
Surprise Pursuit Auxiliary Task for Deepmind Lab Maze

Luke Johnston
Stanford University
lukej@stanford.edu

Abstract

In this paper, I introduce a new unsupervised auxiliary
task for reinforcement learning in complex environments
such as Deepmind Lab [1]. This is inspired by recent work
on unsupervised auxiliary tasks in [3]. The task I introduce
is called “surprise pursuit”, and attempts to quantify the
“surprise” an agent encounters when navigating a partially
known environment, and then trains a policy to maximize
this surprise, with the goal of helping the agent learn valu-
able features for exploring an unknown environment such
as a maze. This is done by first training the agent to be able
to generate predictions of upcoming state observations, and
then training the agent to produce a policy to maximize er-
ror in those predictions (the “surprise”). Initial results are
promising but not definitive - training appears to proceed
faster with these auxiliary tasks, but further analysis needs
to be done to determine the full extent of the effect of these
auxiliary tasks.

1. Introduction
Neural networks have shown great success in both com-

puter vision and reinforcement learning in a given environ-
ment, for example image classification on the ImageNet
dataset [6] and playing Atari games at and above the hu-
man level [5]. As reinforcement learning environments be-
come more complex, novel techniques are required to ef-
fectively train neural networks to interpret the environment
and produce function estimators for the policy (or value
function). For reinforcement learning in complex 3D en-
vironments with 2D image environment observations, con-
volutional networks are best suited for feature extraction
of the environment, and for time-dependent environments
in which the state is not fully represented by the environ-
ment observation, some form of recurrent neural network
controller must be used in the computation of the function
estimator. There are many difficulties, however, in train-
ing such a neural network for reinforcement learning in a
complex environment. One major difficulty is that gradi-
ent descent on neural networks does not perform well when

subsequent datapoints are correlated, as is the case in many
standard reinforcement learning algorithms. A number of
solutions have been proposed, such as saving observations
into a replay buffer that is later randomly sampled from for
training [5]. The recent A3C algorithm provides a solution
that uses multiple agents training in parallel on different in-
stantiations of the same environment to reduce this correla-
tion of gradient updates. The A3C algorithm achieves very
good results on both the Atari environment and the Deep-
mind Lab environment, but these results are even further
improved upon with the addition of auxiliary reinforcement
learning tasks, as introduced in [3].

In this paper, my ultimate goal is to train a deep rein-
forcement learning agent to navigate the 3D labyrinth envi-
ronment provided by Deepmind Lab [1]. I do this by mod-
ifying an existing model first introduced by [3], to add my
own novel unsupervised auxiliary tasks to the training pro-
cess in order to speed up training and achieve better score
at convergence. The task is called “Surprise Pursuit” and
is motivated by the idea that in order for an agent to learn
to explore an environment, it should be able to: 1. build
up a representation of the environment, keeping track of
areas that it has already explored and knows, and 2. use
that knowledge to seek out new areas that it is unfamiliar
with. Toward this end, the agent is trained to predict pixels
of subsequent states (and if it can do this succesfully, then it
knows the area of the environment it is moving toward), and
second, learn a policy that maximizes the “surprise” of ex-
ploring the environment, where “surprise” is defined as the
error in the pixel prediction task. This is explained more
thoroughly in the “Surprise Pursuit” section. This idea is
somewhat inspired by recent research into intrinsic moti-
vation of reinforcement learning agents [15] and curiosity-
based exploration [16]

1.1. Deepmind Lab

Deepmind Lab [1] is a platform for machine learning in
complex first-person 3D environments. Deepmind Lab pro-
vides various and complex three-dimensional environments
for reinforcement learning. In every environment, the agent
is a ball moving around a 3D environment looking for re-

4321

wards, usually represented as fruits or other objects floating
above the ground. For this project, the agent’s observation
at each state is a first-person image of the environment, rep-
resent as (84 × 84 × 3) RGB values, although Deepmind
lab also provides a few other formats. There are many ac-
tions available to the agent for some complex tasks (like
jumping or turning on a flashlight), but for the environment
used in this project only 6 actions are relevant: moving
left, forward, right, and backward, and panning the view
left and right. The Deepmind Lab environment I work with
in this project is called maze_random_goal_01, and is
depicted in a top-down view in Figure 1.

Figure 1. A top down view of the Deepmind Lab maze that I will
be working with.

Example input states can be seen in the figures visualiz-
ing the network performance in the experiments section. In
this environment, every time the agent moves to an apple, it
gets a reward of +1. Every time it moves to the goal, it gets
a reward of +10, and its location is randomized. So in order
to achieve the maximal reward on this task, the agent must
be able to repeatably make its way to the goal, collecting ap-
ples when it is worth the detour, wherever its initial position
in the maze is. Since the maze is constant across episodes,
the agent can learn the maze structure during training, so it
does not have to explore the maze entirely anew every time,
but it still has to “explore” when it is randomly placed in a
location that is not unique by its observations (for example,
facing a wall).

2. Background and Related Work

2.1. Reinforcement Learning

In the standard reinforcement learning formulation,
an agent in an environment observes a series of states
s0, s1, . . . and rewards r0, r1, . . . , and at each time step t
must use a policy π to select from all possible actions A a
single action ai, which affects both the future rewards and
the future obvserved states. The goal of the agent is to learn
a policy π to maximize the sum of discounted future re-

wards from each state st,

Rt =

∞∑
k=0

γkrt+k

where γ ∈ [0, 1] is a discount factor that motivates the agent
to weight quick rewards more than distant rewards.

In policy-based reinforcement learning, the model di-
rectly learns a policy funtion π(a|s, θ) ∈ R|A|, for the dis-
tribution of probabilities of each taking action a at state s.
To train the model, gradient ascent is performed on the ex-
pectation of the discounted future rewards [7]:

∆θ =
∑
s

dπ(s)
∑
a

∂π(s, a)

∂θ
Qπ(s, a)

Where dπ(s) is the stationary distribution over states for
policy π, and Qπ(s, a) is the expected discounted future
reward from taking action a at state s, or a function ap-
proximator thereof (typically a neural network, for com-
plex environments such as the one in this project). There
is a problem with training a neural network to optimize this
objective directly with the (s, a, r) taken from interaction
with the environment: sequential (s, a, r) observations are
strongly correlated, and furthermore depend on the neural
network function approximator for the policy, and this cor-
relation causes instability and divergence in training. This
can be solved in a number of ways, but the one most rele-
vant to this paper is the A3C algorithm.

2.2. A3C Algorithm

In the recent paper “Asynchronous Methods for Deep
Reinforcement Learning”, [2] Mnih et al. introduce a re-
inforcement learning paradigm to decorrelate the data and
make deep reinforcement learning possible and efficient.
The basic idea is that instead of excecuting one agent on
one environment at a time, multiple agents are executed on
many environments in parallel, and each agent accumulates
gradient updates for its experience. These gradient updates
are then periodically applied to a global network that is used
to synchronize the paramaters of the asynchronous agents.
Their algorithm that achieves the best performance is called
“Asynchronous advantage actor-critic”. They use two neu-
ral networks, one for the policy π(s, a), and one for an es-
timate of the value function V (s) (the value function maps
states to expected discounted future rewards under the cur-
rent policy). The main update to the parameters of π(s, a)
is

∆θ = ∇θ logπ(at|st, θ)A(st, at, θ
′)

where A(st, at, θ
′) is an estimate of the advantage function

expanded forward over k time steps:

A(st, at, θ
′) =

k−1∑
i=0

γirt+i + γkV (st+k, θ
′)− V (st, θ)

4322

An advantage function is used instead of the pure value es-
timate for variance reduction [12], and significantly speeds
up training time. The value network must be trained sepa-
rately toward the objective V (st) = E[Rt]. Additionally,
a entropy penalization term is added to the gradient update,
to discourage quick convergence to local optima of singu-
lar policies, of the form β∇θH(π(st, θ)), where H is the
entropy. To optimize these objectives, A3C uses a simple
variant of the RMSProp update [8]:

g = αg + (1− α)∆θ2

θ ← θ − η ∆θ√
g + ε

where α is decaying average parameter, ε a small stability
parameter, η the learning rate, and the statistics g are shared
between threads. The A3C algorithm performs very well,
surpassing state-of-the-art on the Atari [5] domain. That is,
until the next paper made another improvement.

2.2.1 Implementation Details

The results of this paper depend on the implementation of
A3C for the task, so I describe them here. The code for
this was taken from an existing implementation for the UN-
REAL agent [11], which is described further below. My
own original contributions are described in the “Surprise
Pursuit” section.

1. First, each input is passed through a convolutional fea-
ture extractor. The convolutional feature extractor has
2 layers. The first applies 16 filters of size 8 to the in-
put state observation, with a stride of 4 and “VALID”
padding, to get a representation of size (20, 20, 16).
This is passed through the nonlinear ReLU activation,
and then the second layer. The second layer applies
32 filters of size 4, with a stride of 2 and “VALID”
padding, with ReLU activation again, to obtain a final
feature representation of the input of shape (9×9×32).
Finally, this is flattened and passed through a fully con-
nected + ReLU layer to obtain 256 features for the in-
put state.

2. These features are then provided as input to a Long
Short-Term Memory (LSTM) [4] controller with 256
cells. This allows the model to incorporate temporal
information into the policy and value functions.

3. Finally, the output of the lstm controller is passed
through two feed-forward networks: one for the policy
and one for the value function. The first feed-forward
netword has |A| = 6 outputs, and the softmax is taken
to compute the policy action probabilities. The second
feed-forward network has a single output, which is the
value function approximation.

2.3. UNREAL Auxiliary Tasks

In the paper “Reinforcement Learning with Unsuper-
vised Auxiliary Tasks”, Jaderberg et al. add “unsupervised
auxiliary tasks” to the A3C algorithm that significantly im-
prove final performance and training spped on all tested
environments, including Atari and Deepmind Lab (called
Labyrinth in the paper). In many reinforcement learning en-
vironments, rewards are not observed frequently enough to
apply meaningful learning during every iteration of training.
But we would like the agent to be learning something dur-
ing the time when rewards are not observed anyway. Hence,
introduce auxiliary tasks, which are tasks added to the loss
function that require the agent to learn information in an un-
supervised fashion, which may not be directly used in the
reinforcement learning policy, but which nevertheless helps
the agent interpret the environment. These can be under-
stood by example:

2.3.1 Pixel Control

One auxiliary task is the “Pixel Control” task. The motiva-
tion for this task is that an agent should understand how its
actions will affect the environment. One way of represent-
ing this is to learn a policy that controls how pixels on the
screen change. In the Deepmind Lab (Labyrinth) environ-
ment, state observations are (84× 84× 3) RGB values of a
2D perspective of the 3D environment (see visualizations in
Figures(4-6)). For this task, the agent is trained to control a
central crop of (80 × 80) pixels. This crop is dividing into
a (20 × 20) grid of windows viewing the state. For each
of these 400 windows, a policy is trained to maximize total
pixel change in that window from one state to the next. So
we have 400 (4× 4× 3) RGB windows, and the reward for
action at in state st in each of these windows is the average
absolute difference of the pixels in this window between the
current frame and the next one. The network that produces
this policy takes the LSTM outputs of the A3C algorithm as
input, maps them to a (32×9×9) feature map with a affine
+ ReLU layer, which is then passed through two transpose
convolution layers with filter size 4, stride 2 to obtain a duel-
ing network [9] parameterization of the Qpc values for each
policy of size (|A| × 20 × 20). The target loss for these Q
values is simply the l2 loss of their difference the estimated
future rewards, expanded for k times steps:

Lpc = (Qpc(st, at)−
k−1∑
i=0

γirt+i + γk max
a

Qpc(st+k, a))2

These policies are never used during exploration - they are
only trained to help the model learn something useful for
exploring, interacting with, and understanding the environ-
ment.

4323

2.3.2 Reward Prediction

In this auxiliary task, the past three state observations are
used to predict whether the reward for the next transition is
positive, negative, or zero. The past three state observations
are each passed through the convolutional feature extractor,
and then the resulting features are concatenated and passed
through a single fully-connected + ReLU layer to 128 ac-
tivations, which are passed through a final fully-connected
+ softmax layer to classify the reward. Training this task
requires the convolutional layers to learn to extract features
useful for predicting rewards.

3. Surprise Pursuit
To the two original auxiliary tasks of the UNREAL

agent, I add my own two auxiliary tasks: pixel prediction,
and Surprise Pursuit. Pixel prediction has been explored in
previous work [10, 3], and alone is not as effective as pixel
control, but is necessary for the Surprise Pursuit task, which
is the main contribution of this work.

3.1. Pixel Prediction

If an agent truly understands its environment, it should
be able to make reasonable predictions about how its actions
will affect the environment, and consequently its observa-
tions of the environment. Toward this end, I implement the
auxiliary task of pixel prediction: at each state st, given that
the action taken is at, the model must generate a prediction
of the pixels of the following observation st+1. This is not
a novel auxiliary task, but rather than use an existing im-
plementation, I wrote my own implementation of this task.
At state st, the LSTM outputs are passed through a fully
connected + ReLU layer to map them to a (32× 9× 9) rep-
resentation of the controller state. This is passed through
three transpose convolution layers:

1. A transpose convolution layer with 32 filters of size 4,
ReLU activation, stride 2, and VALID padding maps
the representation to size (32× 20× 20).

2. A second transpose convolution layer with 32 filters of
size 4, ReLU activation, stride 2, and VALID padding
maps the representation to size (32× 42× 42).

3. A third transpose convolution layer with 3 filters of
size 4, sigmoid activation, stride 2, and SAME padding
maps the representation to size (3× 84× 84), the size
of the image we are trying to predict. Sigmoid acti-
vation is chosen because the images are represented
as RGB values, normalized in the range (0, 1), so our
predictions must also lie in this range.

The loss is then the l2 loss between the predicted image
P (st, at) and the state observation st+1:

Lpp = (P (st, at)− st+1)2

. This formulation is inspired by the autoencoder structures
of [13], and generative adversial network structures of [14],
which show that transpose convolution is an effective means
of generating images (although this network is simpler than
the citations).

3.2. Surprise Pursuit

For an agent to effectively learn to explore an unknown
territory such as a maze of Deepmind Lab, an obvious ap-
proach would be to first learn how to encode areas of the
territory that are known, and then to seek out areas that are
unknown. In the broader context of reinforcement learn-
ing, it is important to explore as much as possible of the
state space in order to obtain accurate estimates of all pos-
sible rewards. This is the motivation for the Surprise Pur-
suit auxiliary task: the notion of exploring unknown areas is
approximated by a policy that seeks out “surprise”, which I
will quantify below. First, the pixel prediction auxiliary task
provides a measure of how well the agent knows a particular
(state, action) pair. If the pixel prediction loss is very low,
then the agent is able to accurately predict what the future
state will look like - and has a good model of the environ-
ment for that state and action. However, if the pixel pre-
diction loss is high, then the agent’s prediction of the future
state is incorrect - it is “surprised” with the result. Hence, I
define the surprise of a (state,action) pair as the negative of
the pixel prediction loss, S(s, a) = −Lpp(s, a). Then, the
Surprise Pursuit task trains a policy to maximize surprise,
in order to hopefully learn a policy that advocates for ex-
ploring unknown territory, which will help for locating the
rewards in a maze after the agent’s location is randomized
(and it does not know where it is). Following a similar ap-
proach to the pixel control policy of the UNREAL agent,
dueling networks are used to estimate Q values for each
action, and the surprise pursuit network has the following
architecture:

1. the LSTM outputs of the A3C architecture are passed
through a fully connected + ReLU layer to obtain
advantage-values Asp(st, at) ∈ R|A|

2. the LSTM outputs of the A3C architecture are passed
through a separate fully connected + ReLU layer to
obtain a value function estimate Vsp(st).

3. the final Q-values are computed Qsp(st, at) =
V (st, at) + A(st, a) − mean(A(st, at)) where the
mean is taken over the action advantage values [9].

4. the network is optimized to approximate the surprise

4324

reward with the Q values:

Lsp = (Qsp(st, at)−
k−1∑
i=0

γiS(st+k, at+k)

+ γkmaxaQsp(st+k, a))2 (1)

It is important to note that when optimizing with re-
spect to this loss, the gradients through this loss to
the Surprise are frozen, since we do not want learn-
ing of pixel predictionsn to be affected by learning of
this policy.

4. Experiments and Results
Training was done on a Google Cloud instance with 32

CPU cores, until convergence (or as long as possible). Most
of the default parameters of the implementation were kept,
which correspond to [3]. The losses for each auxiliary task
were adjusted until they were of relatively the same mag-
nitude, so that training does not overly emphasize any one
task. The final loss weightings were as follows: pixel con-
trol was weighted by λpc = 0.05, surprise pursuit weighted
by λsp = 5 × 10−8, and pixel prediction weighted by
λpp = 10−3. Training to convergence takes more than 20
million iterations, and at a maximum of 200 iterations per
second, this takes more than 24 hours. The unmodified UN-
REAL agent was trained with the same configuration to use
as a baseline. The score curves for the baseline, and for
my model are depicted in Figure 2, and loss curves for each
auxiliary task for my model are depicted in Figure 3. The
full run for my agent (the purple line) had a bug in the sur-
prise pursuit loss computation that I did not discover until
recently, so the orange line depicts a debugged run that is
not yet fully complete. This run looks very promising. The
smoothed curve has been consistently above the baseline
for more than 7 million iterations. However, since there is
a massive amount of variance in individual episode scores,
and since training is stochastic in the first place, this could
just be a lucky run. In order to determine whether my mod-
ification is definitively better than the baseline, I have to do
a couple things: first, let the run go to completion to see if
it converges to a better policy. If early training is faster at
the sacrifice of final score, the modification is probably not
worthwhile - although that would be a interesting tradeoff
to explore. Second, training would have to repeated from
scratch a number of times to ensure that the different scores
and training speeds are not only due to the stochasticity of
training runs. Third, I would need to run another baseline
with the pixel prediction task, but without the Surprise Pur-
suit loss, to determine the relative effect of each addition,
since pixel prediction alone could be the cause of any ob-
served improvement. Unfortunately I did not have time for
this.

A few visualizations of the agent’s different tasks during
an evaluation episode are depicted in figures 4-6, updated
from the original UNREAL implementation to include the
pixel predictions and a representation of the surprise pur-
suite policy q-values. Furthermore, a video of this visuala-
tion for an episode is included in the supplementary materi-
als.

5. Conclusions
Using the visualization video (Figures 4-6), we can qual-

itatively lanalyze the performance of the pixel prediction
and Surprise Pursuit auxiliary tasks. The most important
thing to check is that the pixel prediction is working, since if
pixel prediction isn’t working, then the surprise pursuit will
be impossible (or at least, mean something very different
than I hoped). We can see from the figure that pixel predic-
tion doing moderately well - at the very least, it has figured
out how to generate a hazy representation of the maze lo-
cation the agent is at. It is hard to tell if it is succesfully
predicting one frame ahead, or if it is just reconstructing
the current state for an approximately correct prediction of
the future. To get a better idea if the model is indeed pre-
dicting a frame ahead, I looked at the very last frame after
the agent reaches the goal (and right before its location is
randomized). If the model is predicting ahead, it should
have no idea what the next frame will be, so the prediction
should be mostly meaningless (something like an average of
all states). However, this is not entirely the case - although
the prediction at this state is hazier than most predictions,
it still looks more similar to the current state than it should.
So this is both good and bad news - the model is learning
to predict into the future a little bit (or else this prediction
would be no hazier than normal), but it is still mostly just
reproducing the current state. This makes sense, as repro-
ducing the current state would be a solution that achieves
a relatively low loss, without requiring the model to learn
any temporal information at all, and training might get stuck
here.

Secondly, I have printed out the Surprise Pursuit policy
Q-values. As can be seen from the three figures (and better
from the video in the supplementary materials), this policy
is much more stochastic than the main reward-seeking pol-
icy. This suggests that the Surprise Pursuit policy either 1.
does not have as much meaning as I had hoped, or 2. is
not being learned effectively. I suspect that learning of this
policy could be significantly improved by improvements in
the pixel prediction, which while not completely terrible,
is not very accurate. There are a couple other options for
improvements in the “surprise pursuit” idea. Instead of pre-
dicting all the pixels of the screen, which is difficult to do
correctly but easy to do incorrectly by copying the current
state, we could predict changes in pixel values, and measure
surprise on those predictions. Or we could predict changes

4325

in activations of key internal states of the neural network.
This would require less predictions than pixel prediction,
and focus the prediction on the important features of the
state (rather than the pixel representation), and may con-
verge faster to a non-trivial result.

In conclusion, the Surprise Pursuit auxiliary task
looks promising for improving training speed and pos-
sible increasing converged score on the Deepmind lab
maze_random_goal_01 environment, although further
training and analysis is necessary to determine the full ex-
tent of its effect.

Figure 2. The scores of three different training runs, by iteration.
Exponential smoothing is applied, with a paramater of 0.996. The
blue run is the baseline, the purple is a complete run of my model
which had a bug that I did not discover until very recently, and the
orange curve is the most recent run with the bug fixed. A score of
50 represents getting to the goal 4 or 5 times over the course of
a single episode, 300 seconds. Human score is easily above 100,
but a random agent will rarely get more than 1.

Figure 3. The loss curves for the pixel prediction (top) and Surprise
Pursuit (bottom) tasks. Loss does decrease initially, but remains
fairly constant after the first 5 million iterations.

References

[1] Beattie, Charles, et al. “DeepMind Lab.” arXiv preprint
arXiv:1612.03801 (2016).

[2] Mnih, Volodymyr, et al. “Asynchronous methods for
deep reinforcement learning.” International Conference
on Machine Learning. 2016.

Figure 4. One screen capture of the visualization tool. This tool is
taken from [11], but I modified it to display the pixel predictions
and policy of my Surprise Pursuit auxiliary task. The game state
is in the upper left corner. The pixel predictions for the next state
is in the lower left corner, and the Surprise Pursuit policy Q-values
are to the right of the surprise prediction. The rest of the figures
depict the reinforcement learning main policy, the pixel control
policy auxiliary task, reward prediction auxiliary task, and value
estimation of the original UNREAL implementation

Figure 5. A second screen capture of the visualization tool, with
an apple on the screen. Apparently the pixel prediction network
does a very poor job of representing apples or goal states. See
conclusions section for further analysis.

[3] Jaderberg, Max, et al. “Reinforcement learning
with unsupervised auxiliary tasks.” arXiv preprint
arXiv:1611.05397 (2016).

[4] Hochreiter, Sepp, and Jrgen Schmidhuber. “Long short-
term memory.” Neural computation 9.8 (1997): 1735-
1780.

[5] Mnih, Volodymyr, et al. “Playing atari with deep re-

4326

Figure 6. A third screen capture of the visualization tool, directly
after the agent reaches the goal and right before its position is ran-
domized. See conclusions section for analysis.

inforcement learning.” arXiv preprint arXiv:1312.5602
(2013).

[6] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hin-
ton. “Imagenet classification with deep convolutional
neural networks.” Advances in neural information pro-
cessing systems. 2012.

[7] Sutton, Richard S., et al. ”Policy gradient methods for
reinforcement learning with function approximation.”
Advances in neural information processing systems.
2000.

[8] Tieleman, Tijmen, and Geoffrey Hinton. “Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude.” COURSERA: Neural networks
for machine learning 4.2 (2012).

[9] Wang, Ziyu, et al. “Dueling network architectures
for deep reinforcement learning.” arXiv preprint
arXiv:1511.06581 (2015).

[10] Kulkarni, Tejas D., et al. “Deep successor rein-
forcement learning.” arXiv preprint arXiv:1606.02396
(2016).

[11] https://github.com/miyosuda/unreal

[12] Peters, Jan, and Stefan Schaal. “Natural actor-critic.”
Neurocomputing 71.7 (2008): 1180-1190.

[13] Masci, Jonathan, et al. “Stacked convolutional auto-
encoders for hierarchical feature extraction.” Artificial
Neural Networks and Machine LearningICANN 2011
(2011): 52-59.

[14] Radford, Alec, Luke Metz, and Soumith Chin-
tala. “Unsupervised representation learning with deep
convolutional generative adversarial networks.” arXiv
preprint arXiv:1511.06434 (2015).

[15] Chentanez, Nuttapong, Andrew G. Barto, and Satinder
P. Singh. “Intrinsically motivated reinforcement learn-
ing.” Advances in neural information processing sys-
tems. 2005.

[16] Schmidhuber, J. (1991b). A possibility for implement-
ing curiosity and boredom in model-building neural
controllers, in Proceedings of the International Confer-
ence on Simulation of Adaptive Behavior: From An-
imals to Animats, eds J. A. Meyer and S. W. Wil-
son (Cambridge, MA: MIT Press/Bradford Books),
222227.

4327

