
Bowling with Deep Learning

Zizhen Jiang
Department of Electrical Engineering

Stanford University, Stanford, CA, 94305
jiangzz@stanford.edu

Abstract

A deep learning model, which can learn control poli-
cies directly from high-dimensional sensory input using re-
inforcement learning, is explored and improved for Atari
Bowling. Extraction of high-level features from raw-
sensory data is made possible by the recent advances in
deep learning. However, in general, agents take a series of
actions to get a reward. In the environments with sparse re-
wards, reinforcement learning agents struggle to learn. To
overcome this challenge, researches investigated multiple
approaches, such as Q-learning and double Q-learning. In
this project, we analyze the performances of Q-learning and
double Q-learning on all Atari games, and further explore
and improve the architecture of Q-learning and double Q-
learning specifically on Bowling game. A general archi-
tecture design guideline for a specific game, i.e. complex
games take complex neural network architecture, is sug-
gested. For the learning process, the training and testing
dataset is generated when playing the game. The scores
of the agent playing each round is evaluated as the results.
The learning history is provided to investigate the learning
process.

1. Introduction
Human beings are attracted by games, which are usually

for enjoyment and sometimes used as an educational tool.
One of our favorite games, Rayman, is a platform video
game series owned by Ubisoft [Rayman-wiki]. The agent
of Rayman can jump, fly, run, or beat monster. The target
is to save Electoons locked in all cages and then to save
the world (Fig. 1). Complex agent movements and various
environments challenge human beings in playing.

To understand how human beings perceive the game
and play, researchers are developing methods to learn to
control agents directly from high-dimensional sensory
input like vision using reinforcement learning (RL). Before
most successful RL applications that operated on these

Figure 1. One of our favorite games, Rayman, is a platform video
game series owned by Ubisoft.

domains relied on hand-crafted features combined with
linear value functions or policy representations. The quality
of the feature representation decided the performance of
those systems. Recent advances in deep learning lead to
breakthroughs in computer vision, making it possible to
extract high-level features from raw sensory data. These
methods utilize a range of neural network architectures,
which have been demonstrated beneficial for RL with
sensory data [Mnih, 2013].

However, in general, games may involve a series of
actions required to get a reward. A human can easily
understand how to acquire a reward. It is difficult for a
computer to sample billions of random moves and succeed
with less than 1% possibility. A reinforcement learning
model for extended-time games needs to focus on sparse
and delayed rewards.

To deal with sparse and delayed rewards, DeepMind
introduces deep Q-learning, which falls under the umbrella
of reinforcement learning [Mnih, 2013]. The world is
shocked that computers are able to automatically learn to
play Atari games (Fig. 2) and beat world champions at Go
(Fig. 3) [Silver, 2016]. For the first time, reinforcement
learning agents were learning from high-dimensional visual
input using convolutional neural networks. With only

1

Figure 2. Alpha Go
on the cover page of
Nature. [This image
is from Nature]

Figure 3. Atari computer system. [Q-
news]

pixels as input and scores as rewards, the agents achieved
superhuman performance.

In this work, we analyzes the performance of the re-
ported Q-learning architectures on various Atari games. In-
stead of providing a general architecture, we explore and
improved the Q-learning based architecture specifically on
one game - Bowling (Fig. 4). A general architecture design
guideline for a specific game is suggested.

2. Background

The tasks are considered as an agent interacts with the
Atari emulator, in a sequence of actions, observations and
rewards. At each time-step, the agent selects an action
at from the set of game actions, A = {1, 2, ...,K}. The
emulator takes the action as input, and modifies its internal
state and the game score. The agent doesn’t observe the
internal state of the emulator; instead, the agent observes an
image xt ∈ Rd from the emulator, which is a vector of raw
pixel values representing the current screen. In addition,
the agent receives a reward rt representing the change in
game score. Note that in general the whole prior sequence
of actions and observations determines the game score;
agents may receive feedbacks about an action after many
thousands of time-steps have elapsed (Fig. 5).

We need to consider the sequences of actions and
observations, st = x1, a1, x2, ..., at−1, xt and the game
strategies, which depends on the sequences, are learned
through playing. Because it is impossible to fully under-
stand the current situation from only the current screen
xt, of which the agent only observes images, when the
task is partially observed. With the assumption that all
sequences in the emulator terminate in a finite number of
time-steps, this formalism gives rise to a large but finite
Markov decision process (MDP) in which each sequence is
a distinct state. As a result, standard reinforcement learning
methods for MDPs can be applied, simply by using the
complete sequence st as the state representation at time

Figure 4. Bowling is chosen as an example of ’easier games’.

Figure 5. Learning flow of reinforcement learning. [Q-news]

t. The goal of the agent is to interact with the emulator
by selecting actions in a way that maximizes future rewards.

Multiple approaches have been developed. DeepMind
first presented a model using deep Q-network (DQN)
[Mnih, 2013; Mnih, 2015; Wang, 2015; Kulkarni, 2016;
van Hasselt, 2016]. Conbining Q-learning with a flexible
deep neural network, DQN was tested on a varied and large
set of deterministic Atari 2600 games, reaching human-
level performance on many games [Mnih, 2013; Mnih,
2015]. Several variants have been later demonstrated. The
double Q-learning (Double DQN) is investigated to deal
with the overestimation caused by insufficiently flexible
function approximation and noise [van Hasselt, 2016]. The
dueling network represents two separate estimators: one
for the state value function and one for the state-dependent
action advantage function, generalizing learning across
actions without imposing any change to the underlying
reinforcement learning algorithms [Wang, 2015]. Focus-
ing on the specific ’harder’games, such as Montezumas
Revenge, Kulkarni proposed hierarchical-DQN (h-DQN)
[Kulkarni, 2016]. However, still few work analyzes
the differences between Atari games and investigate the

2

architecture design from the ’easier’ games.

In this project, we analyze the difference between Atari
games, investigate the reported performances of DQN and
double DQN on various Atari games, and explore the ar-
chitecture design for a ’easier’ game - Bowling. A general
architecture design guideline for a specific game is finally
provided.

3. Technical Approach
We first implement deep Q-network (DQN) presented

by DeepMind [Q-wiki; Mnih, 2015]. Under the assumption
that future rewards are discounted by a factor of per
time-step, we define the future discounted return at time
t as Rt =

∑T
t′=t γ

t′tγt′ , where T is the time-step at
which the game terminates. The optimal action-value
function Q∗(s, a) is defined as the maximum expected
return achievable by following any strategy, after see-
ing some sequences and then taking some action a,
Q∗(s, a) = maxπE[Rt|st = s, at = a, π], where π is a
policy mapping sequences to actions (or distributions over
actions).

At the beginning, Q(s, a) returns an (arbitrary) fixed
value, randomly generated by the network. Then, each time
the agent selects an action, and observes a reward and a new
state Q(s, a) is updated. The new state may depend on both
the previous state and the selected action. A simple value
iteration update is the core of the algorithm, assuming that
the old value is close to the correct and makes a correction
based on the new information.

Q(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ αt

(learned value︷ ︸︸ ︷
rt+1 + γ maxaQ(st+1, a)︸ ︷︷ ︸

optimal future value

−Q(st, at)︸ ︷︷ ︸
old value

)
(1)

where αt is the learning rate, rt+1 is the reward, and γ is
the discount factor.

By minimizing a sequence of loss function Li(θi), the
Q-network can be trained at each iteration i,

Li(θi) = Es,a∼ρ(.)[(yi − Q(s, a; θi))
2] (2)

where yi = Es′∼ε[r + γmaxa′Q(s′, a′; θi−1)|s, a] is the
target for iteration i and ρ(s, a) is a probability distribution
over sequences s and actions a that we refer to as the behav-
ior distribution. We fix the parameters from the previous
iteration θi−1 awhen optimising the loss function Li(θi).
The following gradient is given by differentiating the loss

function with respect to the weights ,

▽θi Li(θi) = Es,a∼ρ(.);s′∼ε[(r+γmaxa′Q(s′, a′; θi−1)

−Q(s, a; θi))▽θi Q(s, a; θi)] (3)

Stochastic gradient descent is used to optimise the loss
function, the weights are updated after every time-step, and
the expectations are replaced by single samples from the
behavior distribution ρ and the emulator ε receptively.

Further we implement double deep Q-network (Double
DQN) [van Hasselt, 2016]. The key difference between
DQN and double DQN is that double DQN decouple the
selection from the evaluation.

4. Analysis
We analyze the reported performance of DQN and

double DQN on various Atari games [van Hasselt, 2010;
van Hasselt, 2016]. Five key features of the reported Atari
games are proposed: a) moving agent, whether the agent
can move in the observation image; b) whether the reward
target can move in the observation image; c) moving
monster, whether the monster can move to eat the agent; d)
moving background, whether the game has a background
that confuses the perception of the agent; e) complex
movement, whether the agent’s contour in the image can
influence the next action. The summary of those features is
provided at Table 1.

We compare the reported scores [van Hasselt, 2016] and
find that most of the games with smaller number of features
benefit from the double DQN, i.e. Double DQN tends to
improve the agent performance. It may be indicator that
the reported architecture with DQN overestimate the action
values for games with smaller number of features, which
we may call those games ”easier games”. The reported
architecture used three convolution layers and two fully-
connected layers, besides all those layers are separated by
rectifier liner units (ReLu) [van Hasselt, 2016]. The results
may indicate that this network may be too complex for the
easier games.

One other outstanding observation is that when games
involve complex agent movement and multiple background
settings, it is difficult to utilize DQN and double DQN to
improve agents’ performances. As an example, the agent
in Montezuma’s Revenge can run, jump, and move up and
down in multiple environments, which results in specific
architecture developments. We perform the traditional
DQN and double DQN on Montezuma’s Revenge. As
expected, the agent either dies soon or stuck at somewhere
in the image (Fig. 6-7).

3

Figure 6. The agent in
Montezuma’s Revenge dies
soon after training.

Figure 7. The agent in
Montezuma’s Revenge gets
stuck after training.

Figure 8. Simplified neural network.

For this project, we are focusing on the easier games.
Without losing generosity, we are using the game Bowling.

5. Experiment
We simplify the architecture by using two layers of

convolution layers and two fully-connected layers with
Relu as the separation layer between adjacent layers (Fig.
8). The work is implemented based on the codes provided
by cs234 [Base] and implemented in Tensorflow [TF].
The first convolution layer convolves the input with 16
filters of size 8 (stride 4), and the second convolution layer
has 32 layers of size 4 (stride 2). This is followed by a
fully-connected hidden layer of 512 units. We may utilize
dropout in-between the first and second layers. Our ar-
chitecture has a smaller number parameters of the network.

The performance comparison of the DeepMind architec-
ture and our architecture is summarized in Table 2. Simpler
architecture performs better on the simpler Bowling game
using the same Q-learning update strategy. Our architecture
beats the performance of DQN reported and has a potential
to beat double DQN if tuning the learning rate more
carefully. Reference learning process plot of our network is

Figure 9. Reference learning process plot of our network with
DQN.

Figure 10. Reference learning process plot of our network with
Double DQN.

shown in Fig. 9.

We further compare the performance of DQN and
double DQN using our architecture. However, double
DQN do not improve the performance further. It may be
caused by the enough simplicity of the network without
overestimation or the large learning rate, which makes the
scores change back and forth (Fig. 10).

Another approach using dropout [Dropout] is also
investigated. We utilize dropout with a keep possibility of
0.8. The result is shown in Fig. 11. The performance may
be improved if providing more training time and tuning the
parameters more.

The performance of our architecture with DQN, Double

4

Figure 11. Reference learning process plot of our network with
dropout.

DQN and dropout is summarized in Table 2.

6. Conclusion
This work analyzes the key features of various Atari

games and suggests that simpler games typically require
simpler neural network (less number of parameters) and
complex games require complex neural network (larger
number of parameters). Based on the analysis, we sim-
plify the architecture into two convolution layers and two
fully-connected layers and beat the performance reported
by DeepMind with DQN. We demonstrate a concept to ana-
lyze the features of the games and then explore and improve
the neural network architecture.

7. Future Work
A layer of batch normalization [Ioffe, 2015] may be

added on the current simplified network to verify if there
is any over-fitting and to improve the robustness of the net-
work. The analysis may provide a method to improve the
architecture from bottom to up. Researchers may perform
the feature analysis over all Atari games, later explore and
improve the network on specific games first, and then gen-
eralize the architecture for all atari games.

8. Reference
[cs231n] https://cs231n.stanford.edu
[cs234] https://cs234.stanford.edu
[Base] Base code from cs234 assignment 2,

http://web.stanford.edu/class/cs234/assignment2/index.html.
I do not take cs234. The github codes I found online require
some different versions of packages and cannot work easily.
Later I found the package provided by cs234 suitable for
the implementation of this project.

[Dropout] https://medium.com/emergent-future/simple-
reinforcement-learning-with-tensorflow-part-7-action-
selection-strategies-for-exploration-d3a97b7cceaf

[Ioffe, 2015] S. Ioffe, et al., ”Batch normalization: Ac-
celerating deep network training by reducing internal co-
variate shift.” arXiv preprint arXiv:1502.03167 (2015).

[Kulkarni, 2016] T. D. Kulkarni, et al., ”Hierarchical
deep reinforcement learning: Integrating temporal abstrac-
tion and intrinsic motivation.” Advances in Neural Informa-
tion Processing Systems. 2016.

[Mnih, 2015] V. Mnih, et al., Human-Level Control
through Deep Reinforcement Learning, Nature 518, 519-
533

[Mnih, 2013] V. Mnih, et al., Playing Atari with Deep
Reinforcement Learning, NIPS, 2013

[Rayman-wiki] https://en.wikipedia.org/wiki/Rayman
[Silver, 2016] D. Silver, et al. ”Mastering the game

of Go with deep neural networks and tree search.” Nature
529.7587 (2016): 484-489.

[TF] Tensorflow, https://www.tensorflow.org/tutorials/
[Q-news] https://deepsense.io/playing-atari-on-ram-

with-deep-q-learning/
[Q-wiki] https://en.wikipedia.org/wiki/Q-learning
[van Hasselt, 2010] H. Van Hasselt, ”Double Q-

learning.” Advances in Neural Information Processing Sys-
tems. 2010.

[van Hasselt, 2016] H. van Hasselt, et al., Deep Rein-
forcement Learning with Double Q-Learning, AAAI, 2016

[Wang, 2015] Z. Wang, et al., ”Dueling network archi-
tectures for deep reinforcement learning.” arXiv preprint
arXiv:1511.06581 (2015)

5

Table 1. Summary of five features for reported Atari games. ’y’ indicates that the game has the feature; ’n’ indicates not having this feature.
Game Moving Agent Moving Target Moving Monster Moving Background Complex Movement
Alien y n y n y
Amidar y n y n n
Assault y y y n n
Asterix y y n n n
Asteroids y y y n y
Atlantis n y y n n
Bank Heist y n n n n
Battle Zone n y y y n
Beam Rider y y y n n
Bowling y n n n n
Boxing y y y n n
Breakout y n n n n
Centipede y y y n n
Chopper Command y y y y n
Crazy Climber y n y n n
Demon Attack y y y n n
Double Dunk y y y n y
Enduro y n y y y
Fishing Derby y y y n n
Freeway y n y n y
Frostbite y y y n y
Gopher y n y n n
Gravitar y y y y y
Ice Hockey y y y n y
James Bond y y y n n
Kangaroo y n y n n
Krull y n y n n
Kung-Fu Master y y y n n
Montezuma’s Revenge y y y y y
Ms. Pacman y n y n n
Name This Game y y y n n
Pong y y n n n
Private Eye y y y y n
Q*Bert y n y n n
River Raid y y y y n
Road Runner y y y y n
Robotank n y y y n
Seaquest y y y n y
Space Invaders y y y n n
Star Gunner y y y y n
Tennis y y n n y
Time Pilot y y y y n
Tutankham y y y y y
Up and Down y y y y n
Venture y y y n n
Video Pinball y y n n n
Wizard of Wor y y y n y
Zaxxon y y y y n

6

Table 2. Performance comparison of Deepmind architecture and our architecture

Game Random Human DQN
Double
DQN

My
DQN
w/o Dropout

My
DQN
w/o Dropout
Peak

My
Double
DQN

My DQN
w/ Dropout

Bowling 23.10 154.80 42.40 70.50 59.80 68.92 18.92 42.12

7

