Deep DAgger Imitation Learning for Indoor Scene Navigation

Tariq Patanam

1. Abstract

The ability for robots to successfully navigate indoors is
a critical step to bring the benefit of robotics to the general
population. We use deep imitation learning on the THOR
dataset to demonstrate the potential for deep imitation learn-
ing, in which an expert provides the learner the best routes
and expects the learner to extrapolate to new situations to
teach robots how to navigate indoors. Using the DAGGER
algorithm, we train a neural network on one indoor scene
and validate its effectiveness in a different indoor scene. We
show that the DAGGER algorithm is able to substantially
improve the average trajectory length compared to other po-
tential navigation algorithms when generalizing to naviga-
tion in previously unexplored indoor scenes.

2. Introduction

Robot navigation has a wide range of applications. In
this paper, we explore a specific technique of teaching
robots how to navigate indoor scenes. However, the same
approach could be used in self driving cars, drones, and all
kinds of moving autonomous machines. In this project we
use deep imitation learning to teach a robot how to navigate
from a starting location to a target location in the context of
an indoor scene.

Navigating indoors is harder than navigating outdoors
due to several reasons. First of all, it is harder to get an
accurate location of where the objects are. Household fur-
niture such as chairs, tables, and other things, is not always
in the same place unlike roads and stop signs. Second of
all, guessing how much distance there is between any two
objects is a harder task because small distance errors could
cause collisions as the space is tighter and the need for ac-
curacy is higher. [[1]]

Navigating indoors requires scene recognition, a route
from each scene, and a way to associate each scene to its
route. Each route needs to have certain rewards based on
different target locations and starting points. Being able to
do all of this is a very hard task and is one of the most chal-
lenging things to do in the field of robotics.

One possible way to teach a robot how to navigate indoor
scenes uses imitation learning [2]. Imitation learning could
be thought of as having a teacher who teaches an infant to
do something and as time goes by, the child learns to do it

Eli Shayer

Younes Bensouda Mourri

by remembering his previous actions. Eventually the child
will not have to consult with the teacher anymore. Similarly,
in this paper, we train a robot to make decisions using the
expert policy, which acts like a teacher, and eventually the
robot would use its history to predict the next move.

Imitation learning and inverse reinforcement learning are
two methods that are very common in this type of setting.
In imitation learning, the only goal is to copy the teacher
without even knowing the long term reward. On the other
hand, inverse reinforcement learning tries to infer the goal
of the teacher. It is more commonly associated with a re-
ward function.

In this project we use imitation learning and inverse rein-
forcement learning to train robots to navigate indoor scenes.
Ideally, after the robot is trained, it should be able to go from
any starting location to any target point without consulting
the teacher. Since it is very costly to keep bothering a hu-
man being every time, the goal is to minimize making calls
to the expert or human being. We will see how these two
types of algorithms perform on our data set and how likely
they are to help us navigate indoors.

3. Related Work

Imitation learning is one form of Learning from Demon-
stration [3]]. This machine learning technique relies on the
presence of an expert who tells the ’student” what to do.

Unlike other papers, the method we used in here does
not require a human being to train the robot in a new envi-
ronment. Conversely, the robot is trained in a completely
different scene and could perform well in another unseen
environment. Other papers require a human being to teach
the robot to navigate at first which is very costly, and may
reflect human biases.[4] 3D matching, or local volumetric
patch descriptors that matches partial 3D data together, have
also been used to improve indoor navigation. [5S] Those
kind of algorithms would, for example, retain visual maps
in real time views and form connections between the fea-
tures found in each image. In short, it uses some sort of
dictionary to make the connections between each image.
However, other than just having to use manual training, this
algorithm does not perform well on closed loops, since it
just keeps learning the same thing over and over again.

On the other hand, supervised learning is sometimes

used to recognize furniture in a house and in other indoor
scenes which helps reduce collision rates. [6] The paper,
by McManus, which focused on furniture recognition shed
some new light on the field of robot navigation by provid-
ing an algorithm that is robust to extreme weather condi-
tions and lighting. Rather than just looking at the features
and patterns within each image, McManus has shown that
it is possible to specifically search for corners and “scene
signatures” to perform classification tasks. This type of al-
gorithm is thus immune to weather conditions. However,
there is a robustness - precision trade off problem since one
could not precisely determine where the object is located
under blurry situations. Other papers which focused on ob-
ject detection to make predictions in Atari games have also
proven to be very effective. [[7]]

The reinforcement learning (RL) algorithm also has a va-
riety of applications other than just indoor navigation and
there are numerous papers that have used it in the field of
robotics. Although they have each taken a slightly different
approach, in the overall, they all use some sort of reward
driven algorithm. Recently however, people started merg-
ing RL with deep learning (DL) and got some very promis-
ing results, such those described in the Atari paper. These
kinds of papers allow for target driven robots to reach a des-
tination by using visual navigation.

Figure 1: Examples from the ALE (left to right:
Battle Zone, Montezuma’s Revenge, Ice Hockey).

4. Method
4.1. Generating Expert Policies and Costs

In our task, these expert policies are generated by find-
ing the shortest path to different target objects in the THOR
framework while avoiding collisions completely. The short-
est distance between any two given locations is provided
within the dataset, which makes the generation of an ideal
path trivial.

4.2. Supervised Imitation Learning

One of the biggest drawbacks of imitation learning is that
the algorithm assumes IID actions which is not the case all
the time. This means that the robot does not move from
one place to another with an equally distributed probability.

This violation of an assumption of the algorithm can de-
crease performance in practice [10]. To solve this problem,
we have used a supervised learning approach where our loss
is defined as:

Tsup = arg 71;%119[Esoa, . [l(s,m)]

Which is proven to satisfy the following theorem:

Es"’dw* [l(577r)] = €, th@’l’bJ(ﬂ') = J(ﬂ'*) + T2€

As a result, we are guaranteed to obtain a poor perfor-
mance due to the quadratic term 72. However, the super-
vised learning algorithm used with imitation learning pro-
vided us with an error almost linear in T and e. Hence, we
implemented a feed forward algorithm.

4.3. Forward Training Algorithm

We implemented the following version of the forward
training algorithm [10]: For a given number of iterations
and a given target location, we first randomly choose a start
location in the given scene. When choosing the random start
location we make sure to avoid locations from which the
end location is unreachable. From this start location, we get
the image that the robot is observing from our THOR scene.
This is the X sample for a given step which we feed into our
neural network.

From the expert policy we determine which choices in
movement would maintain the possibility of an ideal-length
path. The cross-entropy loss comes from this knowledge, as
we penalize any step that does not allow for the possibility
of an ideal path.

This process is repeated for N iterations, where at first
each iteration has a different start step and takes only one
step towards the target location. Then, each iteration took
all steps necessary until we reached the target object and we
took the loss and backpropagation at each step and iteration.

4.4. The DAGGER Algorithm

The most obvious problem with the forward feed algo-
rithm is that it will not perform well when the state space is
large and therefore the number of iterations (the number of
policies to try out) must be large to converge. This is proven
by the bounds demonstrated by Ross, Gordon, and Bagnell
[LO]. The DAGGER algorithm avoids both the problems of
supervised learning and the forward training algorithm by
keeping the expert policy continuously at hand. It is as seen
in Figure [l We modified the DAGGER algorithm to take
into account our problem of having a number of different
start locations and a number of target locations. We initially
experimented with training each target location sequentially
over a number of fixed start locations.

Algorithm 1 Initial DAGGER Training
1: procedure TRAIN
2 for <each target location>do
3: for <each start location> do
4: DAgger loop as presented in
Figure

However, this presented two problems. First, the model
overfit on the target locations trained at a later stages, and
second it was unable to generalize to different start loca-
tions. Therefore we adjusted our DAGGER implementation
to train over randomly sampled (target location, start loca-
tion) pairs. Now for n target locations and m start locations
we have N as defined in Figure [I|to be N = n * m and
we avoid overfitting on both later target locations and fixed
start locations.

We make one additional (commonly used) modification
to the present DAGGER algorithm and that is to decay the 8
value after each iteration by the 3 decay factor we call, ~ .
After each trajectory within an iteration i, we set the 3 value
as § = Px. This increasingly weans the learning model off
the expert policy. Section[5.3]discusses the consequences of
not setting y correctly.

Initialize D « 0.

Initialize 7r; to any policy in II.

fori=1to N do
Letm; = 0;n* + {1 — ﬁz)ﬁz
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D — D|JD;.
Train classifier ;41 on D.

end for

Return best 7; on validation.

Figure 1. The DAGGER algorithm

4.5. Deep DAGGER Architecture

The deep DAGGER architecture utilizes a siamese net-
work layered on top of a pretrained ResNet-50 model. We
feed both the ResNet features of the target image and the of
the view from the current location. Each is run through a
512 neuron fully connected layer and then fused together in
one layer before passing on the features to a 512 scene spe-
cific layer. This siamese architecture allows our model with
a target specific layer before fusing to generalize to different
targets.

policy
@

D value
X O
embedding
ResNet-50 fusion
™y D policy

512) @

T / D =iy
[+] =
target
: O
E D ; ¥

L# 8US0S

224x224x3

Z# 0UB0S

N# 9us0s

)
(512)

fo
12) fc
224x224x3 (612)

generic siamese layers scene-specific layers

Yuke’s Siamese Architecture Model

In here we see that the model is concatenating two
inputs, an observation and a target, and processes them
through some scene specific layers which has the layouts
and object arrangements. In order for the algorithm to gen-
eralize properly, all the targets in the scenes share the same
scene specific layer. Each scene specific layer has a fully
connected layer, a policy and a value. Based on the current
inputs, the algorithm learns to decide on the right move.

4.5.1 Loss

Imitation learning does not attempt to maximize a reward
function or its Q-value as in reinforcement learning because
it does not have access to the reward function of its environ-
ment. Therefore we resort to minimizing a loss function
comparing the expert policy’s action to our model’s action
defined as:

EN = min

Esa, [l(s,m)]
el % vazl ‘

To provide the loss with an upper bound, we could use
the following bound:

J(7) < Tey +0(1)

where T, is the best error possible over T iterations.
€, 1s the ideal error and O(1) could be viewed as some ex-
tra constant which is the difference between the ideal loss
and the current loss. The proof for the linear error, rather
than quadratic error of supervised imitation learning could
be further seen in the Ross’s paper [10]. We also used a
normalized exponential function where:

ezi

Ye= =3
Zil\il e
The cost was optimized my minimizing the following
equation: y; — t; where t; was our predicted move versus
the expert action.

5: Transfer + fine-tuning improves generalization

°
2

3: Fine-tuning recovers co-adapted interactions

2

2: Performance drops
due to fragile
co-adaptation

4: Performance

drops due to
representation
specificity

°
8

Top-1 accuracy (higher is better)
°
3
_—

o
a
.

>

0.54

0 1 6 7

Layer s ot ich network s chopped and etrained
Figure 2. The demonstrated trade offs in fine tuning demonstrate
why we pretrained our top layers to prevent representation speci-
ficity

4.6. Transfer Learning for Deeper Siamese Net-
works

We hypothesized that although a ResNet model trained
on ImageNet captures a large amount of features present in
THOR scenes, this ResNet model is not fine tuned for the
indoor scene data nor is it fine tuned for correlating image
data to four possible action ouputs. Therefore, we should be
able to achieve superior results by retraining the last layer
of ResNet-50 and forming a deeper siamese network as seen
in.

We further hypothesized that if we were to use our un-
trained top Siamese layers on top of ResNet, we would
backprop large gradients in the initial stages of training.
Such large gradients would destroy the existing ResNet
layers (the unfrozen ResNet layers) rather than fine-tuning
them. In order to prevent destabilization of the ResNet,
then, we first trained our existing top model before layer-
ing it on top the ResNet model.

We successfully implemented this model using a pre-
trained (on ImageNet) ResNet-50 from Keras. However due
to the incredibly slow training using the Keras framework,
we were not able to finish training in time to report these
results.

4.7. Model Strengths and Weaknesses

The model we have used does well when tested on the
same scene with different targets and generalizes really
well. This is probably the biggest advantage of our model
because we do not need a teacher every time the robot has to
navigate in a different environment. This is a big improve-
ment because in the real world, being able to generalize is
extremely important since no robot is likely to be "tested’ on
a previously seen environment. As a result, it will be less
costly to use since the need of the expert will not be there
anymore.

The disadvantage of this model is that it does not reach
the target all the time. Although it generalizes well to new
environments, it is not completely immune to collisions.
Sometimes the model gets stuck in some sort of loop which
makes it harder to reach the target. Another disadvantage of

this model is that it takes a very long time to train prior to
getting some good results.

4.8. Training

Our model is trained on each scene individually. Tra-
ditional DAGGER training as detailed above operates from
one starting point to one end point and trains for IV iter-
ations as shown above. However, in indoor scenes there
is no defined starting and end point. The robot should be
able to navigate from any start to location to any target lo-
cation. To generalize to different starting locations, for each
target location in the scene we generate 15 random starting
points within the scene. Therefore, for m targets we iter-
ate N = m * 15 times in the DAGGER algorithm. At each
iteration we sample 7' trajectories where 7' = 50. Here
we make another slight modification to the DAGGER algo-
rithm. Rather than training only after sampling all 7 tra-
jectories, we aggregate our dataset after each trajectory and
then retrain our model. We found this approach along with
increasing the number of trajectories and moderating 3 de-
cay to converge towards the target much more successfully
than the traditional DAGGER approach. Our approach is
much more depth-first rather than breadth-first. Retraining
after each trajectory means it is much less likely to explore
the state space initially. The emphasis is put on reaching
the target quickly rather than learning how to recover as it
explores the state space. We train after each trajectory for
10 epochs. Overall, our training method greatly reduces, by
several orders of magnitude, the amount of frames needed
to train on as compared to the target driven reinforcement
algorithm. The target driven model was trained over 100M
frames or scene images [8] while our model required only
250,000 frames to train and achieve similar results. How-
ever unlike in A3C we are aggregating an increasingly large
dataset and the training process is slow for an algorithm
that has the expert policy at hand. We address methods for
speeding up training while keeping similar results in Future
Work.

5. Experiments

We carried out a number of experiments to measure how
best to optimize DAGGER for indoor navigation, namely in
THOR simulations, and to compare its results to the cur-
rent state of the art performance in THOR. In particular we
ran experiments to find the ideal 5 decay and episode val-
ues. Our metrics for evaluating the model include average
trajectory length to target locations and success rates in gen-
eralizing to new targets. Our success rate is as defined by
Zhu et. al[8§]] to be the proportion of times the model reaches
its target in under 500 steps.

5.1. THOR Framework

One of the key challenges in indoor navigation learning,
especially in the context of the large datasets needed for
deep learning, is data collection. Dividng the real world
into coordinate points, having a physical robot collect data
for all those coordinates, and generating an expert policy
can be a cumbersome process. Therefore we utilized the
THOR data framework developed by Yuke et. al. The
THOR framework has a number of detailed indoor scenes
like bedrooms, bathrooms, and living rooms with target ob-
jects such as desks, chairs, and beds in each scene. Each
scene is divided into a grid of locations and the shortest path
distance between any two locations is provided. We utilize
the shortest path distance as our expert policy. The clearest
drawback of THOR is that such a simulation does not fully
model real world physics. Nevertheless, it simulates real
world interactions such as collisions with objects and it will
allow us to judge different models before training in the real
world.

Figure 3. Four of the targets trained in the THOR dataset. Objects
near the target can be collided into

5.2. Collision-Indifferent versus Collision-Avoiding
Models

As aforementioned the THOR framework allows for rich
physical interactions such as collisions with objects during
a trajectory. In the real world avoiding such collisions is op-
timal. However, we hypothesized that allowing the model
to collide with objects during training alone and continue
without restarting, would allow for more exploration in less
iterations and increase its success rate in reaching the tar-
get. Therefore we trained two models. For one model dur-
ing training, we sampled a trajectory until it successfully
reached the target, hit the max step limit of 1000 during
training (the 500 step limit is set only during testing of the
model), or collided with an object. For the second model we
allowed it to continue after a collision until it either reached
the target or ran out of steps. We then tested the models

from 5 different random starting points within a scene and
the same 5 targets from training. During testing we count
collisions as failures. Our results presented in [5 actually
prove our hypothesis incorrect. The model that was cut
short during collisions, the collision-avoiding model suc-
cessfully reached the target more often than the collision-
indifferent model. This was true for both the targets trained
on and the new (untrained-on) targets we attempted to gen-
eralize for (discussed in the Target Generalization section
54 The unexpected results were probably because the
collision-indifferent model was not penalized for its colli-
sions during training so it was not trained to avoid collisions
during testing. This shows that although the expert policy
repeatedly indicated the collision-free path (positive rein-
forcement), penalizations for colliding were an important
factor in training (negative reinforcement).

5.3. Trajectory Length Reduction

The most basic task at hand is to successfully reach the
target and to do so in a realistic fashion. Decreasing trajec-
tory length from a start location to the end location ensures
that the robot will minimize collisions, act in a manner nat-
ural to humans, and substantially increase efficiency. We
tested trajectory length by choosing five random start lo-
cations within the scene and sampled 10 trajectories of the
models attempt to reach the target. We capped the maxi-
mum amount of steps that the virtual robot could take to
500 to avoid situations where the robot became stuck loop-
ing between the same state distribution.

Our results in Table[T|show that our Deep DAgger model
is able to outperform excellent methods such as A3 CL in
reaching the target at a reasonable pace. Interestingly the
collision-indifferent trained version of Deep DAgger was
able to significantly undercut both the collision-avoiding
Deep DAgger and current state-of-the-art target-driven RL
approach. There is one caveat. The results were normal-
ized to take into account different success rates in the Deep
DAgger models but not in regards to other models. Hence,
the reason for such a dramatic improvement as compared
to the Target-driven RL approach may simply be because it
reaches closer targets.

However, there is one important reason to believe that
collision-indifferent model outperforms both our collision-
avoiding model and all others. It marries the best of both
the target-driven RL approach which has much more exten-
sive training (as aforementioned Zhu et. al trained for over
100 million frames) and imitation learning which has the
expert policy in hand. Perhaps to overcome the problem
of not penalizing collisions (mentioned in our section on
Collision-Avoiding versus Collision-Indifferent) more pos-
itive reinforcement is needed and we should train the model
for much more than 250,000 frames. More testing needs to
be done.

Average Trajectory Length by Algorithm

Random Walk | A3C RL | Target-driven | Deep DAgger | Deep DAgger
(Multi- RL Collision- Collision-
threaded) Avoiding Indifferent

2744.3 723.5 210.7 2334 148.9

Table 1. Deep DAgger shows substatiantial improvement over existinig models in trajectory length

5.4. Target Generalization

Even before deep learning’s recent popularity, DAgger
has been shown to work well with traditional machine learn-
ing techniques. There is nothing new there. One new aspect
we presented and mentioned before was giving our model
the ability to start from any location post-training. How-
ever, we also wanted to test the model’s ability to generalize
to different scene-related targets. For instance, if we taught
our indoor navigation model to find a fridge in the kitchen, it
should also be able to find the toaster adjacent to the fridge.
In two experiments, we trained on our model five and eight
targets. We then tested them with a number of targets one
step away, two steps away, four steps away, and eight steps
away from the trained on target. We hypothesized that tar-
gets closer to trained on targets would be more easily found
because of scene similarity.

Unlike in the original work of Zhu et. al we only con-
sider collision free trajectories during validation (Note: this
is separate from collision-indifference during training) to be
successes. Therefore it is no surprise, a random baseline
model (that is a model that chooses one of the four actions
of left, right, forward, or backward randomly) was unable
to reach any targets successfully.

As shown in Figure bla our DAgger trained model was
able to generalize to targets near the targets that it trained
on, indicating that the model was able to learn nearby re-
gions well. This demonstrates some particularly unique re-
sults in imitation learning compared to foundational works
such as by Ross et. al [10] where no generalization was
attempted. It demonstrates that in the training process, our
model was taught by the expert policy not only how to reach
the specific targets it was training on, but it was also taught
the process of finding and proceeding to targets as well.
As we hypothesized closer targets were more easily found
probably both due to scene similarity with the trained on
targets and because of those regions of the scene were more
explored during training.

5.5. Beta Decay Optimization

The DAGGER algorithm introduces three new hyperpa-
rameters into our model: 3, v (the 8 decay factor) and T,
the number of trajectory samples taken at each iteration with
a set start location to target location. Although f is typically
initialized to 1 [12], we found that this prevents necessary
exploration of the state distribution. Therefore, we began

with 8 = 0.9 in order to explore a wider space of states
early in training.

The more careful consideration is in optimizing 7', the
number of sampled trajectories and . If 7" is low and ~
is high the model seems deceptively good reaching the tar-
get consistently during training. However at validation time
the model performs poorly because it seriously underfits the
data. Why? With a high v and a low 7', the 3 - where £ is
reduced as 8 = [*y after each of the 7" trajectories - never
goes low, and the model never fully weans itself off the ex-
pert policy. Therefore at test time, the model is not able
to recover from unseen distributions. With a higher 7" and
lower gamma, we can clearly see that the model is actually
learning and the converging to a high success rate versus
having a consistently high success rate as seen in figure

We also discovered that there is a trade off in having a
high 7" and higher « versus having a lower 7" and lower
~. Notice in both situations the model weans itself off the
expert policy by sending 5 low. However, the tradeoff is in
the first the model learns the expert shortest path to target
too well and sticks to it. Therefore it does not explore how
to recover from unseen states. In the second case, the model
veers off the shortest path to target and learns a suboptimal
path. We found, through validation that with a starting
value of 0.9, the optimal values are v = 0.95 and T = 50.

1.0

mmm Collision-Indifferent
mmm Collision-Avoiding

0.8 A

0.6

Success rate

0.4

0.2

0.0
Trained target 1 2 4 8
Steps away from target
Figure 4. A comparison of the collision-indifferent and collision-
avoiding trained models on both their trained targets and to un-
trained targets

1.0

1 o000 0020000 9-g-0-6-0-0060
P L= j’/
/ €

0.8

Success Rate
0.6

0.2
|

0.0
l

T T T T 1
0 5 10 15 20

Iteration Group

Figure 5. With T = 50 and v = 0.95, the model learns to fit the
data versus the blue line where the model performs deceptively
well but only because of its excessive reliance on the expert policy

6. Conclusion and Future Work

We applied a novel approach to indoor scene navigation
in the form of Deep DAgger. In addition, we experimented
with a number of factors in tuning such a model. Our ex-
periments shows that Deep DAgger is able to learn to reach
targets successfully. It also is able to learn the process of
reaching targets and because of this, able to generalize to
other targets well.

Deep DAgger, especially with collision-avoidance train-
ing, still trails target driven RL as presented by Zhu et.
al [8]] in both trajectory length and target generalization.
However, our experimentation with the collision-indifferent
training shows that Deep DAgger is promising because it
may learn shorter trajectories and generlization as well as,
if not better than, target driven RL, if it is trained over many
more frames than our 250,000.

6.1. Future Work

Although DAGGER greatly reduces the amount of
frames needed to train on as compared to traditional deep
reinforcement learning, it must, on every episode, train on
an increasingly large dataset which is expensive at train
time. Additionally, the form in which we apply DAGGER,
in a grid environment, would be difficult to replicate in real
life. This is because a real scene would be difficult to dis-
cretize into locations, as we were able to do in the context
of the THOR dataset.

Other possible improvements include further optimiz-
ing our neural network architecture and implementing the
DART algorithm. DART would particularly be beneficial,
because we would explore a larger sample of spaces, which
would provide a more general set of data with which to

train.[[13]]

Nevertheless, we were able to show the efficacy of the
DAGGER algorithm in the context of the THOR dataset,
and demonstrate its ability to reduce the trajectory length
between in starting location and a target location. This rep-
resents progress towards training a robot to navigate indoors
while avoiding collisions.

References

[1] Ross et. al. Learning Monocular Reactive UAV Control
in Cluttered Natural Environments.

[2] Stefan Schaal. Is imitation learning the route to hu-
manoid robots?.

[3] Brenna Argall, et. al. A survey of robot learning from
demonstration. 2009.

[4] K. Kidono, J. Miura, and Y. Shirai, Autonomous visual
navigation of a mobile robot using a human guided ex-
perience, Robotics and Autonomous Systems, 2002.

[5] K. Konolige, J. Bowman, J. Chen, P. Mihelich, M.
Calonder, V. Lepetit, and P. Fua, View-based maps, Intl.
J. of Robotics Research, 2010.

[6] C.McManus, B. Upcroft, and P. Newman, Scene signa-
tures: Localised and point-less features for localisation,
in RSS, 2014.

[7] Y. Liang, M. C. Machado, E. Talvitie, and M. Bowling,
State of the art control of atari games using shallow re-
inforcement learning, in AAMAS, 2016.

[8] Zhu et. al. Target-driven Visual Navigation in Indoor
Scenes using Deep Reinforcement Learning 2016.

[9] Jonathan Ho, Stefano Ermon. Generative Adversarial
Imitation Learning 2016.

[10] Stephane Ross, Geoffrey J. Gordon, and J. Andrew
Bagnell. A Reduction of Imitation Learning and Struc-
tured Prediction to No-Regret Online Learning 2010.

[11] Tacoboni, Marco; Dapretto, Mirella (2006). The mir-
ror neuron system and the consequences of its dysfunc-
tion”. Nature Reviews Neuroscience. 7 (12): 94251.
PMID 17115076. doi:10.1038/nrn2024.

[12] Z. Richard, K. Andrew. “Imitation Learning” in CS
159 Lecture at Caltech. Slide 42.

[13] Laskey et. al. Iterative Noise Injection for Scalable Im-
itation Learning. March 2017.

