
Classifying food items by image using Convolutional Neural Networks

Derek Farren
Stanford University

dfarren@stanford.edu

Abstract

Grocery items image classification is a well researched
problem. However, until the recent announcements from
Amazon regarding their ”Just walk out” technology used in
Amazon Go, most Computer Vision techniques used in the
state of the art research did not involve neural networks.
However, recently a research group from the University of
Freiburg released the most complete grocery items image
dataset openly available. They also developed the most ac-
curate classification model for that dataset using convolu-
tional neural networks. I this research I propose a model
to classify the The Freiburg Groceries Dataset that is more
accurate than the state of the art.

1. Introduction
Amazon Go’s recent announcement has brought atten-

tion to grocery image detection in Computer Vision. The
shopping experience, according to Amazon, is made possi-
ble by the same types of technologies used in self-driving
cars. That is, computer vision, sensor fusion, and deep
learning technologies. With ”Just Walk Out” technology,
users can enter the store with the Amazon Go app, shop for
products, and walk out of the store without lines or check-
out. The technology automatically detects when products
are taken or returned to shelves and keeps track of them in a
virtual cart. When the shopping is finished, users leave the
store and their Amazon account is charged shortly there-
after.

At the heart of this technology, there is a Computer Vi-
sion model classifying grocery items by their image caught
in a video camera. This work proposes a model to accom-
plish such a task.The model proposed is more accurate than
the state of the art [1].

This work also proposes a greedy algorithm that im-
proves the network performance by changing its archi-
tecture. This algorithm is called Guided Prunning and it
proved to be very helpful in situations where there is some
large areas of convexity in the network architecture vs. net-
work accuracy function.

2. Related Work

A fair amount of work has been done using Computer
Vision on groceries datasets.

A real-time product detection system from video is pre-
sented in [2]. Some effort for matching database images
on an input image is shown in [3] by using scale-invariant
feature transform (SIFT)[4] vectors in an efficient manner.
Another study focuses on logo detection in natural scenes
by spatial pyramid mining [5].In [6], the authors apply
planogram extraction based on image processing by using
a combination of several detectors. SIFT matching and op-
tical character recognition are some of them.

However, because most of the grocery image datsets are
privately owned, not much improvement has been done in
this area until last year soon after Amazon announced their
Amazon Go stores.

A new dataset was released. The Freiburg Groceries
Dataset [1] is a dataset consisting of 5,000 256x256 RGB
images covering 25 different classes of groceries, with at
least 97 images per class. The authors collected all images
from real-world settings at different stores and apartments.
In contrast to existing groceries datasets, this dataset in-
cludes a large variety of perspectives, lighting conditions,
and degrees of clutter. Overall, the images contain thou-
sands of different object instances. Examples for each class
can be seen in Figure 2. This dataset is currently the state
of the art used in grocery Computer Vision testing.

The authors also proposed a classifier on this dataset,
where they re-trained the CaffeNet architecture and
achieved a mean accuracy of 78.9%.

Also, this work proposed Guided Prunning, a greedy al-
gorithm that improves the network performance by manip-
ulating some Hyperparameters. Hyperparameter optimiza-
tion is an important research topic in machine learning, and
is widely used in practice [9] [10] [11] [12]

. Despite their success, these methods are still limited in
that they only search models from a fixed-length space. In
other words, it is difficult to ask them to generate a variable-
length configuration that specifies the structure and connec-
tivity of a network. In practice, these methods often work

1



Figure 1: Example of images in the dataset.

better if they are supplied with a good initial model [10] [11]
[12]. There are Bayesian optimization methods that allow to
search non fixed length architectures [14] [15], but they are
not very flexible. The best available method is a Reinforced
Learning approach to hyperparameter tuning developed by
Google [8].

3. Method

The proposed model is simpler than the CaffeNet model
used by the state of the art, and achieves an accuracy of
89.12%, which is an almost 11 percentage point improve-
ment from the state of the art.

After many failed attempts to tune a CNN that performed
better than the state of the art I decided to implement the
state of the art and prune or add layers and modify parame-
ters until I make it perform better. I realized that the original
model was overfitting, so I could probably increase its per-
formance.

Tests were taking too long on a one GPU machine so I
created an algorithm for a more guided and efficient testing.
That algorithm is called Guided Prunning and is shown in
Algorithm 1.

The Guided Prunning algorithm is a greedy algorithm
that improves the model’s accuracy step by step. It takes
an array with all the parameters of the staring model and
returns a new array with parameters that make that starting
model perform better. I used the following parameters:

1. The filter size of each of the convolutional layers.

2. The number of filters of each of the convolutional lay-
ers.

3. The number of convolutional layers.

4. The size of each of the fully connected layers.

5. The number of fully connected layers.

On each iteration, the model adds δ to a parameter. This
δ is a function of the parameter itself. For number of layers
and filter sizes, δ randomly return a value ∈ {1,−1}. For
fully connected layers size, δ randomly returns a value ∈
{512,−512}

I did not tune the hyperparameters with this algorithm
because the space is much larger for these parameters and
thus the algorithm would take too long.

4. Experiments
Initially, since the state of the art was using CaffeNet,

I implemented that as an initial baseline. Then, I im-
plemented other popular CV models, namely Alexnet and
Googlenet. However, I wasn’t able to get a better perfor-
mance from these models. Probably one of the reasons is
that tuning them required long hours of training with the
limited GPUs I had.

Because of that, I picked the best model I had (CaffeNet)
and started tuning it with Guided Pruning (shown in Algo-
rithm 1). This approach allowed me to improve the original
CaffeNet’s performance considerably.

4.1. CaffeNet: The original model presented in [1]

Caffe[7] was developed by the Berkeley Vision and
Learning Center and community contributors. Caffe is
easily customizable through configuration files, easily ex-
tendible with new layer types, and provides a very fast Con-
vNet implementation (leveraging GPUs, if present). It com-
prises 5 convolutional layers, each followed by a pooling
layer, and 3 fully-connected layers. I customized the origi-
nal CaffeNet so that the model takes input image size (256,



Figure 2: CaffeNet model used in [1]

256, 3) and the final fully connected layer instead outputs
25 scores - one for each class.

This model was the state of the art and had an accuracy
of 78.9% on the Freiburg dataset in [1]. I was able to tune
the model up to an accuracy of 77.03

4.2. Alexnet

I implemented at a modified version of
AlexNet, a CNN architecture that uses ReLU
non linearities. The architecture is as fol-
lows:convrelupoolnorm2convrelu3poolfcreludropout2fc,
followed by a softmax loss function. The original model
takes inputs of size (227,227,3) and outputs scores for 1000
different classes (for the ImageNet challenge). I instead
modified it so that the model takes input images size (256,
256, 3) and the final fully connected layer instead outputs
25 scores - one for each class.

After tunning, this model had an accuracy of 73.2%.

4.3. GoogleNet

GoogLeNet is a 22-layer CNN, containing Inception
Modules. It uses convolutions, max-pooling layers, ReLU
non-linearities, and the softmax loss function. Each in-
ception module consists of multiple convolutions (with
different filter sizes) and max-pools that are concate-
nated together. The original GoogleNet takes inputs of
size(224,224,3) and outputs scores for the 1000 ImageNet
classes. I modified the model to have an input size(256,

256,3) and a final FC layers to output scores for 25 classes,
as I did with AlexNet.

This model achieved an accuracy of 75.64%. It is worth
mentioning that training this model takes about 4 hours us-
ing one GPU.

4.4. Guided Prunning

Running the Guided Prunning algorithm on 100 itera-
tions produced the results shown in figure 3.

The model’s architecture after Guided Prunning ran was
the following:

Input: 256x256x3 image

1. 11x11x3 CNN layer + Max Pool + Batch Norm

2. 5x5x16 CNN layer + Max Pool + Batch Norm

3. 3x3x96 CNN layer + Max Pool

4. 2048 Fully connected layer

5. 2048 Fully connected layer

Output: 25 logits
All activation functions are ReLu, i.e. the element-wise

maximum between 0 and the input x.The use of this func-
tion allows a deep network to be trained more quickly, as
its gradient is non-saturating. The discovery of this activa-
tion function was a key in deepening convolutional neural
networks.



Algorithm 1: Guided Prunning
Data:
parameters = array with all parameters in the model;
model(parameters) = CaffeNet;
best accuracy = 0;
best parameters = parameters;
Result:
best parameters

while current accuracy ≤ goal accuracy do
param index = take random index from parameters;
parameters[param index]+ = δ(param index);
accuracy = model(parameters).accuracy;
if accuracy > current accuracy then

bast accuracy = accuracy;
best parameters = parameters;

end
end

ReLu(x) = max(x, 0)

Since the original model was overfitting, I used a 50%
drop-out rate on every ReLu layer. The drop-out layers
serve as regularizers in the learning process, preventing
overfitting. I tried using an L2 regularization but the results
were worst. The final output is a probability prediction for
each of the 25 classes using Softmax. The Softmax layer
output is:

σ(
∑
i

wixi + b)

This gives, for each class i, P (yi = 1;xi, w). For each
sample x, the class i with the maximum Softmax output is
the predicted class for sample x.

Batch normalization is a means of dramatically reduc-
ing training convergence time and improving accuracy [16].
The CNN found by Guided Prunning, had a batch normal-
ization layer after the first two convolutional-max pool lay-
ers. These layers really helped not only in speeding the
model, but also seem to make the model more accurate as
can be seen in Figure 3.

I trained the networks using the Softmax loss function,
which is defined here for each image i. fyi is defined as
the value of the Softmax function for the correct class of
the image, and the other fi are the values of the Softmax
function for the incorrect classes:

Li = − log
efyi∑
j e

fj

Finally, in each iteration, I used back-propagation to cal-
culate the gradient with respect to the loss at each layer,
then used an Adam policy to adapt the learning rate and

change in each layers weights over time. Adam was a much
better choice than vanilla gradient descent because Adams
convergence rate is much faster than vanilla gradient de-
scent and computational resources was a bottleneck in my
research. l is the learning rate I specify at that layer, and m
and v are initialized to 0. The Adam algorithm updates the
weights vector. This update takes into account the concept
of momentum of the learning rate and an approximation of
acceleration.

m = β1m+ (1− β1)
∂w

∂L

v = β2v + (1− β2)(
∂w

∂L
)2

w = w − lm√
v + ε

The resulting model has a testing accuracy of 89.12%
and is, interestingly, less complex than the original Caf-
feNet model. The model was trained for 100 epochs with
a batch size of 500. The training evolution can be seen in
Figure 4. It is very interesting to note that there is no over-
fitting in this model. That is because it is a smaller model
than the original CaffeNet, and it’s better suited for this kind
of images where the setting and lighting doesn’t change so
much. A grocery store usually has good lighting and its
products are front faced and visually uncovered.

There are a few interesting takeaways from this experi-
ment. First, each time that Guided prunning showed a con-
siderable increase in the model’s accuracy was when a layer
was dropped. This shows that the original model was too
deep and complex for the problem. Second, the filter size
did not make much of a relative difference in improving the
model’s performance.



Figure 3: Guided prunning running evolution: Note the steps.
These happened when the algorithm dropped a full convolu-
tional layer from the original model. In this case, due to over-
fitting, a smaller model was more accurate.

Figure 4: Training evolution of our proposed model: note that
there is no overfitting. The final model is simpler, yet more
accurate.

Most saliency maps show that the main feature the model
used to classify is either text or edges.

This results show that using CV in a grocery environ-
ment is completely reasonable and that all the hype behind
Amazon Go is funded.

5. Conclusion
This work presents an approach for retail product clas-

sification on grocery shelves and uses a novel dataset. I
propose a model that is simpler and more accurate than the
state of the art by 11 percentage points. I also propose
Guided Prunning, a greedy algoritm that prunes a convo-
lutional neural networks looking for a more accurate one.

This research tested different CNN architectures (Caf-
feNet, AlexNet, GoogleNet, and the network found by
Guided Prunning) and surprisingly the simplest network
was the most accurate one. A big takeaway is how sensi-
tive to overfitting CNN are.

6. Future Work
In a future work I plan to evolve Guided Prunning into a

Reinforced Learning algorithm. Work has been done in this
area [8]. One big challenge is the large resources needed to
run such models.

References
[1] Philipp Jund, Nichola Abdo, Andreas Eitel, Wolfram

Burgard. The Freiburg Groceries Dataset. 1, 2, 3

[2] A. Auclair, L. D. Cohenand N. Vincent, How to use
SIFT vectors to analyze an image with database tem-
plates, Adaptive Multimedia Retrieval, ser. Lecture
Notes in Computer Science, N. Boujemaa, M. De-
tynieckiand A. Nrnberger, Eds., vol. 4918. Springer,
224236, (2007). 1

[3] T. Winlock, E. Christiansenand S. Belongie,
Towardreal-time grocery detection for the visually
impaired,CVPRW,49 56, (2010).

[4] D. G. Lowe, Distinctive image features from scale-
invariant keypoints, International Journal of Computer
Vision, vol. 60, no. 2, 91110, (2004).

[5] J. Kleban, X. Xieand W. Y. Ma, Spatial pyramid mining
for logo detection in natural scenes, IEEE International
Conference on Multimedia and Expo (2008). 1

[6] A. Opalach, A. Fano, F. Linaker, and R. Groen-
evelt, Planogram extraction based on image processing,
Patent US 8 189 855, (2012). 1

[7] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, Trevor Darrell, ”Caffe: Convolutional Ar-
chitecture for Fast Feature Embedding.” 1

[8] GBarret Zoph, Quoc V. Le, ”Neural Architecture
Search With Reinforcement Learning.” 1



Figure 5: Saliency map of a random set of images

[9] James Bergstra, Remi Bardenet, Yoshua Bengio, and
Balzs Kgl. Algorithms for hyper-parameter optimiza-
tion. NIPS, 2011. 2

[10] James Bergstra and Yoshua Bengio. Random search
for hyper-parameter optimization.JMLR, 2012. 2, 5

[11] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
”Practical Bayesian optimization of machinelearning
algorithms”. In NIPS, 2012. 1

[12] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan
Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa
Patwary, Mostofa Ali, Ryan P. Adams, et al. ”Scalable
bayesian optimization using deepneural networks”. In
ICML, 2015. 1, 2

[13] Shreyas Saxena and Jakob Verbeek. ”Convolutional
neural fabrics”. In NIPS, 2016. 1, 2

[14] James Bergstra, Daniel Yamins, and David D Cox.
Making a science of model search: ”Hyperparameter
optimization in hundreds of dimensions for vision ar-
chitectures”. ICML, 2013. 1, 2

[15] Hector Mendoza, Aaron Klein, Matthias Feurer,
Jost Tobias Springenberg, and Frank Hutter. Towards
automatically-tuned neural networks. In Proceedings of
the 2016 Workshop on Automatic Machine Learning,
pp. 5865, 2016.

[16] S. Ioffe and C.Szegedy. Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift.arXiv preprint arXiv:1502.03167, 2015. 2

2

4


