
DeepWhat?! End-to-end models for task-oriented visual dialogue with
reinforcement

Charles Lu∗

Stanford University
charleslu@stanford.edu

Elias Wu†

Stanford University
eliwu@stanford.edu

Abstract

Development of systems for dialogue-centered tasks such
as visual question answering and chatbots have become
an active area of research in deep learning, facilitated by
the capabilities of recurrent architectures. However, most
past research has framed such tasks as a supervised learn-
ing problem. This is not ideal, considering that there are
often countless appropriate responses to an utterance, de-
pending on the context. As a result, supervised learning ap-
proaches have only been successful in dialogue tasks with
either very limited context (such as question answering) or
with inconsequential conversation (chatbots). Furthermore,
in the context of task-oriented dialogue, supervised learning
techniques fail to encourage agents to achieve the relevant
goal through expedient dialogue.

In our project, we implement systems to play the Guess-
What?! game, a collaborative game involving task-oriented
visual dialogue. We first train models representing the two
players of the game using a supervised dataset of 150,000
games. We then build upon recent research in using rein-
forcement learning to improve agents, initially trained using
supervised techniques, to fine-tune one of the three models
within the entire system, by fixing the two remaining models
and using them as ground truth, in an unsupervised fashion.

1. Introduction

Language, especially as it relates to visual recognition,
is perhaps the most important contributor to human devel-
opment. It comes as no surprise, then, that systems with
the ability to communicate naturally with humans have been
one of the top goals of artificial intelligence research.

∗Charles Lu is a student in CS 231N and CS 234. Both authors
contributed equally apart from the reinforcement learning portion of the
project, which Charles Lu contributed. A report with additional focus on
visual aspects of the project has been submitted for CS 231N.
†Elias Wu is a student in CS 231N.

Most research thus far has tackled dialogue-related prob-
lems in a supervised learning setting—models are trained
with a corpus of human-generated dialogues, and evaluated
on their ability to regurgitate a similar response to the one
in the dataset. This practice is commonplace when train-
ing machine translation systems, chatbots, visual question
answering systems, and models for other tasks. However,
this is not necessarily the ideal way to train, considering the
vast space of possible natural language dialogues. For in-
stance, in the chatbot setting, given some utterance, or even
a complete conversation history, there are countless valid
responses.

Many existing dialogue systems also lack context. Con-
text, in human conversation, is especially important to de-
termining the following dialogue. As such, supervised
training of these systems limit the context in which these
methods can respond, and as such real-world applications
of such methods are delegated to menial tasks such as basic
question answering, task management, or chatbots useful
only for small talk.

The artificial intelligence research community has, in re-
cent years, introduced various tasks which include context
or a goal. For instance, the task of visual question answer-
ing [6], introduced in 2015, requires agents to correctly an-
swer natural-language questions about a visual scene. This
allows for more meaningful evaluation and supervised train-
ing, since the goal of correctly answering questions about an
image vastly decreases the number of acceptable responses
to a prompt. This trend has continued; Johnson et al. intro-
duced CLEVR [18], a dataset which tests various aspect of
visual reasoning in a natural language setting.

Notably, visual question answering tasks, such as those
introduced by CLEVR, often involve simple responses, of-
ten just a few words or less, allowing them to be easily eval-
uated. The task of image captioning [9] [26] is an exception.
In this setting, tasks are still grounded in the context of the
input image, but outputs can be of arbitrary length. As such,
evaluation of a model’s performance on the image caption-
ing task requires the use of contrived metrics such as the
BLEU score [20] or CIDEr [24]. Research has found that

1



such evaluation metrics do not perfectly correlate with hu-
man evaluations. [8][5]

Another motivator for work on goal-driven dialogue
tasks has been due to findings that previous successful vi-
sual question answering models have been able to exploit
underlying biases in training data to correctly answer ques-
tions without reasoning or compositionality.[18][3][27][15]
Agrawal et al. [4] introduced C-VQA, a compositional split
of the original Visual Question Answering dataset[6], and
found that many VQA models significantly decreased in
performance when using this dataset.

2. Problem

In this project, we tackle GuessWhat?! [14], a collab-
orative game involving visual context and goal-driven di-
alogue. Though the task is fairly artificial, it provides an
excellent test bed for research in the areas of visual un-
derstanding and reasoning, natural language dialogue gen-
eration, collaboration between agents, and reinforcement
learning. Though systems for playing the entire game are
complex and contain many moving parts, evaluation of a
system is straightforward.

Well-performing agents on GuessWhat?! must solve
several problems. Agents within the full system must be
capable of understanding a visual scene, generating goal-
driven questions from this visual context, correctly answer
questions about an image, and ultimately determine a cor-
rect object within an image based on a question-answer di-
alogue.

2.1. GuessWhat?! game

GuessWhat?! is a cooperative, interactive two player
game introduced by de Vries. et al. [14] The two places,
the questioner and the oracle, are both given an image
which contains a visual scene. However, only the oracle has
knowledge of a previously chosen, ”correct” image within
the scene. The questioner must ask natural language ques-
tions, to which the oracle can only respond ”Yes”, ”No”,
or ”N/A”. Once the questioner determines that it is ready
to guess the object (or the questioner asks the maximum
allowed number of questions), a set of possible objects in
the scene is revealed to the questioner. In each image, the
questioner must guess from a variable number of possible
objects, ranging from 2 to 20.

The GuessWhat?! dataset is composed of 150K human-
played games with a total of 800K visual question-answer
pairs on 66K images. The images and object annotations are
a subset of the Microsoft COCO dataset [19] which have
a sufficient number of objects in the scene. Notably, the
dataset was verified by [14] to not significantly skew the
distribution of images in the original dataset.

Figure 1. A sample GuessWhat?! game. The correct object,
known only to the oracle, is randomly selected from a set of be-
tween 2-20 possible objects within the image. In this case, the
correct object is the bottom-most orange highlighted in the image.

2.2. Literature review

Due to the relatively new dataset, only one additional
paper has been published using the GuessWhat?! dataset.
Our project builds upon this follow-up research by the team
which introduced the dataset.[22] They first independently
train agents for each of three tasks—question generation,
question answering (oracle), and guessing—with the super-
vised learning approach. Then, fixing the oracle and guesser
models, they use a reinforcement learning approach to fine
tune the question generation model.

Similar work has been done on a related task by Das
et al., in which two agents are fine-tuned through RL
techniques[13] to play an image guessing game introduced
in their Visual Dialog dataset.[12].

3. Methods

3.1. Implementation

Our code is implemented in Python 3.5 with PyTorch
0.1.12.[1] We used no starter code; everything was imple-
mented from scratch apart from a few code snippets for
extending PyTorch functionality.[28][11] Our models were
trained on Google Cloud virtual machines with Tesla K80
GPUs and Microsoft Azure NV6 virtual machines with
Tesla M60 GPUs.

2



3.2. Supervised training

We first train models for the question generation, oracle,
and guesser tasks through supervised learning with the ex-
amples in the GuessWhat?! dataset. Notably, the player in
the questioner role is modeled by two separate models, one
for question generation and one for guessing.

3.2.1 Questioner

Figure 2. A well-performing architecture we experimented with
for the questioner model.

The question generation model is trained to predict a new
question qj+1 word-by-word given an input consisting of an
image I and the previous questions and answers (q, a)1:j .
Specifically, it models a probability distribution

p(wji |w
j
1:i−1, (q, a)1:j−1, I.

We implement our model as a sequence-to-sequence
model.

Given an image I, our model first obtains its ResNet-50
features[16] (a 2048-dimensional vector), whose weights
are fixed (the model proposed in [14] uses VGG16 FC8
features[21], which is a 4096-dimensional vector). The
ResNet-50 features are concatenated to the input to the
model’s recurrent cell at each time step.

A recurrent neural network using gated recurrent units
(GRU)[10] or long short-term memory units (LSTM)[17] is
then used to generate questions word by word. The input to
the RNN is initialized to the start token <start> for the
first time step. During training time, the inputs and outputs
are entire dialogues from the training set (with the outputs
shifted by one time step). The embedding for the ground
truth word at the previous time step is used as input in future
time steps. During evaluation, this embedding is simply the
previously chosen word.

When the previous output is the <?> token represent-
ing the end of the previous question, the embedding corre-
sponding to the answer is used. During training time, this
is the answer given in the dataset; during evaluation, the
answer returned by the oracle is used. Finally, the <stop>
token represents that the questioner is done asking questions
and is ready to guess the object.

The output of each recurrent cell is fed into a fully con-
nected network followed by a softmax layer to form a prob-
ability distribution over possible tokens in the vocabulary.

The question generation model is trained by minimizing
the total cross-entropy loss for each token in each question:

LQ = − log p(q1:J |a1:J , I) (1)

= −
J∑
j=1

Ij∑
i=1

log p(wji |w
j
1:i−1, (q, a)1:j−1, I) (2)

During evaluation, we implement random sampling as
well as a greedy approach, which simply selects the to-
ken with the highest predicted probability. Beam search
was found by [22] to lead to worse results than random
sampling, though their architecture was simpler. Though
the questioner is trained on entire dialogues during training
time, during evaluation, the hidden state of the questioner
when it terminates a question with <?> and we extract the
question to be answered by the oracle.

3.2.2 Oracle

Figure 3. A well-performing architecture we experimented with
for the oracle model.

The oracle is trained to predict one of the three answers
(”Yes”, ”No”, or ”N/A”) given an input consisting of an
image, the bounding box and category of the correct object,
and the question itself. In particular, the model models a
distribution over the three possible answers:

p(a|I, q, c∗, xbox).

Note that we did not experiment with including past
question-answer history as input to the oracle model, and
instead only input the most recent question.

We implement the oracle model with a fully con-
nected neural network with several hidden layers and soft-
max output which takes up to five concatenated inputs—
the encoded question, the object category embedding, the

3



image features, the image features of the cropped ob-
ject (using its bounding box annotation), and spatial in-
formation representing the object’s bounding box. The
question is encoded using a GRU-based recurrent net-
work. We also use a trainable embedding for the ob-
ject’s category. As before, the image features are extracted
from ResNet-50. Finally, the bounding box is a vector
[xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox] ∈
R8, where the image coordinates are normalized to be in
the range [−1, 1].

de Vries et al. [14] did some work in experimenting
with performance of the oracle given different subsets of the
available information (the question, image, object category,
object crop, and object spatial information). Their work did
not include a model which included all five pieces of infor-
mation (only models which used up to four). Notably, they
found that excluding the object crop features from the input
to oracle model resulted in better performance!? Though
excluding the object crop reduces the model’s ability to an-
swer questions about the object’s color and texture, they hy-
pothesize that the better results are a result of imperfect fea-
ture extraction from the crop, which can often be from a
very small bounding box.

For our oracle model, we implemented a model which
uses all five pieces of information as input, in addition to an
oracle ”lite” model which does not use the object crop. Sim-
ilar to the previous results, our oracle ”lite” model performs
on par with our full oracle model. Therefore, we use the
oracle ”lite” model for all future experiments for the task as
a whole due to increased efficiency and decreased memory
and image preprocessing requirements.

3.2.3 Guesser

Figure 4. A well-performing architecture we experimented with
for the guesser model. Our final model uses 2 GRU layers instead
of the single layer shown.

The guesser is trained to predict the correct object, given the
input image, dialogue of questions and answers, and infor-
mation about each possible object.

First, the question-answer sequence is encoded using a
GRU-based recurrent network. we also compute an em-
bedding for each of the possible objects. The embedding
for the objects in the image are calculated from the spatial
representation as mentioned in the oracle model, as well as
new trainable embedding for the object’s category. More
precisely, this embedding is created by concatenating the
trainable category embedding with the bounding box repre-
sentation. Each concatenated vector is then input to a fully
connected layer to generate the final embedding for the ob-
jects. Similarly to the model for the oracle, we do not in-
clude the object crops in the computation of the embedding.

We then compute the dot product between the output of
the hidden state of encoder at the last time step and the em-
bedding for each objects in the image. The result of this dot
product for each object is fed into a softmax layer, which
computes a probability distribution over the objects.

The structure of the guesser’s task presented a difficult
engineering challenge. Not only are the dialogues vari-
able length like the oracle and questioner, but the guesser
also has to deal with a variable number of possible objects
in an image. Beyond implementing a dynamic computa-
tion graph, one way we addressed this issue while still al-
lowing for the efficiency of batching was to implement a
CurriculumDataLoader, which batched training ex-
amples in ascending order of number of possible objects.
Another positive side effect of this implementation was to
train the guesser with curriculum learning [7], first showing
the guesser simpler problems with fewer possible objects
before moving on to more difficult problems with up to 20
possible objects.

3.3. Fine tuning with reinforcement learning

After training the question generation, oracle, and
guesser models, the parameters for the oracle and guesser
models are fixed. The trained oracle and guesser are then
used to tune the question generation model in a reinforce-
ment learning setting.

3.3.1 Markov decision process formulation

The GuessWhat?! game can be framed as a Markov deci-
sion process.[22]

The state st at some point in the game is a tuple contain-
ing the image, all previous question-answer pairs, and all
words already generated in the current question utterance,
i.e. st = ((wj1, . . . , w

j
i ), (q, a)1:j−1, I) where j is the cur-

rent question.
Each action ut is one of the words in the vocabulary, or

the <stop> or <?> token.

4



The questioner therefore models a stochastic policy
πθ(ut|st) where θ refers to the parameters of the underlying
neural network.

Each state-action pair is assigned a reward r(st, ut). We
use a zero-one reward function suggested by [22] which re-
quires minimal prior knowledge:

r(st, ut) =

{
1 if argmaxo(Guesser(st)) = o∗ and t = T

0 otherwise

where T is the length of the trajectory, i.e. the questioner
receives a reward of 1 in the last question token it outputs if
the guesser chooses the correct object.

3.3.2 Policy gradient fine tuning

As with [22], we elect to use policy gradient to fine tune
the questioner due to the large action space of over 2000
possible words. We update the parameters of the questioner
network θ to maximize the expected return

J(θ) = Eπθ

[
T∑
t=1

γt−1r(st, ut)

]

where γ ∈ [0, 1] is the discount rate and the initial state st
is drawn from some prior distribution over possible images
and objects.

The gradient ∇J(θh) at time step h is estimated from
a batch of sample trajectories Th sampled from the policy
πθh :[23]

∇J(θh) =

〈
T∑
t=1

∑
ut∈V

∇θh log πθh(ut|st)(Qπθh (st, ut)−b)

〉
Th

.

We use the REINFORCE algorithm[25], which removes
the inner sum over actions:

∇J(θh) =

〈
T∑
t=1

∇θh log πθh(ut|st)(Qπθh (st, ut)−b)

〉
Th

=

〈
J∑
j=1

Ij∑
i=1

∇θh log πθh(w
j
i |w

j
1:i−1, (q, a)1:j−1, I)

(Qπθh ((q, a)1:j−1, I), w
j
i )− b)

〉
Th

.

(3)

Previous work [22] has used a one layer fully connected
network to estimate the baseline b (for variance reduction).
The network is trained with an L2 loss with respect to the
discounted reward of the trajectory starting at each time
step. In our case, we simply use a moving average to main-
tain the baseline, which seems to work well.

Model Train Val Test

1 GRU, 2 FC 78.94% 73.63% 73.62%
1 GRU, 2 FC+dropout 65.28% 64.55% 64.65%
1 GRU, 3 FC 79.95% 75.5% 75.23%
2 GRU, 3 FC 80.02% 75.78% 75.44%
Dominant class 52.6% 53.8% 49.1%
Previous best 82.8% 78.9% 78.5%

Table 1. Oracle model accuracy. Accuracy figures for ”dominant
class” and ”previous best” are from [14].

Model Train Val Test

1 GRU, 2 FC 64.21% 51.44% 51.58%
2 GRU, 2 FC 64.04% 58.69% 58.84%
2 GRU, 2 FC+dropout 58.31% 48.72% 50.26%
3 GRU, 2 FC 52.47% 48.03% 49.47%
1 LSTM, 2 FC 68.54% 56.43% 51.32%
2 LSTM, 2 FC 60.28% 51.71% 45.53%
Random 17.1% 17.1% 17.1%
Human 91.0% 90.8% 90.8%
Previous best 72.1% 62.1% 61.3%

Table 2. Guesser model accuracy. Accuracy figures for ”previous
best” are from [14], with ”random” and ”human” inferred from the
dataset.

4. Experiments and results
In training the oracle model, we determined that using

two GRU layers as well as three fully connected layers pro-
duced best validation results. Accuracy was determined
by how many questions the model answered correctly. We
achieved within 5% of state-of-the-art results.

A full table of our results on small changes to the oracle
model is presented in table 4.

In training the guesser model, we determined that us-
ing two GRU layers for the question/answer pairs and two
fully connected layers after concatenating the category em-
bedding and spatial information produced the best valida-
tion results. Accuracy was determined by the number of
times the guesser guessed the correct object, given human-
generated dialogue in the GuessWhat?! dataset. A table of
our results for the guesser model is presented in table 4.

In training the questioner model, we found that an archi-
tecture with 1 LSTM layer followed by a two-layer fully
connected net for each output performed well. We also
found that fine-tuning with reinforcement learning signifi-
cantly improves results.

The questioner is difficult to evaluate, since it cannot be
accurately evaluated in a supervised fashion. For instance,
simply attempting to match human-generated questions in
the GuessWhat?! dataset is a poor metric of a questioner’s
performance. Therefore, we evaluate the questioner by fix-
ing our best oracle and guesser models, and reporting the
accuracy the guesser achieves using questions generated by

5



Model Seen im-
age, seen
object

Seen im-
age, new
object

Unseen im-
age

1 LSTM, 2
FC, greedy

26.1% 22.4% 20.1%

1 LSTM, 2
FC, sample

20.3% 22.6% 20.7%

1 LSTM,
2 FC,
sample,
fine-tuned

28.7% 25.2% 27.0%

Previous
best

N/A N/A 34.0%

Random N/A N/A 17.1%
Table 3. Questioner model accuracy. No figures are included for
work in [22] since the authors compare questioner performance to
an unknown human performance baseline.

the questioner. A table of our results for the questioner
model is presented in table 4.

5. Discussion

Our results indicate that it is possible to train well-
performing models for all tasks required to play Guess-
What?!. In particular, we achieve results within 5% of the
state-of-the-art for both the oracle and guesser tasks. This
is especially impressive given that our models were trained
for at most 20 epochs within a few hours each.

Our best questioner model generated questions which al-
lowed our best guesser model to guess the correct object
over 20% of the time. This is particularly notable, as this
required not only a trained questioner model, but also a
trained oracle and guesser model to work together in tan-
dem. As such, evaluating the questioner model requires
evaluating not only the questioner by itself but the system
containing all three models as a whole.

Even more notably, our results corroborate the hypothe-
sis that models trained in a supervised fashion can be used
to further fine-tune the system’s overall performance in an
unsupervised reinforcement learning setting. For instance,
by fixing the oracle and guesser models and treating them as
ground truth (even though they are far from ground truth in
practice) allowed us to improve the questioner such that the
overall system performance increased by almost 7%. The
questioner training and fine-tuning process was also limited
to less than three hours; furthermore, the fine-tuning pro-
cess was limited by a PyTorch memory leak issue which
significantly decreased the pace of fine-tuning. Our mini-
mal training time indicates that there is still room for further
improvement, even with the same models and techniques.

5.1. Future work

Future work which would likely immediately lead to im-
proved results is training and fine-tuning for extended peri-
ods of time. In addition to training for longer, another obvi-
ous avenue for future work would be to increase model ca-
pacities. For instance, when preprocessing the vocabulary,
we only use the top 2̃700 most common words, whereas
previous work [14] used over 5000. We also hope to design
more complex models which allow additional information,
such as object crops for the guesser and previous question-
answer tuples for the oracle, to be input without decreasing
performance due to noise. Perhaps most worrying is the
fact that our current guesser model (as well as the guessers
introduced in previous work) do not include image informa-
tion at all; though previous work found this lack of image
information to not be significantly detrimental, we believe
it is low-hanging fruit.

Beyond simply swapping out and plugging in new ”Lego
blocks” in our model architectures, we hope to further ad-
dress more fundamental design challenges. One particular
avenue we plan to explore is the use of Gumbel-softmax as
opposed to traditional softmax, which may allow a better
formulation of the loss for the questioner. Furthermore, in
the reinforcement learning setting, we hope to consider bet-
ter approaches for addressing the scalability of the approach
and sparsity of the reward. In our case, with an action space
of size less than 3000, our current policy gradient approach
is still viable; however, for problems with even larger action
spaces, scalability is a significant problem.

We use PyTorch as it provides numerous advantages over
alternative frameworks such as TensorFlow [2], such as
dynamic computation graphs which significantly simplify
code and increase speed of development. Nevertheless, Py-
Torch is still very new, and as such, lacks certain capabil-
ities. Most notably, in our case, fine-tuning the questioner
with REINFORCE gave rise to a nondeterministic internal
cuDNN memory leak, and our workarounds significantly
decreased the pace of fine-tuning. We also needed to im-
plement other functionality like TensorFlow’s gather nd,
a masked cross-entropy loss for our sequence-to-sequence
model for the questioner [11], and a method for extract-
ing final hidden states from PyTorch PackedSequence
objects [28]. In many of these cases, relevant issues were
last updated within the last week. We hope that as PyTorch
quickly develops and addresses these issues, our implemen-
tations can be improved.

Acknowledgments

The authors would like to thank the teaching staff of both
courses—CS 231N and CS 234—for offering a captivating
and organized course. We especially enjoyed the poster ses-
sions and appreciate the feedback we received. Finally, we

6



appreciate the generous donation of computation resources
by Microsoft Azure and Google Cloud, without which our
models could not have been trained in time.

References
[1] Pytorch, 2017.
[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[3] A. Agrawal, D. Batra, and D. Parikh. Analyzing the be-
havior of visual question answering models. arXiv preprint
arXiv:1606.07356, 2016.

[4] A. Agrawal, A. Kembhavi, D. Batra, and D. Parikh. C-vqa:
A compositional split of the visual question answering (vqa)
v1.0 dataset. arXiv preprint arXiv:1704.08243, 2017.

[5] P. Anderson, B. Fernando, M. Johnson, and S. Gould. Spice:
Semantic propositional image caption evaluation. In Eu-
ropean Conference on Computer Vision, pages 382–398.
Springer, 2016.

[6] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,
C. Lawrence Zitnick, and D. Parikh. Vqa: Visual question
answering. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2425–2433, 2015.

[7] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-
riculum learning. In Proceedings of the 26th annual interna-
tional conference on machine learning, pages 41–48. ACM,
2009.

[8] C. Callison-Burch, M. Osborne, and P. Koehn. Re-evaluation
the role of bleu in machine translation research. In EACL,
volume 6, pages 249–256, 2006.

[9] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta,
P. Dollár, and C. L. Zitnick. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015.

[10] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio.
On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

[11] J. Choi. Pytorch workaround for masking cross entropy
loss. https://gist.github.com/jihunchoi/
f1434a77df9db1bb337417854b398df1, 2017.

[12] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M.
Moura, D. Parikh, and D. Batra. Visual dialog. arXiv
preprint arXiv:1611.08669, 2016.

[13] A. Das, S. Kottur, J. M. Moura, S. Lee, and D. Batra. Learn-
ing cooperative visual dialog agents with deep reinforcement
learning. arXiv preprint arXiv:1703.06585, 2017.

[14] H. de Vries, F. Strub, S. Chandar, O. Pietquin, H. Larochelle,
and A. Courville. Guesswhat?! visual object dis-
covery through multi-modal dialogue. arXiv preprint
arXiv:1611.08481, 2016.

[15] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and
D. Parikh. Making the v in vqa matter: Elevating the role
of image understanding in visual question answering. arXiv
preprint arXiv:1612.00837, 2016.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[18] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei,
C. L. Zitnick, and R. Girshick. Clevr: A diagnostic dataset
for compositional language and elementary visual reasoning.
arXiv preprint arXiv:1612.06890, 2016.

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European Conference on Com-
puter Vision, pages 740–755. Springer, 2014.

[20] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a
method for automatic evaluation of machine translation. In
Proceedings of the 40th annual meeting on association for
computational linguistics, pages 311–318. Association for
Computational Linguistics, 2002.

[21] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[22] F. Strub, H. de Vries, J. Mary, B. Piot, A. Courville,
and O. Pietquin. End-to-end optimization of goal-driven
and visually grounded dialogue systems. arXiv preprint
arXiv:1703.05423, 2017.

[23] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour,
et al. Policy gradient methods for reinforcement learning
with function approximation. In NIPS, volume 99, pages
1057–1063, 1999.

[24] R. Vedantam, C. Lawrence Zitnick, and D. Parikh. Cider:
Consensus-based image description evaluation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4566–4575, 2015.

[25] R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

[26] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudi-
nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In Interna-
tional Conference on Machine Learning, pages 2048–2057,
2015.

[27] P. Zhang, Y. Goyal, D. Summers-Stay, D. Batra, and
D. Parikh. Yin and yang: Balancing and answering binary
visual questions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5014–
5022, 2016.

[28] H. Zheng. add functions in nn.utils.rnn to get the last
step of a packedsequence object - pytorch pull request
#1375. https://github.com/pytorch/pytorch/
pull/1375/files, 2017.

7

https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
https://github.com/pytorch/pytorch/pull/1375/files
https://github.com/pytorch/pytorch/pull/1375/files

