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Abstract

In this project we present a purely supervised learning
model for a gaming AI. We train a convolutional neural net-
work based on AlexNet [9] on a self-generated dataset of
“Tetris Attack” gameplay, which consists of both gameplay
footage and player inputs recorded for each frame. We de-
scribe in detail the modifications we apply to this convolu-
tional architecture to improve the performance of our model
and subsequently the game play by the computer agent. Af-
ter training the model, we then compare the agent’s perfor-
mance to various forms of random play. After training, we
report a classification accuracy of 40%. We observe that we
are overfitting our data even with regularization, and there
is an imbalance in the classified actions. Despite these is-
sues, our agents perform better than all forms of random
play. We carry out exhaustive assessment of our results
through a confusion matrix and saliency maps. We finish
with a discussion of the current shortcomings in the model
and also consider methods of building more complexity into
our model for increased robustness.

1. Introduction
One of the overarching goals of the deep learning com-

munity is to create AI that can make optimal decisions
based on raw visual and audio input. In 2014, Google
DeepMind successfully used convolutional neural networks
(CNNs) with deep reinforcement learning to teach a com-
puter to play classic score-based Atari games [12]. We pro-
pose to study a complementary problem: teaching a com-
puter to play modern games through mimicry of human ac-
tions using gameplay screenshots as input data. Primarily,
we propose training a CNN on the Super Nintendo game
“Tetris Attack” in the “endless” mode using both gameplay
frames and input keys generated from a human player (one
of the researchers).

Tetris Attack is a puzzle game which consists of a grid of
colored blocks along with a cursor. The player can move the
cursor around to swap any 2 adjacent blocks horizontally.
Whenever at least 3 blocks of the same color are placed

Figure 1: A screenshot of the endless mode gameplay of
Tetris Attack. The white outline around the purple and
green block located near the center of the screen denote the
cursor. In addition, the tops of the next rows of blocks that
are pushing the current blocks upwards can be seen near the
bottom of the screen. Each new row takes a few seconds to
fully appear on the screen.

adjacently in a row or column, these blocks disappear and
points are awarded to the player. The aim of the game is
to obtain as many points as possible by constantly mak-
ing blocks disappear as they slowly keep refilling the screen
from below (Figure 1). If any column of blocks reaches the
top of the screen (and touches the wall), the game ends. Ex-
tra points are awarded if the player manages to make com-
bos, e.g. make sets of 4 or more blocks disappear at once or
create chain reactions in which a falling block causes a set
of blocks to disappear after having landed next to 2 similar
blocks.

At any point in time the player has a choice of 6 actions:
they can press any of the directional buttons (Left, Right, Up
or Down) to move the cursor in the corresponding direction,
or they can press “A” which swaps the two blocks that the
cursor is over, or they can press “R” which accelerates the
rate at which the blocks refill from the bottom for a brief pe-
riod. Although the concept of the game is fairly simple, the
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optimal action for the player can vary wildly given a small
change, similar to how for a Rubik’s cube the action would
be very different between two scenarios in which only two
colors were swapped.

In this paper we discuss how we train and evaluate an
agent that can play Tetris Attack using a CNN whose inputs
are raw pixel values from a game screenshot. We first begin
with a brief discussion on related works in section 2. Then
in section 3 we describe in detail how our convolutional
models were trained to predict the next move by employ-
ing supervised learning and the modifications we applied to
the convolutional architecture to improve the performance
of our model and subsequently the gameplay by the com-
puter agent. We then discuss how we obtained gameplay
data and measured agent performances in section 4. We
then compare these approaches to assess the performance
of our model and dive deep into the underlying causes for
the current performance in section 5. This includes exhaus-
tive assessment of our results through visualizations such
as saliency maps and confusion matrices. Finally in sec-
tion 6 we draw conclusions from our results and discuss
future work that can be done to improve upon them.

2. Related Work
The concept of using CNNs to make real-time decisions

based on visual inputs can be applied to a variety of fields.
One of the earliest and still most active applications is in
the field of self-driving cars [1, 3, 10, 7, 2] which also in-
cludes visualizing and interpreting the decisions made by
the model [8]. Additionally, new applications have started
to emerge in other fields including robot learning manipu-
lation [18, 13] and forest trail detection [5]. The aim of all
these models is to try to create an agent that can perform
as well as a human in the desired tasks by training it us-
ing supervised learning. This is done by training a CNN
on a set of images representing what a human saw at a
given moment along with the corresponding action taken
by the human at the time. Recently, this method is also
being used to train agents to play video games. The data
for this is gathered by recording both the screen and the
buttons pressed while a human expert is playing the game.
The CNN can then be trained using only this data. This ap-
proach was already shown to be very successful in action
games, ranging from simple games where there were only
possible 2 actions [11] to more complicated games in which
there were 30 possible actions [4]. We propose to imple-
ment this method in a puzzle game with 6 possible actions.
As already alluded to in section 1, substantial work has been
done in creating video game playing agents using Deep Q-
learning networks (DQNs) [12, 15, 6, 16]. This work has in
fact created agents that can outperform humans. However
our aim, similar to the aim of Chen & Seff [4], is to work on
improving the agents trained purely by supervised learning

methods, which require much less time and resources than
methods using DQNs.

3. Methods
3.1. General Approach

We used CNNs for our classification problem, where the
input was the raw pixel values of a game screenshot, and
the output was the log unnormalized probabilities of the 6
different possible player actions (Equation 2). The entire
dataset consisted of about 17,000 screenshot/action pairs,
and our validation set consisted of 500 randomly selected
pairs from that dataset. This way we were able to use as
much of our limited data as possible to train our model. We
minimized the softmax loss on the training set (Equation 1),
which is the cross-entropy between our estimated distribu-
tion of class probabilities and the true distribution of class
probabilities (which should have p = 0 everywhere except a
p = 1 for the our correct class).

Softmax loss function:

Li = − log

(
efyi∑
j e

fyj

)
(1)

Estimated class probabilities:

P (yi|xi;W ) =
efyi∑
j e

fyj
(2)

3.2. CNN Architecture

The foundational CNN architecture for our model is in-
spired by AlexNet [9].

The first model we tried uses two small 3x3 filters joined
by 2x2 max pool layers. The convolutional layers are fol-
lowed by fully connected layers, as shown in Figure 3a. We
labeled this as the narrow model, since the total receptive
field is only 7x7 after the convolutional layers.

To improve the accuracy of our model, we modified the
architecture to capture a larger receptive field. The second
model uses 9x9 filters with stride 2 without max pool lay-
ers, followed by a 3x3 filter and then fully connected layers,
as shown in Figure 3b. We labeled this as the wide model,
since the total receptive field is 33x33 after the convolu-
tional layers.

The third model uses both the current screenshot as well
as the previous action to predict the next action (Figure 3c).
This model tries to capture the intent of the player from
the previous action, since without context, it is possible that
there could be multiple objectives that the agent can ac-
complish, where each objective may take multiple steps to
achieve. Not having this context could mean the agent will
not be able to focus on a single objective. We labeled this as
the appended model, since it appends the representation of
the image with a one-hotted version of the previous action.
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(a) The narrow model

(b) The wide model

(c) The appended model

Figure 2: Depiction of the three different CNN architectures used to train the agent.

3.3. Model training

Our models were trained and tested using the Tensorflow
framework with an Nvidia GTX 1060 GPU. We trained us-
ing stochastic gradient descent, with mini-batch sizes of 16.
We used the Adam optimizer with a constant learning rate,
as we found that annealing it didn’t improve the results. We
optimized both dropout and L2 regularization to maximize
the validation accuracy. Our final hyperparameters for all 3
models were :
• Learning rate: 1× 10−4

• β1: 0.9
• β2: 0.999
• ε: 1× 10−8

• Dropout keep probability: 0.5
• L2 regularization: 1× 10−2

To assess the performance of the models as they trained,
we monitored both the loss and the prediction accuracy of
the training and validation datasets at every 100 steps (see
subsection 5.1 for more details). We ran for a total of 10,000
to 20,000 steps, depending on the architecture.

4. Experimental Setup and Datasets
Our datasets were gameplay frames mapped to key in-

puts from a human player. We will describe two ways in
which we collected the data and discuss their pros and cons.

Initially to obtain this data, we played the game on
a computer using an emulator and open an instance of
the Keyboard Utility Tool while simultaneously capturing
frame and keyboard input data using Bandicam Screen
Recorder. A total of 15,415 frames along with their cor-

responding keypresses were captured. This method allowed
us to gather data efficiently (i.e. we would be able to get a
lot of data in a reasonable amount of time), however some
of the frames would essentially be duplicated. This would
happen because occasionally we would hold down a but-
ton for multiple frames and hence create several data points
(one for each frame) which looked almost identical.

The second way of capturing the data was using screen-
shots instead to extract frames from videos. Every time a
button was pressed, a screenshot of the gameplay would be
captured along with the corresponding button press. This
would avoid the issue of capturing multiple similar look-
ing frames for each keystroke. At first, 46,875 frames were
captured using Bandicam. However the delay time between
the button press and the screencapture was varying and so
we would not always be able to capture the correct frame
for the corresponding button press. Therefore we switched
over to a Linux operating system so that we could employ
the ’Screencapture’ and ’evdev’ packages to capture about
17,436 frames. There were still small time delays between
the button press and the screen capture (and our data still
had some noise) but the noise was minimized and the frame
to key inputs were more consistent.

In all methods, the captured frames were cropped and
down sampled (using bilinear interpolation [14, p.123-128])
to an image size of (104 x 64 x 3) which was subsequently
used to train the model. This image size was a compro-
mise of reducing the number of features (pixels) as much
as possible whilst still having the cursor be clearly visible
in each picture. The bilinear interpolation was done by in-
terpolating pixel color values and introducing a continuous

3



transition into the output even where the original material
has discrete transitions.

After collecting the data, we trained our models (de-
scribed in subsection 3.2) and evaluated the accuracy on the
validation set for each one (which we discuss in section 5).
Then we used the models to create agents and that played
the game. To do this, we first take a screenshot of the game
(using the ’Screencapture’ package similarly to when train-
ing the data). We then downsampled the image and used
it as an input for a single forward pass through our model.
The agent would then implement the action suggested by
the model. This whole procedure took approximately 50ms
to do, and was repeated until the game ended after which the
final score would be recorded. We evaluated each agent’s
final score 10 times to smooth out random noise. Our mod-
els are efficient enough that the limiting factor in the agent
speed is the time it takes to capture the screen and down-
sample it (as opposed to the forward pass through the CNN).

5. Results

5.1. Training Results

The training results for all three models appear to be
overfitting, even after trying various levels of dropout and
L2 regularization. A very high level of either dropout or L2
regularization would result in the training accuracy getting
worse without any notable improvements in the validation
accuracy. For all models the training accuracy improved to
around 90%, while the validation accuracy capped at around
40%. Both the narrow and wide models had similar training
results, where both the training and validation accuracies
improved for the first 10,000 steps or so, but soon after-
wards the training accuracy started improving very quickly
while the validation accuracy stayed constant. For the ap-
pended model, the training accuracy overfitted very easily.
Even though the validation loss goes down significantly, the
validation accuracy doesn’t improve at all.

This overfitting suggests that the data isn’t rich enough
and that we need to gather more data. For both the wide and
narrow model, the fact that the validation loss decreases for
the first 10,000 steps indicates that at that moment there is
still information to be learned from the training set. After
10,000 steps, we’ve extracted all we can from the training
set and further training will only result in overfitting. Hav-
ing more data will mean that we will have more examples
that contain various configurations the model isn’t familiar
with. One possible explanation for why even 17,000 sam-
ples isn’t enough is that the game is strategically complex.
The game requires multi-step strategic planning that re-
quires looking far in advance, rather than requiring fast and
accurate movements while looking at near future moves,
such as for games like Breakout or Space Invaders. Even
if we had a representation of the blocks themselves, finding

(a) The narrow model results

(b) The wide model results

(c) The appended model results

Figure 3: Plots showing training and validation accuracies
and losses for the various models as a function of epoch.

the optimal combination of moves is its own AI challenge.

5.2. Confusion Matrix

We calculated the confusion matrix for the wide model
in order to observe how well the model was classifying cer-
tain actions Figure 4. The model tends to predict action A
much more than any other action. For each actual action (ig-
noring R for now), the highest predicted action was either
the true action or A. (There is an exception for Up but it is
very close) This suggests that the model is over aggressively
classifying actions as A. Further analysis of the precision
and recall of each action (in Table 1) shows that A’s recall
is higher than its precision while every other action’s preci-
sion is higher than its recall. This corroborates the theory
that the model is over-aggressive in classifying actions as A
and over-cautious in classifying actions as anything else.

In the data that we collected there were very few times
that R was pressed, so there isn’t much data for the model
to work with when predicting R, which is why the model
never predicted it correctly.

Ignoring actions A and R and just looking at the direc-
tional actions, we see that the predictions are actually pretty
good. The only action that had poor classification perfor-
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Figure 4: The wide model confusion matrix.

A R left right up down
Precision 0.40 0.00 0.41 0.40 0.25 0.34

Recall 0.50 0.00 0.38 0.30 0.20 0.33

Table 1: Wide model classification model

mance was Up, whose recall was bad because it was often-
times classified as Left. A possible explanation for this is
Up was the least present directional action in the dataset, so
just like R we have fewer data points to learn from.

5.3. Saliency Maps

We computed the saliency map for the wide model in
order to observe which pixels matter for classification. This
is achieved by taking the gradient of the correct action’s
score with respect to the pixels of the image, while keeping
the weights of the model fixed [17]. By doing this we can
observe which pixels in the image correspond to the largest
change in the correct class’s scores.

In the salience maps in Figure 5, the red colors corre-
spond to where the pixels affect the scores. Brighter red
indicates larger gradients. The saliency maps seems to be
bright only where the blocks are, which indicates that the
model has learned to ignore the background. However, it
should also light up extra bright where the cursor is and
where potential combos are, but unfortunately that is not
the case. It is unclear why the brightest spots are where
they are. The best current explanation is that they are due
to noise and the lack of data richness. Given enough train-
ing examples so that we aren’t overfitting, we expect the
saliency maps to be brightest at the location of the cursor

Figure 5: Examples of saliency maps from the wide model.

Figure 6: Histogram of training data actions.

and potential combos.

5.4. Gameplay

After training, we use the predictive models to actually
play the game and compare the agents’ performances.

The first agent we test performs no actions. As expected
we consistently get 0 points.

We then test an agent with a uniform random policy,
where each of the 6 actions is sampled with 1

6 probability
during each step. This also gave very poor performances,
with an average of 6 points per game. Pressing R speeds up
the game and also gives a nominal amount of points, and
this agent presses R more than any others. This causes the
agent to die quickly, as well as get those 6 points. This agent
is never able to get a real combo.

Next we test an agent with a weighted random pol-
icy, where the probability of the 6 actions is modeled by
the probability distribution of the training dataset Figure 6.
This agent does significantly better than the uniform ran-
dom agent, mostly because it doesn’t press R as often and
wouldn’t kill itself quickly. It would oftentimes go up into
the sky where there are no combos and get stuck there. The
variance of the score ended up being very high since some-
times it would randomly get lucky combos.

We then test both our narrow and wide models, which

5



Do Nothing Uniform Random Weighted Random Narrow Model Wide Model Appended Model
Mean 0 6 132 190 212 15

Standard Deviation 0 0 179 145 197 26

Table 2: Wide model classification model performance

Figure 7: Agent performances.

both seem to have similar performance. Although they also
get lucky combos, they subjectively seem to be slightly
more consistent and deliberate than the weighted random
agent. In addition these agents tend to consistently keep the
cursor on top of the blocks and rarely get stuck in the sky
doing nothing. As a result, the scores for both the narrow
and wide models are slightly higher than the scores for the
weighted random agent. Consistent with the analysis done
with the confusion matrix, the model tends to press A a lot,
and would sometimes press it multiple times in the row,
even if there are no combos available in the current loca-
tion. Sometimes this would go on for 10+ moves. Another
interesting observation is that sometimes it would look like
the agent is trying to reach for a goal a few steps away, but
then all of a sudden change directions to do something else.
One possible explanation for this is that since the model has
no history of the previous moves, at every step the agent is
starting over to look for a combo, which makes it unable to
pursue a goal for multiple timesteps.

Lastly we tested the appended model, whose purpose
was to mitigate this ’short term memory loss’ problem, but
its performance ended up being very poor. This agent does
seem to keep a more stable movement trajectory by doing
multiple consistent directional actions in a row, but would
end up getting stuck on the edges a lot (e.g. trying to move
down when it’s already at the bottom). Getting stuck seems
to be the main reason why the performance of the appended
model was so bad compared to the others. The full summary
of our results can be seen in Table 2 and Figure 7.

6. Conclusions and Future Work
In this project we trained agents to play Tetris Attack us-

ing only supervised learning, and then compared the agent’s
performance to various forms of random play. We used
CNNs of various architectures to classify the predicted next
action given the current game screenshot. We discovered
that we are overfitting our data even with regularization, and
there is an imbalance in the classified actions. Despite these
issues, our agents perform better than all forms of random
play.

There are many ways we can improve the agent’s perfor-
mance. One obvious action that would lead to better results
is to gather more data. We used around 17,000 samples to
train our models, and the overfitting indicates that we may
not have enough.

Since the confusion matrix analysis shows that there are
many false positive A predictions, we can change our cost
function such that it penalizes false positive A’s more. This
should reduce the aggressiveness with which the model pre-
dicts A, and hopefully reduce the amount of time the agent
is stuck pressing multiple A’s consecutively.

In our appended model we just concatenated the post-
convolutional representation of the image with a one-hotted
representation of the action. This resulted in concatenat-
ing a 512 dimensional vector with a 6 dimensional vector,
which led to an unbalanced amount of representation be-
tween the image and the action. Also, just using the one-
hotted representation of the action failed to capture any pos-
sible features between the actions in a higher dimensional
embedding space. One possible solution is to embed the
actions into a 512 dimensional embedding space in order
to both balance the amount of representation and to capture
potential higher level action features.

We would like to thank Joe Chen for his valu-
able help and insight. All the code used to write
this paper is available at https://gitlab.com/
cs231n-spring2017.
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