Imitation Learning with THOR

Albert Liu
albertpl@stanford.edu

Abstract

The recently proposed House Of inteRactions (Al2-
THOR) framework [35)] provides an simulation environment
for high quality 3D scenes. Together with THOR, a Target-
driven model is introduced to improve generalization ca-
pabilities. Imitation learning or learning by demonstration
is known to be more effective in communicating task. In
this project, we extend the Target-driven model by explor-
ing both established and state-of-the-art imitation learning
methods. First we detail our network architecture and train-
ing procedure. Then we show that end-to-end deep neu-
ral network based imitation learning methods is applicable
to the high-dimension environment with raw visual inputs,
such as THOR. Finally we analyze our experiments and re-
sults.

1. Introduction

The use of Robots are rapidly expanding in industrial
production and our everyday life. However, autonomous
Robot control remains challenging, which is the task to op-
timize the trajectory according to a control policy automati-
cally. It has been active research topic in vision and control
domains for many years[2] [L8]. Lately, with the advent of
deep learning in computer vision and reinforcement learn-
ing, visual inputs based learning methods are gaining pop-
ularity [19].

In this project, we focus on the problem of navigat-
ing in a simulated indoor environment to determine the
desired path between a starting point and a given target
point using only visual inputs. This problem can be nat-
urally phrased as a reinforcement learning problem that the
robot autonomously discover an optimal behavior (i.e. pol-
icy) through trial-an-error interaction with its environment.
Usually the learned policy through Deep Reinforcement
Learning (DRL) approach is dependent on current state and
the goal is hardcoded in neural network [24]. Therefore it
is task specific and has to be re-trained for a new task even
the model may share common network architecture, which
is not computationally efficient. This is especially prob-
lematic for mobile robot navigation, where the network has

to be re-trained for each new goal. It is typically very ex-
pensive to go through every single goal. Zhu et al. [35]
proposes a target-driven model that combines observation
images and task goal into inputs and learn a policy that is
conditioned on both and thus avoid re-training for each task.
This works well when the tasks share similar statistics of
trajectories. However, one drawback for such approach is
that it is often hard or impractical to specify reward func-
tion for policy search [20]] [[10] in practice.

Imitation learning methods eliminate the needs of hand-
crafting reward functions which can be more difficult than
providing demonstrations. We aim to extend the target-
driven model by exploring the imitation learning methods
in which agents learn by observing expert’s demonstrations.
Imitation learning turns policy search into supervised learn-
ing and the supervision is provided through expert’s demon-
strations. The methods we explored include

e Dataset Aggregation (DAgger) [27] add more on pol-
icy data to expert’s trajectories by labeling agent’s tra-
jectories

e Generative Adversarial Imitation Learning (GAIL)
[14] which provides effective way of recovering ex-
pert’s rewards functions and then extract a policy

The training of our methods takes as input: (i) agent’s
observation images/task goal image, and (i) expert’s tra-
jectories, e.g. pairs of observation images/task goal image
and expert’s actions. We evaluate our methods over naviga-
tion results collected from the simulation environment [35]].

2. Related Work

Imitation learning is the problem that agents learn by ex-
pert demonstrations. Recent survey papers include (Hus-
sein et al. 2017 [[15]; Argall 2009 et al. [3]] ; Calinon 2009
[4]]). Two main paradigms within imitation learning are be-
havior cloning, in which agents mimic expert’s behaviors
and the policy is trained directly on expects’ trajectories
(e.g. Bojrski et al. 2016 [S]); and inverse reinforcement
learning (IRL) (Ng and Russell, 2000 [25]) recovers reward
functions from expert demonstrations. Behavior Cloning
suffers compounding error (Ross et al. [27] [26]) since the

distributions of state-action pairs following agent’s policy in
test time does not necessarily match the training trajectories
from expert demonstrations. DAgger (Ross et al. [27]]), one
of the common solutions, bring agent’s trajectories distri-
bution closer to expert’s trajectories distribution by asking
expert to label additional data points from agent’s sample
trajectories. On the other hand, many IRL algorithms can
be very computationally expensive to run because that it is
a nested RL problem by nature, i.e. we need to find the op-
timal reward functions and then derive the optimal policy
given the reward function. Generative Adversarial Imita-
tion Learning (GAIL, Ho and Ermon 2016 [14] uses gen-
erative model and discriminative classifier to find a policy
that match the distribution of expert’s state-action pairs and
doesn’t assume the knowledge of environment dynamics.
Very recently Duan et al. (2017 [10]) introduces a frame-
work that can learn policy by a single demonstration of a
task. However it is not clear if it is makes sense for naviga-
tion tasks where demonstrations for one target is not directly
applicable for a different target. We will explore Behavioral
Cloning, DAgger and GAIL in our experiments.

Reinforcement Learning (RL, Sutton and Barto, 1998,
[32]) has long been applied in robotics tasks. Recent sur-
vey papers include (Kober et al. 2009 [18]); Li 2017 [21])).
RL enables robots to find the optimal behavior through trial
and error experience with its environment. RL and Deep
RL (DRL) has seen great success recently. For real robots,
(Levine et al. 2015 [19])) use DRL to learn policy that map
the raw images into torques at robot motors. (Silver et al.
2016 [30]) combine Behavioral Cloning, policy gradient RL
and Monte-Carlo tree search to beat the world best GO play-
ers. However, RL tends to need a large number of trajecto-
ries and typically reward functions are manually engineered
[10]. The former is time consuming and we will show it in
our experimental results. The latter is often considered sig-
nificantly harder than providing a demonstrations (Ng and
Russell, 2000, [23])).

In (Mnih er al. 2016 [23], multiple agents are trained
asynchronously with the shared parameters. Similarly, in
our experiments, we will train several agents and update the
shared parameters concurrently.

(Bonin-Font et al. 2008 [6]) gives a survey on meth-
ods for visual navigation, where two major approaches are
discussed: map-based navigation and map-less navigation.
Map-based methods require a global map of the environ-
ment to make navigation decisions (e.g. [7] or recon-
structs a map on the fly [8] [33]. Map-less methods (e.g.
[9] [28]]) focus on obstacle avoidance given the input im-
ages. The target driven model and our extension doesn’t
require a prior map and considered map-less.

Figure 1. Sample images from four different scenes in the THOR
(from left to right, top to bottom) : bathroom_02, bedroom_04,
kitchen_02, living_room_03

Figure 2. Viewpoints of a sample navigation task in the kitchen_02
scene, from one starting point (top left) to the task goal (bottom).
At each viewpoint, the action that the agent takes is represented as
a blue arrow at bottom right of the image.

3. Dataset and Feature

We use The House Of inteRactions (THOR) framework
[33] as our environment, which provides high quality im-
ages as viewpoints when agents interacts with the environ-
ment. Figure [I] illustrates sample images from different
scenes. Figure[2shows a sample visual navigation task. We
then describe the details of the environment model before
we introduce the methods and experiments.

1. Dynamics: There are 20 scenes with 130~1000 im-

ages per scene and we use four scenes: bathroom_02,
bedroom_04, kitchen_02, living_room_03. Each scene
space is represented as a grid-world with a constant
step size of 0.5 meters. Each node in the grid has four
possible connections to its neighbors at most, mapping
to four viewpoints with 90 degree apart. The transition
table is deterministic in our experiments and we use it
to derive expert policy.

2. State space: Each viewpoint at each node is repre-
sented by one image with a resolution of 84 x 84 x 3.
We call this agent observation and this is not to be con-
fused with the observation in MDP and will be clari-
fied further. The task goal is also represented as one
of such images which gives the flexibility for spec-
ifying any new instances of the tasks. The idea of
having task goal and agent observation interchange-
able and sharing common network layers across tasks
makes it possible to transfer knowledge from one nav-
igation task to another. Essentially both agent obser-
vation and task goal are concatenated as the MDP ob-
servation/state. The rest of the report will use obser-
vation to mean agent observation for simplicity. We
take transfer learning approach and use the extracted
2048D feature vector for each image which is pre-
trained on ImageNet with Resner-50. During training,
the two ResNet-50 are frozen and therefore CNN codes
from the ResNet-50 is our image features. And we use
4 frames of images to represent the observation and
goal respectively. So the state space is a high dimen-
sion space with a dimensionality of 2048 x 4 x 2.

3. Actions space: THOR models actions at a higher
level of abstraction above physics and mechanics de-
tails. For our navigation tasks, it considers four ac-
tions: moving forward, moving backward turning left
and turning right with a constant step size. Each for-
ward/backward move agent exactly one node away
from its current location and the viewpoint is updated
accordingly, assuming the action is a legal move. If
the action is not defined, e.g. agent is against the
wall and the action is moving backward, the agent
stays put and viewpoint doesn’t change. There-
fore the action space is a discrete set of commands,
i.e. forward, backward, left, right

4. Reward design: As we use Imitation learning, we don’t
need to manually engineer the reward functions.

4. Methods
4.1. Problem Formalization

We consider the problem as minimizing the steps the
agent takes to go from any start location to a given target

point by executing sequence of actions. Each sequence con-
tains finite number of tuple {agent observations s, actions a,
rewards 7} and one common goal g. We call the pair s, g the
state of the agent. Each sequence begins by drawing an ini-
tial location (one node in the scene space), from distribution
1(so) and form the initial state so, g. On each subsequent
stept = 1,2,..., agent draw an action a; from distribu-
tion 7(a|s:, g). m is called stochastic policy which gives
probabilistic mapping from observation-goal to action. The
environment then returns reward and determine the next lo-
cation, defined by transition table based function env(s, a),
which is unknown to the agent. The terminal state (s, g) is
the location agent arrives at goal g or whenever agent per-
form maximum number of steps in one sequence. This can
be described by

50 ~ (50
ag ~ 7(also, g

ay ~ w(alsi, g

)
)
s1,70 = env(sg, ap)
)
s2,m1 = env(so, ao)

ar—1 ~ m(alsr-1,9)

sp,r7—1 = env(S7—1,ar—1)

The sequence of state, actions, rewards, goal makes one tra-
jectory 7. We define expert as the agent that has access
to the transition table and therefore can derive the optimal
policy (i.e. expert policy mg), e.g. using depth first search
algorithm. The problem objective is defined as minimizing
T with respect to 7, given the expert trajectories 7 which
is sampled from expert policy 7.

Then we introduce a notation. We use expectation with
respect to a policy 7 to denote the expectation with respect
to the trajectories 7 which is sampled from 7, initial sta-
tion distribution x(sg) and environment transition function
env(s,a), e.g.

B [f(@)] = B[S+ (alm)
t=0

where f(z) is any function that maps 2 € R< to a scalar
This is a slight abuse of the notation as 7 is not a random
variable that we average over to compute the expectation. 7
is the condition we draw the random variable, 7.e.7. But it
allow us to rewrite the problem objective as

max Er[r(s,g,a)]

where 7 (s, g, a) is the reward function that is unknown to
the agent and only the output is given to agent.

4.2. GAIL

The idea behind GAIL is to match the distribution of
state-action in agent’s trajectories (called occupancy mea-
sure in [14]) to expert’s. A generative model G is trained
to produce agent’s stochastic policies my. A discriminative
classifier D, is used to distinguish the trajectories drawn
from g and mg. And the training objective is to find the
saddle point for

ETFB [log(DW(sv g, a’))] + ETFE [IOg(]‘ - DW(S7 g, a‘))] -)\H(ﬂ-)
Where H () is the casual entropy and defined as
H(m) = Ex,[~logn(als,g)]

Intuitively, G is trained to minimize the objective function
to confuse D whereas D is optimized to maximize the ob-
jective function. And there is clear connection to the Gen-
erative Adversarial Nets (GAN) [[L1]].

From IRL’s perspective, the discriminator D can also be
interpreted as discovering the cost function ¢ from a family
of functions C' with the optimization objective of

Igleac)f Er, [C(Sa g, Cl)] — Erg [C(Sv a)] - H(ﬂ-)

if the cost function, which is the negative of reward func-
tion (this is to be consistent with notations in [[14]), is de-
fined as

C(Svgva) = log(Dw(Svgv a))

4.2.1 Network architecture

Fig [3] illustrates the network architecture of our model
for GAIL. We use three neutral networks: parameterized
stochastic policy is approximated as policy network denoted
as y; baseline estimator denoted as V, which is an ap-
proximation of the state based value function; discrimina-
tive classifier denoted as D,,,.

Policy and value network share most of the layers. In-
puts to both policy and value network are observation im-
ages and task goal images. The policy and value network
can be split into feature extraction layer (two ResNet-50),
siamese layer, scene specific layers. During training, the
weights of pre-trained ResNet-50 is not updated. We keep
the siamese network from the target-driven model as the
embedding layer to learn the mapping between observation-
goal feature space to the same spatial embedding space. The
policy network and value network share these two layers be-
cause we believe both policy and value estimator can bene-
fit from the same learned embedding feature which is sup-
posed to represent the geometric relation between current
location and target goal [35]]. For scene specific layers, sep-
arate FC networks map the embedding feature into proba-
bility distribution over actions for policy network and scalar
baseline estimator for value network respectively.

We now introduce the training procedure. During train-
ing, we sample trajectories from agents and experts and
then alternate between updating discriminator D,,, value
network V; and policy network mg. Details are described
in the following sections.

4.2.2 Training for Value network V;

The loss function for value network is MSE between value
network output V (s, g) and an estimation of the value func-
tion based on D,,.

L=(V(s,g) = V)

Specifically the value function is estimated as

71
V(s,g) = E[Z 7ty lse = sap ~)

t'=t

The value network is used as baseline estimator to reduce
the variance when estimate gradients for updating policy
network. We use the discounted version to downgrade the
effects of rewards in the future on current state, in order to
reduce estimate variance at cost of bias.

4.2.3 Training Discriminative classifier D,

We follow [31] to use WGAN-GP [12] loss function to train
discriminator D. Algorithm 1| describes the update proce-
dure for w for one trajectory.

Algorithm 1 Update D with WGAN-GP loss for one trajec-
tory. By default, A = 10,5, = 0,82 = 0.9
1: fori=1,...,m do

2: Sample (sg,ap ~ mg) from expert trajectory

3: Sample (sg,ag ~ mg) from agent trajectory

4: Sample a random number € ~ U0, 1]

5 S+ esp+(1—¢€)sg,a+ ecag+ (1 —€)ag

6 LY « Dyy(s0,9,a0)] = Dus(s55: 9:ap)] + M|V D (3, 9,a)[2 — 1)

7: end for
8 W 4 Adam(vw% Z:’;l L(i)7w) a7617ﬂ2>

4.2.4 Training policy network

Following [14], we use TRPO [29] to update policy net-
work. The idea behind TRPO is to update policy so that
it improve certain surrogate objective but changes as little
as possible, which is measure by KL divergence. The sur-
rogate objective function is an local approximation of the
expectation of the return function over trajectories and de-
fined as

m(als, g)

L(0) = E, a~Todl T 7 N
() ’ Ld[’]rold(a"‘sag)

ATold (S, g, a)]

Policy (my) and value network (V ;)

Update policy network parameter(6) via TRPO

fc3 Ve, 9

observation

Update value network parameter (¢) A

scene
| | ResNet-
50 |:|

Figure 3.

a~n9(sty gt)

Trajs of

aN”E(St, 9)

Update Discriminator parameter(w)

o Estimate
advantage

Discriminator (Dw)

c(s; g =log D
fc1 fc2 |] L% % =

Ea D
scene #2

Trajs of
agent

expert

Network architecture overview for GAIL: parameterized stochastic policy is approximated as policy network 7g; baseline

estimator V;; which is an approximation of the state based value function; discriminative classifier denoted as D,

subject to K L, (mg) < 0 where ¢ is the upper bound KL
divergence.
—
Let F = 28 mag(rollozoaiy yng g — Pmora(Tolo=0aiy

Algorithm 2 TRPO update for one trajectory, by default
(1 =0.5,0=0.1
1: for i=1,...,m do
()« log D, (s, g™ a®)
@ — V¢(5(i)7g(i))
AW (D) poglit1) (3
end for
L(0) ¢ = Y0ty solnls A
g < VQL(Q)
Sunscaled < F_lg
s)

Sunscaled

for i=1,...,mdo
0=00q+C s
if KLﬂ'old(ﬂ-e) < 0 AND L(e) - L(eold) > C2 * stg
then
13: break
14: end if
15: end for

R A A A

Fs Sunscaled

_ = =
» 22

We describe the TRPO update in Algorithm 2] Step[]is
approximated using any conjugate gradient algorithm, such

as scipy.sparse.linalg.cg in [16]. Step [I0] to [I3] is called
line search, which is to ensure improvement over surrogate
objective while the KL divergence constrains are satisfied.
Note both surrogate objective and KL divergence are non-
linear in parameter 6 space.

4.3. DAgger

4.3.1 Network architecture

Fig[]illustrates the network architecture for DAgger. Inputs
to policy network, which it share architecture with GAIL,
are observation images and task goal images. The output of
the policy network is a probability distribution over action.

4.3.2 Algorithm

Algorithm [3]describes the steps for DAgger training proce-
dure. BC has the identical network architecture and similar
supervised learning training procedure. The key difference
between DAgger and BC is that DAgger query expert to
label action for its trajectories whereas BC use expert tra-
jectories for training only.

Policy (ng)

observation

ResNet-
50

Trajs of
agent with
expert label

a““e(st, gt)

Aggregated
trajs

Trajs of

expert
a””E(St, 9t)

Figure 4. Network architecture for DAgger. The policy network is identical to GAIL.

Algorithm 3 DAgger Algorithm for target-driven visual
navigation

. Sample T step trajectories using 74, for each task [.
. Get dataset D! = (s, ¢!, 7))
: fort=1— Ndo
Train 71'(1, on D!
Sample T step trajectories using Tl'é
Get dataset D! = (s!, ¢!, a' ~ 7l (s!, g'))
Aggregate datasets: D! < D' U D!
end for

A o e

4.3.3 Label smoothing

The loss function of the policy network is the standard cross
entropy loss for softmax function.

L) =) > mrlals, g)log(m(als, g)]

7~D a

We use label smoothing on expert policy which is de-
fined as

me(als,g) = (1—e)l{a=a"} +¢/K

where K = 4, a* gives the shortest path between current
location s and the task goal g.

5. Experiments
5.1. Setup

We develop our modes in tensorflow [1]] and the codes
are based on (Zhu et al. 2017 [34])), referencing codes from
[31], [22] and [[L3]. We perform training on a Nvidia Pas-
cal TITAN X GPU, following training algorithms described
in section[d] And we train 20 threads in parallel with each
thread handling one unique task, except for GAIL. We com-
pare results from the following models

1. Shortest Path represents the trajectories from expert
and provides the optimal results. This is directly com-
puted from environment’s transition table which is not
part of the inputs to any other models.

2. Target-driven is the model we base on. We take the
codes from [34] and use default settings to train 20 tar-
gets.

3. Behavior Cloning Each update in BC is computed on
10 Trajectory. The learning rate is 2.7e — 3.

4. DAgger [27] adds more training data from agent’s tra-
jectories. The learning rate is 1.0e — 4 and we use 10
trajectories per batch.

5. GAIL [14] turns out to be very difficult to train. Even
with all the tricks and optimization improvements we

\ Scenes

| bathroom_02 | bedroom_04 [living_room_08 [kitchen_02 |

‘ # of locations ‘ 180 ‘ 408 ‘ 676 ‘ 468

Table 1. Number of locations in each scenes

[Method

Shortest Path 6.51 12.38 12.08 14.45
Target-driven 7.53 14.03 15.36 21.41
DAgger(20) 6.96 12.92 13.40 18.28
GAIL(1) N/A N/A N/A 16.19
BC (20) 6.98 13.67 14.32 17.27

Table 2. Training results with trained targets and random staring
point

[Method | bathroom_02 | bedroom_04 [living_room_08 [kitchen02 |
Target-driven 808 980 779 941
DAgger (20) 980 958 966 981
BC (20) 960 958 904 957

Table 3. Test results with random target and random starting
points.

described in section we cannot get the training
converged nicely when we train all tasks concurrently
within the project timeline. Therefore the results are
reported after training for one task in scene kitchen_02.
We use BC to bootstrap the training, i.e. we use BC to
train the policy network for 8000 images initially and
then continue with GAIL training. The maximum KL
divergence is set to le — 3, learning rate for value net-
work 2e — 3, learning rate for discriminator le — 6, and
we use 100 trajectories per batch and default values for
other parameters.

We report the average steps (i.e. average trajectory
length) per episode per scene it takes for an agent to go
from a starting point, which is randomly sampled, to a task
goal. For each episode, if agent cannot reach the goal loca-
tion after 1000 steps, we terminate the episode and record
1000 as the episode length. Each result is averaged over 100
episodes.

5.2. Results

First Table |I| gives an idea of the number of locations
per scenes. We present the training results for all train-
ing targets in Table 2] These are training results since the
same task goals are used during training. Then we randomly
choose task goal to evaluate the generalization ability of the
trained network and the results are show in Table[3l

It is clear that there is significant overfitting (or general-
ization issues). The training logs in Fig[5indicates learning
converges and but it is probably converging to bad mini-
mum. The training results of imitation methods are better
than those of RL methods while the results for random tar-
gets are worse.

We then investigate how the distance between training

\ Method \ one step \ 2 steps \ 4 steps \
DAgger (20) 0.28 0.26 0.20
BC (20) 0.42 0.34 0.28

[bathroom_02 | bedroom_04 [living room_08 | kitchen_02 | Table 4. Success rate, i.e. percentage of episode shorter than 500

steps. The higher, the better. Evaluate on targets that are one, two
and four steps away from trained targets

| stats/bathroom_02-acc_p | stats/bathroom_02-loss_p

\ 14

| stats/bedroom_04-acc_p | stats/bedroom_04-loss_p

| stats/kitchen_02-acc_p | stats/kitchen_02-loss_p

k

| stats/living_room_08-acc_p | stats/living_room_08-loss_p

Figure 5. Training loss and accuracy for BC and DAgger. In all
diagrams, yellow represents DAgger and green for BC. For both,
training converges within 600 thousands steps.

goal and test goal affects the performance. In order to be
comparable, we follow the same methods as in [35]] to eval-
uate new targets that are at fixed distance from the near-
est trained targets (specifically 1, 2, and 4). We use suc-
cess rate, which is defined as the percentage of trajectories
that are shorter than 500 steps), as measurement metric. As
shown in Table [the success rate drops as the task goal
moves away from the trained target. This also points to gen-
eralization related issue.

5.3. Discussions

1. All imitation learning methods converges and give bet-
ter training results than Target-driven methods. This is
expected as supervised learning gives much stronger
backpropagation signals.

2. GAIL, or likely any GAN based methods, appears to
be very hard to train. Especially in our case, there are
multiple tasks/scenes, each may drive optimization to
different directions. Not to mention that the discrimi-
nator is designed to work against the generative model.

3. We have seen overfitting for our imitation learning
implementation where it doesn’t generalize very well
when the goal is further away from the training targets.
DAgger appears to suffer overfitting more than BC.

4. We notice an issue in early development where the
trained policy gives prediction in extreme confidence,
e.g. assigning almost 100% to one action and zero to
others. This is problematic if the predicted action is
wrong. As a result the agent will be stuck for the end
of episode. We use smooth labeling in DAgger and BC
training.

6. Conclusion/Future Work

In this project, we evaluate imitation methods on the vi-
sual navigation tasks with THOR framework. We show that
deep neural network based imitation methods can be used
with high dimension visual inputs. However we run into
generalization issues with our implementation. The other
challenge is training GAIL in concurrent tasks setting. For
both we would like to investigate further in the future.

7. Acknowledgments

We would like to thank Yuke Zhu for his great advices on
the project and providing the THOR environment to enable
this project.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, . Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[2] S. Alatartsev, S. Stellmacher, and F. Ortmeier. Robotic task
sequencing problem: A survey. Journal of Intelligent &
Robotic Systems, 80(2):279, 2015.

(3]

[4

—

[5

—

[6

—_

[7

—

[8

—

(9]

(10]

(11]

(12]

(13]
[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A
survey of robot learning from demonstration. Robotics and
autonomous systems, 57(5):469-483, 2009.

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot
programming by demonstration. In Springer handbook of
robotics, pages 1371-1394. Springer, 2008.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, et al. End to end learning for self-driving cars.
arXiv preprint arXiv:1604.07316, 2016.

F. Bonin-Font, A. Ortiz, and G. Oliver. Visual navigation for
mobile robots: A survey. Journal of intelligent and robotic
systems, 53(3):263, 2008.

J. Borenstein and Y. Koren. Real-time obstacle avoidance for
fast mobile robots. IEEE Transactions on systems, man, and
cybernetics, 19(5):1179-1187, 1989.

F. Dayoub, T. Morris, B. Upcroft, and P. Corke. Vision-
only autonomous navigation using topometric maps. In In-
telligent robots and systems (IROS), 2013 IEEE/RSJ interna-
tional conference on, pages 1923-1929. IEEE, 2013.

A. De, K. S. Bayer, and D. E. Koditschek. Active sens-
ing for dynamic, non-holonomic, robust visual servoing. In
Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pages 6192-6198. IEEE, 2014.

Y. Duan, M. Andrychowicz, B. Stadie, J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba. One-shot imitation
learning. arXiv preprint arXiv:1703.07326, 2017.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems, pages 2672-2680, 2014.

L. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville. Improved training of wasserstein gans. arXiv
preprint arXiv:1704.00028, 2017.

J. Ho and S. Ermon. https://github.com/openai/imitation.

J. Ho and S. Ermon. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Systems,
pages 4565-4573, 2016.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation
learning: A survey of learning methods. ACM Computing
Surveys (CSUR), 50(2):21, 2017.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source
scientific tools for Python, 2001-. [Online; accessed jto-
day;].

D. Kim and R. Nevatia. Symbolic navigation with a generic
map. Autonomous Robots, 6(1):69-88, 1999.

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning
in robotics: A survey. The International Journal of Robotics
Research, 32(11):1238-1274, 2013.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-
end training of deep visuomotor policies. arXiv preprint
arXiv:1504.00702, 2015.

S. Levine and V. Koltun. Guided policy search. In ICML (3),
pages 1-9, 2013.

Y. Li. Deep reinforcement learning: An overview. arXiv
preprint arXiv:1701.07274, 2017.

(22]

(23]

[24]

[25]
(26]

[27]

(28]

[29]

(30]

(31]
(32]

(33]
[34]

(35]

Y. Li, J. Song, and S. Ermon.
https://github.com/YunzhuLi/InfoGAIL.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International
Conference on Machine Learning, pages 1928-1937, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529-533, 2015.

A. Y. Ng, S. J. Russell, et al. Algorithms for inverse rein-
forcement learning. In Icml, pages 663-670, 2000.

S. Ross and D. Bagnell. Efficient reductions for imitation
learning. In AISTATS, volume 3, pages 3-5, 2010.

S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imi-
tation learning and structured prediction to no-regret online
learning. In AISTATS, volume 1, page 6, 2011.

P. Saeedi, P. D. Lawrence, and D. G. Lowe. Vision-based 3-d
trajectory tracking for unknown environments. IEEE trans-
actions on robotics, 22(1):119-136, 2006.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz.
Trust region policy optimization. In Proceedings of the 32nd
International Conference on Machine Learning (ICML-15),
pages 1889-1897, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al. Mastering the game
of go with deep neural networks and tree search. Nature,
529(7587):484-489, 2016.

Stanford CS231N staff. http://cs231n.github.io/.

R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

D. Wooden. A guide to vision-based map building. /EEE
Robotics & Automation Magazine, 13(2):94-98, 2006.

Y. Zhu https://github.com/caomw/icra2017-visual-
navigation.

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-
Fei, and A. Farhadi. Target-driven visual navigation in
indoor scenes using deep reinforcement learning. arXiv
preprint arXiv:1609.05143, 2016.

