work, tuning hyper param-
eters places a crutial role. Bengio in [1], discussed various
techniques to train deep neural network and tune hyper pa-
rameters.

4. Aerial Image Classification

The goal of this part of the project was to classify
whether a satellite image contains a rail track or not. The
classifier should discriminate an image that contains a rail
track from other ones. The input image is a 256 x 256 x 3
where each image tile is 60m x 60m. We are interested to
get a label for each tile whether it contains a rail track or
not.

4.1. Network Architecture

We implemented a 10 layer convolutional neural network
with 7 ConvNets and 3 fully connected networks. After
each ConvNet (except the last one), we applied a max pool-
ing layer. Also, we applied a batch normalization layer after
each layer. Table 1 summarizes the architecture of the net-
work.

4.2. Training and Hyper Parameter Tuning

We trained a network with 7 convolutional layers and 3
fully connected layers (See Table 1). First we tried larger
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Layer Size
Conv 1 3 x 3 x 96
Max-pooling 2 x 2
Conv 2 3 x 3 x 128
Max-pooling 2 x 2
Conv 3 3 x 3 x 192
Max-pooling 2 x 2
Conv 4 3 x 3 x 192
Max-pooling 2 x 2
Conv 5 3 x 3 x 128
Max-pooling 2 x 2
Conv 6 3 x 3 x 128
Max-pooling 2 x 2
Conv 7 3 x 3 x 128
FC 1 128 x 128
FC 2 128 x 64
FC 3 64 x 2

Table 1. Network architecture for image classification

number of channels (e.g., 1024), but training on this net-
work was slow and even crashed because of insufficient
memory. Then we reduced the number of channels from
1024 to 192 or 128. This enabled us to train the model. Ex-
cept for the last one, after each convolutional layer we used
a max-pooling layer to reduce the dimensionality. Also, we
applied a batch normalization layer after each convolutional
layer. The ReLu non-linearity was applied as the activation
function.

At the first run, we had a small training dataset consist-
ing of ten thousand images. Using these images we trained
the network and obtained 84% accuracy on the test dataset.
Then we created more labels of around 100 thousand im-
ages and also added learning rate decay to the model with
step size 1000 and decay of 0.96. We trained the model with
other decay rates and steps sizes (e.g., step size of 10000
and decay 0.1 and also step size 1000 with decay 0.5). Fi-
nally, the best accuracy that we obtained on the test set after
1 epoch was 96%. At the end, we increased the number of
epochs to 5 and as a result we obtained 98% accuracy on
the test set.

The bottom Figure 2 shows the progress of loss value
over one epoch. We used mini batches of size 16. When we
increased the size of mini batches to 32, the GPU ran out of
memory.

4.3. Analysis of Results and Insights

We obtained 98% test accuracy over a test dataset of size
17000 of balanced images for the classification. The top of
Figure 2 show some examples of the classification output.

We observed interesting insights for the cases where the
predications do not match the labels. For example, in left

Figure 2.

Figure 3.

of Figure 3, the image was labeled as rail but the classifier
predicts it as no rail. The reason is that the rail track is
buried under the grass and only a small part of it is partially
visible and it is likely unused. This shows that the imagery
and label dataset are not temporally in sync.

In the other example (right of Figure 3), a bridge looks
very similar to a rail track and the classifier mistakenly
marked it as rail.

5. Course-level Aerial Image Segmentation

The second phase of this project was to segment rail
tracks on aerial images where the labels are at lower resolu-
tion than the actual pixel size, hence we call it coarse-level
segmentation. Similar to classification phase, images are
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Figure 4.

Layer Size
Conv 1 7 x 7 x 96
Max-pooling 2 x 2
Conv 2 5 x 5 x 128
Max-pooling 2 x 2
Conv 3 3 x 3 x 128
Max-pooling 2 x 2
Conv 4 3 x 3 x 256
Max-pooling 2 x 2
Conv 5 3 x 3 x 128
Max-pooling 2 x 2
Conv 6 3 x 3 x64
Max-pooling 2 x 2
Conv 7 1 x 1 x 2

Table 2. ConvNets Network architecture for coarse-level image
segmentation

60m x 60m aerial images. However, at this phase our goal
was to segment each 3.5m x 3.5m of the image. We used
3.5m as the resolution size because we were able to create
large amount of labels at this resolution. Figures 4 shows
the resolution of labels (red tiles) for a 60m x 60m images.
Each image 60m x 60m includes 16 x16 labels.

5.1. Network Architecture

Since each image has 16 x 16 labels, we defined a con-
volutional neural network that reduced the dimension of the
input image (256 x 256) to the dimension of labels (16 x
16). We defined a network that consists of 7 ConvNets.
Table 2 summarizes the network architecture. We also de-
fined a DeConvNets, with 15 layers ConvNets, and 8 layers
DeConvNets, each layer followed by Batch Normalization.
Input is 256 x 256 x 3, output is 16 x 16 x 2. Table 3
summarizes the network architecture.

Layer Size Step
Conv 1 3 x 3 x 32 1
Conv 2 3 x 3 x 64 2
Conv 3 3 x 3 x 64 1
Conv 4 3 x 3 x 128 2
Conv 5 3 x 3 x 128 1
Conv 6 3 x 3 x 128 1
Conv 7 3 x 3 x 256 2
Conv 8 3 x 3 x 256 1
Conv 9 3 x 3 x 256 1
Conv 10 3 x 3 x 256 2
Conv 11 3 x 3 x 256 1
Conv 12 3 x 3 x 256 1
Conv 13 3 x 3 x 256 2
Conv 14 8 x 8 x 2048 1
Conv 15 1 x 1 x 2048 1
DeConv 1 8 x 8 x 256 1 (valid)
DeConv 2 3 x 3 x 256 1
DeConv 3 3 x 3 x 256 1
DeConv 4 3 x 3 x 128 2
DeConv 5 3 x 3 x 64 1
DeConv 6 3 x 3 x 32 1
DeConv 7 3 x 3 x 16 1
DeConv 8 3 x 3 x 2 1

Table 3. ConvNets and DeConvNets Network architecture for
coarse-level image segmentation

5.2. Training and Hyper Parameter Tuning

We started training the model with the same images that
we used to train the classification part (Section 4), but al-
most all the image were predicted as no rail. This happened
because the data was imbalanced (each negative example of
classification phase contains no positive pixel but 256 nega-
tive ones). Next, we trained using only images that include
rail network (removed negative examples). After this up-
date, the results were slightly improved but still we were
missing large number of rail tracks. Finally, we included
only images that, out of 256 coarse labels, have at least
30 pixels labeled as rail. This change improved the mod-
els performance significantly. We trained the network with
multiple learning rate decays and step sizes. Eventually the
final hyper parameters were learning rate decay of 0.96 and
step size of 1000. We used 78000 images for training the
network.

We trained both networks for two epochs. Figures 5
shows the training loss after the first and second epochs.

5.3. Analysis of Results and Insights

For the ConvNets model, coarse-level segmentation, we
obtained an overall precision of 85%, recall of 46% and
59.7% F1 for the positive examples (rail tracks). For the
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Figure 5.

Figure 6.

ConvNets and DeConvNets model, coarse-level segmenta-
tion, we obtained an overall precision of 84.%, recall of
77.8% and 81.0% F1 for the positive examples (rail tracks).
We observed interesting insights by analyzing the predic-
tions.Figures 6 shows satellite images and predicted labels
for them. The classifier sometimes gets confused between
road and rail network and segment road as rail (Figures 6).
This example shows that we might need to add more nega-
tive examples including roads.

Figure 7.

Layer Size
Conv 1 7 x 7 x 32
Max-pooling 2 x 2
Conv 2 5 x 5 x 64
Max-pooling 2 x 2
Conv 3 3 x 3 x 96
Conv 4 1 x 1 x 96
DeConv 1 3 x 3 x 64
DeConv 2 3 x 3 x 32
DeConv 3 3 x 3 x 2

Table 4. Network architecture for fine-level image segmentation

6. Fine-level Aerial Image Segmentation
The final phase of this project was to segment rail tracks

at individual pixel level. To make the predictions more ac-
curate, we used higher resolution images at this stage where
each images covers 30 x 30 meter. We created label dataset
by intersecting OSM rail tracks with a 30 x 30 meter grid.
Figure 7 shows the aerial image overlapping with the gen-
erated label from OSM data.

6.1. Network Architecture

We used a mixture of ConvNet-DeConvNet to segment
images. First we reduced the dimensionality of images from
256 x 256 to 32 x 32 using ConNets and then increased di-
mensionality from 32 x 32 to 256 x 256 using DeConvNet.
Table 4 summarizes the architecture of the network.

6.2. Training and Hyper Parameter Tuning

As the first attempt to train the model, instead of using
the tick lines covering rail tracks (Figure 7), we used the
rail tracks centerline (a thin line). However such a dataset is
hugely imbalanced. We tried to fix this by using a weighted
softmax cross entroy loss, and tried different weights for
each dataset. The results were not promising (we got below
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Figure 8.

10% recall). Keeping the same strategy, we increased the
amount of training data from 20000 to 40000 and trained
for 10 epochs, but the results did not improve.

Finally, we used the training data as tick lines that cover
the entire width of rail tracks (see Figure 7). This strategy
improved the results so that even after the first epoch the
classifier was able to approximately detect rail tracks. We
changed the learning rate decay and decay step and eventu-
ally chose 0.96 and 1000 respectively. Figure 8 show the
loss values during epoch 1 and 7.

6.3. Analysis of Results and Insights

For the fine-level segmentation, we obtained an overall
precision of 68% and recall of 70% for the positive exam-
ples (rail tracks). By analyzing the prediction results and
labels, we were able to reason about the specific pattern that
we see in the results.The top of Figure 9 shows an aerial im-
agery that contains two rail tracks as well as the predicted
results. Blue indicates predicted rail tracks and the red high-
lights no rail pixels. By analyzing the bottom of Figure 9,
we can conclude that those parts of rail tracks that were visi-
ble in the imagery were detected. However, those parts that
are under the bridge or covered by the trees shadow were
not detected. In addition, the tiny elevated regions on the
bridges median that look like the elevated part of rail tracks
are predicted as rail.

7. Future Work
As for the future work, we will use ResNets with DeCon-

vNets, Wide ResNets [18] and Mask R-CNN [3]. We are
also interested in training ensembled networks, and then use
Dark Knowledge method which was co-invented by Hinton
et al., [5], to train a single network based on original labels,
and soft labels created by ensembled models.
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