
Playing Go without Game Tree Search Using Convolutional Neural Networks

Jeffrey Barratt
Stanford University

353 Serra Mall, Stanford, CA 94305
jbarratt@cs.stanford.edu

Chuanbo Pan
Stanford University

353 Serra Mall, Stanford, CA 94305
chuanbo@cs.stanford.edu

Abstract

The game of Go has a long history in East Asian coun-
tries, but the field of Computer Go has yet to catch up to
humans until the past couple of years. While the rules of
Go are simple, the strategy and combinatorics of the game
are immensely complex. Even within the past couple of
years, new programs that rely on neural networks to evalu-
ate board positions still explore many orders of magnitude
more board positions per second than a professional can.
We attempt to mimic human intuition in the game by cre-
ating a convolutional neural policy network which, without
any sort of tree search, should play the game at or above
the level of most humans. We introduce three structures
and training methods that aim to create a strong Go player:
non-rectangular convolutions, which will better learn the
shapes on the board, supervised learning, training on a
data set of 53,000 professional games, and reinforcement
learning, training on games played between different ver-
sions of the network. Our network has already surpassed
the skill level of intermediate amateurs simply using su-
pervised learning. Further training and implementation of
non-rectangular convolutions and reinforcement learning
will likely increase this skill level much further.

1. Introduction
In all perfect information, discrete games, there exists

a policy which takes in the current game state and returns
the optimal move for that state for the current player, which
will result in the highest utility under perfect play. Although
neural networks can theoretically approximate any function,
including this policy, doing so in practice is essentially im-
possible. The ancient board game Go is one such perfect
information game which has been studied for years in com-
puter science and has been one of the hardest turn-based
perfect information games to get good performance in.

A game of Go consists of two players alternating plac-
ing stones on a 19 by 19 board, with the player with black
stones starting. Any stones that are directly adjacent to each

other are part of the same group. If any group is completely
surrounded by opponent stones, it is taken off of the board,
as shown in Figure 1. The goal of the game is to surround
as much territory as possible.

(a) The two white stones can
be captured, because there is
only one free adjacent spot.

(b) The two stones were
captured by playing at the

circled point.

Figure 1: Capturing stones.

While the rules of go are simple, mastering the game
is not. Almost all commercial Go playing programs rely
heavily on some form of tree search to explore outcomes of
certain moves in a game, most commonly Monte Carlo Tree
Search (MCTS) [5]. However, these programs don’t seem
to fully understand the game, instead relying on brute force
search to make good moves.

In the past two years, many companies have tried to cre-
ate their own Go playing programs, such as DeepZen, Fin-
eArt, and, most notably, DeepMind’s AlphaGo. Each of
these programs uses a combination of convolutional neural
networks and Monte Carlo Tree Search to obtain a level of
play at or above top professionals [17]. However, like com-
mercial go players, these programs are exploring millions
of states per second across many computers and countless
GPUs, far surpassing the number of positions calculated out
by the human player they are playing against.

2. Related Work
Computer Go, the creation of Go-playing agents for

computers, has existed as early as 1968 [24]. As men-
tioned previously, before convolutional neural networks be-
came popular, MCTS was the most powerful method to play
Go. These techniques generally required a lot of enhance-
ments and optimizations. For example, MCTS Solver to de-

1



tect forced as described by [22] allowed Go bots to quickly
solve games. Rapid Action Value Estimation used in [16]
allowed bots to identify duplicate game states, thereby sig-
nificantly reducing the number of computations necessary.
The problem with these techniques was that there were too
many states to evaluate. Therefore, programs such as intro-
duced in [4] and [11] were only truly competitive on 9 × 9
boards while only capable of achieving moderate success
on 19× 19 boards.

The field incrementally grew steadily in a similar fash-
ion until 2015, when AlphaGo first beat Fan Hui, a pro-
fessional player, making a huge skill jump that hadn’t yet
been seen [17] in Computer Go. This led to a huge boom
in convolutional neural network-based architectures such
as DeepZenGo, FineArt, and of course AlphaGo [9]. The
inspiration for using convolutional neural networks comes
from the fact that the state of a Go board can be treated as an
image. While they rely on a policy network much like this
paper describes, their strength comes from exploration of
millions of board positions to gain an advantage over their
human opponents.

Previous work has been done on using only convolu-
tional neural network to play Go. They offered boosts over
traditional MCTS but were not able to achieve the same
level of play as AlphaGo. In 2008, [19] created a Convo-
lutional Neural Network to play Go using an ensemble of
networks. They were only able to achieve a then state-of-
the-art 36.9% accuracy with a relatively small number of
parameters (104).[3], in 2014, improved this to 41 and 44%
validation accuracy on different data sets. Concurrently,
[13] devised a deeper and larger network that achieved 55%
accuracy. The first two papers used supervised learning, tied
weights, and a relatively shallow network, which resulted
in accuracies much below what we and the creators of Al-
phaGo and [13] have observed. [13] had a model around the
size of AlphaGo’s policy network (13 convolution layers),
and had comparable results.

More recent approaches such as [21] have introduced
fancier convolutional neural networks that rely on long term
predictions for extended play. [21] achieved a slightly bet-
ter accuracy of around 56%-57% and placed 3rd overall at
the KGS Computer Go Competition.

It’s important to remember that deep convolutional neu-
ral networks are not just used to play Go. Many games such
as Chess, Stratego, Hexagon and, more obviously, Atari
games can be treated as images with labels being where to
move next [12] [18] [15] [14]. This shows the flexibility of
deep convolutional neural networks as a tool to model many
hard to play (and hard to understand) games.

3. Problem Statement
The goal of this project is to create human-level under-

standing of the game by creating a player which does no

tree search whatsoever; to simply rely on understanding the
board position and “intuition”, rather than brute force cal-
culation. We plan to train a convolutional neural network
which tries to approximate the previously discussed opti-
mal policy function and as a result create a strong go player
which is able to beat traditional MCTS-based programs.

The rankings in Go scale from 25 kyu (worst rank) to
1kyu (best kyu rank), and from 1 dan to 9 dan (best rank).
The 1 dan rank is one rank above the 1 kyu rank. Hope-
fully, a rank of at least 1 dan can be achieved with our pro-
gram, tested through websites such as the Online Go Server
(OGS), as well as with in-person matches to ballpark its
strength. Playing our player against existing go programs
with known ranks can also be a good way of determining an
approximate rank for our player.

4. Methods
4.1. Cross-Shaped Convolutions

Figure 2: 5 × 5 convolutions with cross-widths of 1 and 2
respectively.

In addition to rectangular convolution filters, we imple-
mented a novel cross-shaped convolution filter as shown in
Figure 2.

(a) If the white player wants
to save the stone, she must
play on the squared point.

(b) The black player can
eventually capture by playing

on the squared point.

(c) Attempts at escape are
useless, as seen in moves

1-11 above.

(d) The white stones will
eventually be captured, if
white continues to play.

Figure 3: An example ladder on a 7x7 board.

These convolutions were motivated by patterns in Go

2



called “Ladders”. Ladders are a capturing concept in Go
that only appear in low-amateur level play, with some ex-
ceptions [2], but are considered in all levels of play. They
are never played out because they are disastrous for one of
the players involved to continue. The ladder shape contin-
ues across the board in a diagonal fashion, as seen in Figure
3.

However, if a white stone is present, the ladder can be
broken, allowing white to escape, as seen in Figure 4. The
board position in all diagonal directions must be considered
in a game of go, and thus we aimed to solve this problem
by developing a diagonal-shaped convolution.

(a) The ladder situation is
different here, because white

has a stone in the way,
marked with a triangle.

(b) The ladder, if played out,
results in white’s escape. An
attempt at capture failed for

black.

Figure 4: Capturing stones.

These cross convolutions are built inside traditional n×n
convolutions with the unnecessary weights zeroed out. To
further describe cross convolutions, we first define the no-
tion of the cross-width and cross-area. The cross-width,
c, of a cross convolution is the thickness of the line as it
spans from one corner to another. The cross-area is de-
fined as the set SCA that contains all the coordinates cov-
ered by a c × c block moving from one corner to the op-
posite corner. The cross-area contains the active regions of
the convolution. The cross width must fall within the range
1 ≤ c ≤ dn/2− 1e. Anything beyond this range will create
a zero or normal convolution respectively.

In practice, it’s easier and to zero out values based off of
points that are not in SCA because a c × c block moving
from one corner to another tends to create a lot of overlap.
We realize this task is made even easier by the fact that the
points not in SCA simply form four triangles on each side.
Our problem is therefore simplified down to creating a filter
that zeros out the coordinates of the four triangles. Once
the filter has been created, it is then used throughout the
duration of the model to ensure only the relevant weights
are utilized.

By creating these cross convolutions, we introduced
the cross-width as another hyper-parameter that we can
tune. Adjusting these hyper-parameters determines how our
player visualizes the board with respect to the ladder struc-
ture. Previous non-MCTS based techniques usually repre-
sent ladders and other structures as feed-input features (and

only these features), but we wish to focus on representing
the general state of the board so our player can play effec-
tively from beginning to end [6]. However, we might con-
sider analyzing patterns as [8] does and inserting another
layer in a way that doesn’t conflict with our current inputs.

4.2. Cross Layer

Figure 5: A single cross convolutional layer.

We did not directly incorporate our cross convolution di-
rectly in the network as its own individual layer. Instead, in-
spired by Google’s Inception Module as shown in [20], we
decided to incorporate our model in a modular “cross layer”
as shown in Figure 10. Cross convolutions are generally
very sparse. Therefore using cross convolutions in isola-
tion would more destructive than constructive. As such, the
cross layer introduces the cross convolution as a concatena-
tion to our original filters. Therefore, we do not loose any
meaningful data. Additionally, concatenating the pre-cross
convolution input is very reminiscent of ResNet potentially
helped in strengthening gradient flow [7].

4.3. Model

Our final model consists of a 23-layer convolutional neu-
ral network, using a completely new architecture. Our first
layer consists of a 7 × 7 convolutional filter with stride 1,
pad 3 and width 128. This feeds directly into the 3 × 3
layers, as well as a 1-width cross convolution, as discussed
below. The 1 × 1 convolutions surrounding the 39 × 39
cross convolutions serve to lower the number of parame-
ters in the 39× 39 layer, a technique similar to the popular
SqueezeNet architecture [10]. The input is also fed directly
into a squeeze and 5-width cross convolution layer. All out-
puts are then concatenated and sent to the next layer. Layers
5-11 are all 3× 3 convolutional filters with stride 1 and pad
1, each with 256 layers. We add another 7 × 7 convolu-
tion and squeeze cross convolutions because there is some
evaluation of board positions present in the data once we
are through layer 11 that we would like to know for the sit-
uation of the ladder. Layers 16-22 are similarly all 3 × 3

3



Figure 6: Our model.

convolutional filters with stride 1 and pad 1, each with 256
layers. The final layer is a 1 × 1 convolution with only 1
filter, used to flatten the baord position into a 19× 19 score

vector.
We previously had a fully connected layer to evaluate fi-

nal board positions. However, we discovered that the a sig-
nificant portion of training was spent at this layer. There-
fore, we instead took the results of the final layer as the
scores for each move at the given point on the 19×19 board.
We select from the list of scores the highest legal move.

4.4. Training

We began training our network by method of supervised
learning, using the 9 million of the 10 million state-move
pairs discussed in section 5: Dataset and Features. 1 mil-
lion of the 10 million state-move pairs were separated off
to be used as a test set. We trained the network using
vanilla stochastic gradient descent using a learning rate of
α = 0.001, and decayed the learning rate by 0.5 every
epoch. We ran the training using an NVIDIA 960. Train-
ing the network to its current state, over the course of four
epochs, took five days.

We were unfortunately out of time by the end of the
project to train our network using reinforcement learning.
However, future work over this summer will likely be con-
ducted to further strengthen the player in real-game sce-
narios as opposed to the mimicking strategy currently em-
ployed in the supervised learning network.

4.5. Interfaces and Evaluation

Figure 7: An example position while playing against the
network. This interface was developed as part of the project.

As part of the project, we developed a visual interface to
be able to play against the player as well as use it as a tool

4



to evaluate board positions. The interface, shown in Figure
7, communicates with the network to both give it the rota-
tional symmetries, as discussed in the next section, and any
other board features that are necessary. Once the network
finishes its forward pass, the interface iterates through the
scores given by the player, removing any illegal moves, and
plays the highest-scoring move. We also implemented an
interface that shows the top 10 probabilities given to cer-
tain moves on the board, as shown in the results section.
These implementations allowed us to visualize and under-
stand what our player was “thinking” in any given board
position, as well as play against it to evaluate its playing
strength.

4.6. Symmetries

Because all board positions in Go play out the same way
when flipped or rotated, our player employs an ensemble
of eight passes through the neural network using all eight
symmetries of the two-dimensional board. Because we did
not employ weights that were locked to each other in a sym-
metric fashion, as in [3], this helped our player play in the
early game more generally, as some games start in a differ-
ent corner, but are still equivalent in terms of symmetry.

5. Dataset and Features
Our data set consists of 53,000 professional games from

as early as the 11th century to 2017 in Smart Game For-
mat (SGF) [1]. We implemented parsers using sgfmill [23],
a python library for simulating sgf games, into 10 million
state-move pairs to be used in the training process.

Each state is represented as a 19× 19× 24 vector. Each
position on the board has 24 one-hot features, as shown in
Table 1:

Table 1
Number of Feature Layers Feature Layer Contents

1 Our Stone Present
1 Opponent Stone Present
1 Blank Space
1 Legal Move
4 Liberties After Move Is Played
8 Time Since Last Move
8 Number of Liberties

The first three layers simply indicate presence of one of
our stones, an opponent stone, or a blank space on the 19×
19 board. The fourth layer simply shows the legality of a
move to the network.

Features 5-24 follow a slightly different structure. To
preserve the non-linearities between different numbers of
liberties (See Figure 8 for an example of liberties), number
of moves since, etc, we opted for a system where a feature
would be “on” if a stone had one liberty, the next feature

(a) Edges do not count as
liberties.

(b) Shared liberties within a
group only count once.

Figure 8: Number of liberties a stone has.

layer would be “on” if a stone had two liberties, and so on
and so forth. Any stone with more than eight liberties would
have the eighth feature layer “on”. A similar idea holds
for number of liberties after playing on a certain position,
which may well be our only “lookahead search”, as well
as times since move was played, which simply turns on the
feature for the point that was played one move ago, two
moves ago, etc.

This feature structure is similar to what is used by Al-
phaGo [17].

Figure 9: An example board position with all stones with 4
liberties marked. This is the 17th feature layer.

We developed a method of visualizing features, as shown
in Figure 9. These features, while showing no more than
basic rules of the game to the player, such as liberties and
legality of moves, allowed the player to look deeper into
positions much in the same way that a professional player
would.

6. Results
Through supervised learning and our novel cross convo-

lutional architecture, we were able to attain a classification
accuracy of 47% on the test set, better than the standard set
in [3]. Given the massive amount of test data we had, we

5



were able to achieve this result over 5 epochs (1 million it-
erations). We also tested the player on a popular go server
OGS (Online Go Server), where the player was able to beat
10kyu amateur players. It was also able to beat the well-
known bot GnuGo, an MCTS-based algorithm which has a
skill level of about 11kyu.

Figure 10: An example position from game 1 of Ke Jie
vs AlphaGo, played recently. The move played by Ke Jie
(marked with a probability of 50.3%), was guessed cor-
rectly by our network.

We were even able to evaluate our player by seeing
what moves it predicted in the recent Ke Jie vs. AlphaGo
matches. Only a couple of the moves played by both play-
ers were outside the top 10 considered moves by our net-
work, indicating the strong skill in Go it has acquired by
only looking at the current board position.

7. Conclusion

We have successfully created a player that is capable
of playing intuitively along. Amazingly, we have shown
through experimentation that our player is also capable of
understanding basic patterns, formations, and playing ag-
gressively.

As mentioned previously, we were not able to finish im-
plementing reinforcement learning. Therefore, finishing
reinforcement learning will be our next milestone to im-
prove our player. Future work also involves expanding the
model so it plays more effectively, understands the game at
a deeper level, and knows when to pass or resign.

We also plan to host our player on an online Go server

such as OGS or KGS so we can gather more evaluations for
our player.

References
[1] Sensei’s Library: Go Databases. http://senseis.

xmp.net/?GoDatabases.
[2] Sensei’s Library: Lee Sedol - Hong Chang Sik

- ladder game. http://senseis.xmp.net/
?LeeSedolHongChangSikLadderGame.

[3] C. Clark and A. Storkey. Teaching deep convolutional neural
networks to play go, 2014.

[4] M. Enzenberger, M. Muller, B. Arneson, and R. Segal. Fue-
goan open-source framework for board games and go engine
based on monte carlo tree search. IEEE Transactions on
Computational Intelligence and AI in Games, 2(4):259–270,
2010.

[5] S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver,
C. Szepesvári, and O. Teytaud. The grand challenge of com-
puter go: Monte carlo tree search and extensions. Communi-
cations of the ACM, 55(3):106–113, 2012.

[6] T. Graepel, M. Goutrié, M. Krüger, and R. Herbrich. Learn-
ing on Graphs in the Game of Go, pages 347–352. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[8] R. Herbrich. Machine learning in industry. http:
//mlss.tuebingen.mpg.de/2015/slides/
herbrich/herbrich.pdf. 68–87.

[9] Z. Huang. Googles alpha go now has a serious game-playing
rival from tencent. https://qz.com/936654/googles-alpha-go-
now-has-a-serious-game-playing-rival-with-tencents-jueyi-
or-fineart/.

[10] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and 0.5mb model size, 2016.

[11] C.-S. Lee, M.-H. Wang, G. Chaslot, J.-B. Hoock, A. Rimmel,
O. Teytaud, S.-R. Tsai, S.-C. Hsu, and T.-P. Hong. The com-
putational intelligence of mogo revealed in taiwan’s com-
puter go tournaments. IEEE Transactions on Computational
Intelligence and AI in games, 1(1):73–89, 2009.

[12] J. Lewis. Playing super hexagon with convolutional neural
networks (milestone).

[13] C. J. Maddison, A. Huang, I. Sutskever, and D. Silver. Move
evaluation in go using deep convolutional neural networks.
CoRR, abs/1412.6564, 2014.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Play-
ing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

[15] B. Oshri and N. Khandwala. Predicting moves in chess using
convolutional neural networks.

[16] A. Rimmel, F. Teytaud, and O. Teytaud. Biasing Monte-
Carlo Simulations through RAVE Values, pages 59–68.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,

6

http://senseis.xmp.net/?GoDatabases
http://senseis.xmp.net/?GoDatabases
http://senseis.xmp.net/?LeeSedolHongChangSikLadderGame
http://senseis.xmp.net/?LeeSedolHongChangSikLadderGame
http://mlss.tuebingen.mpg.de/2015/slides/herbrich/herbrich.pdf
http://mlss.tuebingen.mpg.de/2015/slides/herbrich/herbrich.pdf
http://mlss.tuebingen.mpg.de/2015/slides/herbrich/herbrich.pdf


V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks and
tree search. Nature, 529(7587):484–489, January 2016.

[18] S. Smith. Learning to play stratego with convolutional neural
networks.

[19] I. Sutskever and V. Nair. Mimicking Go Experts with Convo-
lutional Neural Networks, pages 101–110. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2015.

[21] Y. Tian and Y. Zhu. Better computer go player with neural
network and long-term prediction. CoRR, abs/1511.06410,
2015.

[22] M. H. Winands, Y. Björnsson, and J.-T. Saito. Monte-carlo
tree search solver. In Proceedings of the 6th International
Conference on Computers and Games, CG ’08, pages 25–
36, Berlin, Heidelberg, 2008. Springer-Verlag.

[23] M. Woodcraft. Sgfmill. https://github.com/
mattheww/sgfmill, 2017.

[24] A. Zobrist. Feature extraction and representation for pattern
recognition and the game of go. 1970. 152.

7

https://github.com/mattheww/sgfmill
https://github.com/mattheww/sgfmill

