Game Playing with Deep Q-Learning using OpenAl Gym

Robert Chuchro

chuchro3@stanford.edu

Abstract

Historically, designing game players requires domain-
specific knowledge of the particular game to be integrated
into the model for the game playing program. This leads
to a program that can only learn to play a single particu-
lar game successfully. In this project, we explore the use of
general Al techniques, namely reinforcement learning and
neural networks, in order to architect a model which can
be trained on more than one game. Our goal is to progress
from a simple convolutional neural network with a couple
fully connected layers, to experimenting with more complex
additions, such as deeper layers or recurrent neural net-
works.

1. Introduction

Game playing has recently emerged as a popular play-
ground for exploring the application of artificial intelligence
theory. With the addition of convolutional neural networks,
performance of game playing programs has seen improve-
ment that can even go beyond the ability of even expert level
human players. This demonstrates the powerful learning
capabilities of computers in a variety of challenging envi-
ronments. Designing a model which is agnostic to its envi-
ronment allows us to investigate a core problem of artificial
intelligence, which is the concept of general intelligence.
The benefit to interfacing with OpenAl Gym is that it is
an actively developed interface which is adding more envi-
ronments and features useful for training. One of the core
challenges with computer vision is obtaining enough data to
properly train a neural network, and OpenAl Gym provides
a clean interface with dozens of different environments.

1.1. Learning Environment

In this project, we will be exploring reinforcement learn-
ing on a variety of OpenAl Gym environments (G. Brock-
man et al., 2016). OpenAl Gym is an interface which pro-
vides various environments which simulate reinforcement
learning problems. Specifically, each environment has an
observation state space, an action space to interact with the
environment to transition between states, and a reward as-

Deepak Gupta
dgupta9@stanford.edu

sociated with performing a particular action in a given state.
This information is fundamental to any reinforcement learn-
ing problem.

The input to our model will be a sequence of pixel im-
ages as arrays (Width x Height x 3) generated by a particular
OpenAl Gym environment. We then use a Deep Q-Network
to output a action from the action space of the game. The
output that the model will learn is an action from the envi-
ronments action space in order to maximize future reward
from a given state. In this paper, we explore using a neural
network with multiple convolutional layers as our model.

2. Related Work

The best known success story of classical reinforcement
learning is TD-gammon, a backgammon playing program
which learned entirely by reinforcement learning [6]. TD-
gammon used a model-free reinforcement learning algo-
rithm similar to Q-learning. Attempt to explore on success
of TD-gammon were less successful like applying the same
techniques on Go and checkers as it was later concluded that
stochasticity in the dice rolls helps exploring state space and
makes value function particularly smooth [7].

The core of the problem is to apply non linear func-
tion approximation such as a neural network to reinforce-
ment learning problem. Traditionally reinforcement learn-
ing problems tend to be unstable or diverge when a non
linear function is applied to represent the action value aka
Q value[1].Learning to control agents directly from high
dimensional sensory inputs like vision is one of the long
standing challenges of reinforcement learning[2]. Most of
the recent algorithms and works that have used deep learn-
ing models to approximate Q function for RL exercise has
been made possible due to recent breakthroughs in com-
puter vision [3,4,5].First deep learning model to tackle rein-
forcement learning problem was introduced by DeepMind
Technologies [2] to successfully learn control policies di-
rectly from image input using reinforcement learning. They
used a convolutional neural network to train seven Atari
2600 games from Arcade Learning Environment with no
adjustment of architecture or learning algorithm. They were
able to achieve state-of-the-art results in six of the seven
games it was tested on, with no adjustment of the architec-

ture or hyperparameters.

Following the success of DQN, the Google DeepMind
team experimented with applying deep convolution network
to Double Q-learning algorithm [8,9], the motivation be-
ing standard Deep Q-learning algorithms were known to
overestimate values under certain conditions. If overestima-
tions are not uniform they can negatively impact the quality
of resulting policy [10].Double DQN builds on the idea of
Double Q-learning which aims at reducing overestimations
by decomposing the max operation in the target into ac-
tion selection and action evaluation [8]. Google DeepMind
team concluded that DDQN clearly improves over DQN.
Noteworthy examples include Road Runner (from 233% to
617%), Asterix (from 70% to 180%), Zaxxon (from 54%
to 111%), and Double Dunk (from 17% to 397%). DDQN
also estimated to show low variance in results than the cor-
responding DQN model.

There has been experimentation with different network
architectures within convolution network domain such as
Dueling Networks which contain two separate estimators:
one for the state value function and one for the state-
dependent action advantage function.

This helps in generalizing learning across actions with-
out imposing any change to the underlying reinforce-
ment learning algorithm[11].Google DeepMind team ex-
perimented with applying dueling networks on DDQN with
prioritized experience replay [12] and uniform networks
without any prioritized experience replay buffer.They eval-
uated dueling network architecture on 57 Atari games and
found prioritized dueling agent performs significantly bet-
ter than both the prioritized baseline agent and the dueling
agent alone Recent works by Google DeepMind involves
asynchronous variant of action critic model which surpasses
current state-of-the-art on the Atari domain while training
for half the time on a single multi-core CPU instead of a
GPU [13].Asynchronous variant of actor critic model finds
inspiration from General Reinforcement Learning Architec-
ture (Gorila) and some earlier work which studied conver-
gence properties of Q learning in the asynchronous opti-
mization setting [15].

3. Data Format
3.1. Interacting with Environment

All of the data used for training our model comes from
interacting with the OpenAl Gym Interface (CITE). Inter-
acting with the Gym interface has three main steps: register-
ing the desired game with Gym, resetting the environment
to get the initial state, then applying a step on the environ-
ment to generate a suCcessor state.

The input which is required to step in the environment
is an action value. More specifically, it is an integer rang-
ing from [0, num,ctions). The information that we receive

back is the successor state, represented as an image array of
form (Width x Height x 3), where the third dimension is the
RGB values at each pixel. In addition, we receive a reward
value from the transition as well as an indicator to notify if
the particular episode has terminated.

In the case of Flappy Bird, the observation space is a
matrix of (288x512x3) representing the pixel values of the
image of a particular frame in the game. Upon passing in
between a set of pipes, a reward of 1 is received. If Flappy
Bird collides with a pipe, the reward is -5 and the episode
ends. A reward of 0 is given in all other states. The action
space that we will learn our policy on is just two actions, 0
or 1. A sample image from a frame generated by the Ope-
nAi Gym environment is shown in figure [1].

L H
7

0

Figure 1. Sample frame of Flappy Bird. Action of 1 causes the
bird to go up, while 0 allows gravity to drag it down.

3.2. Input Preprocessing

Once we receive the image from the Gym environment,
we apply a couple steps to format the image to finally use an
input to the model. First, we convert the image to gray scale,
which should reduce discrepancies between episodes with
different background settings (night/day, pipe/bird color). It
also reduces the size of the third dimension from 3 for RGB
to 1. Next, we De-noise the image using adaptive thresh-
olding. In Flappy Bird, the background contains some un-
necessary pixels that can create some noise for the neural
network, such as stars in the night background. Applying
adaptive Gaussian thresholding (CITE) incorporates each
pixel’s neighboring values to determine whether its value is
noise or not. This same algorithm generalizes well format
other games, as shown in figure [2].

Afterwards, we normalize values to be between 0 and
1 and reduce the image to 80x80 pixels. This allows for
consistent input sizes across games as well as decreasing
dimensionality of each layer of our network, allowing for
faster passes and fewer parameters per layer. Finally, we
stack last 4 frames as input to network (CITE) to form the
80x80x4 input to the network. For the reward values, we
clip all incoming rewards such that positive rewards are all
1, negative rewards are -1, and 0 rewards remain 0. This

Figure 2. Image preprocessing for Flappy Bird (top) and Pixel
Copter (bottom)

should remove the need for tuning learning rates across dif-
ferent games.

4. Methods
4.1. Neural Network Model

Our implementation of DQN is using the Tensor Flow
library (H. M. Abadi et al., 2016), and our models are run-
ning on Google Cloud Compute Engine with 8 cores and
an Nvidia Tesla K80 GPU. The Network architecture is
outlined in figure [4]. We are using 3 convolution layers
with ReLU non-linearity activations, followed by 2 fully
connected layers. Fully connected layers are separated by
ReLU function similar to convolution layers. The final out-
put layer dimension is equal to the number of valid actions
allowed in the game. The values at this output layer rep-
resent the Q function given the input state for each valid
action. At startup, we initialize all the weight matrices us-
ing normal distribution with a standard deviation of .01. We
also initialize replay memory to 50,000 observations. At
beginning of training, we first populate the replay memory
by choosing random actions for 10,000 steps and we are
not updating network weights during this preliminary train-
ing step. Once replay memory buffer is partially filled, we
start training. We use Tensor Flows Adam optimization al-
gorithm with an initial learning rate of le-5.

4.2. Deep Q Network

Neural networks are exceptionally good for learning fea-
tures for highly structured data. Our Q function can be rep-
resented with a neural network that takes the state (last four
game screens stacked) and action as input and outputs the
corresponding Q-value. This approach has the advantage
where if we want to perform Q value update or pick an ac-
tion with highest Q-value we just need to do one forward

[Network Architecture |

[Type [[Classes /Filters [Filter Size | Stride | Activation |
Conv-1 32 8x8 4 ReLU
Conv-2 64 4x4 2 ReLU
Conv-3 64 3x3 1 ReLU

Fully Connected-1 512 ReLU
Fully Connected-2 # of actions Linear

Figure 3. Details of layers of our current network, based off the
DeepMind DQN model (V. Mnih et al., 2013), but with a larger
number of classes / filters in each layer

pass through the network and have all Q values for all the
actions immediately. Input to the network are 4 stacked
frames of 80x80 gray scale game screens. Output of the
network are Q-values for each possible action (2 for Flappy
Bird and Pixel Copter). Q-values are continuous values
which makes it a regression task that can either be optimized
by using L2 loss, equation [] or Huber loss, equation [].

Loss = (reward + mazQ(s',a’) — Q(s,a))* (1)

Loss = (reward + mazQ(s',a') — Q(s,a))* (2)

Pseudo code for Q learning algorithm is as follows

initialize Q[num_states ,num_actions]
observe initial state s
while condition
select and carry out an action a
observe reward r and new state s’

Qls, a] = Q[s, a] + a(r + ymazQ[s’, a’] — Q[s, a])
s=s’

« is the learning rate that controls how much is dif-
ference between previous Q-value and newly proposed Q-
value. When « is equal to 1 then update equation is similar
to Bellman equation.

For Deep Q network given a transition < s,a,r,s >,
the Q-table update rule can be re written as:

e Do a feedforward pass for the current state s to get pre-
dicted Q-values for all actions.

e Do a feedforward pass for the next state s and calculate
maximum overall network outputs maxQ(s, a).

e Set Q-value target for action to r + v * mazQ(s, a).
For all other actions make output equal to 0.

e Update the weights using back propagation (using gra-
dient descent to optimize on this).

4.3. Replay Memory

This can be coined as the most important trick to get net-
work to converge. Due to the stochastic nature of game play,
approximating Q values using non linear functions is not
very stable. Replay memory is one of the tricks that helps
in converging the network and making learning stable. Dur-
ing game play, all the experiences < s,a,r,s > are stored
in areplay memory of fixed size D (a hyperparameter). Dur-
ing training, random mini batches from replay memory are
sampled and this helps in breaking the similarity of contin-
uous training samples and helps drive the network towards
a local minimum. Replay memory makes training process
similar to supervised learning and simplifies debugging and
testing of algorithm

4.4. Exploration vs Exploitation

At the beginning of the training cycle predictions of Q
network are random due to random initialization of the net-
work.Agent tends to perform exploration in which it tries
various actions and observe rewards for these actions.As a
Q-function converges, it returns more consistent Q-values
and the amount of exploration decreases. Q-learning incor-
porates the exploration as part of the algorithm. But this
exploration is greedy, it settles with the first effective strat-
egy it finds. A simple and effective fix to this problem is to
introduce a hyperparameter epsilon which determines the
probability to choose between exploration or exploitation.
[1] actually decreases over time from 1 to 0.1 in the begin-
ning the system makes completely random moves to explore
the state space maximally, and then it settles down to a fixed
exploration rate [1].

Now we can write Deep Q-learning algorithm as :

initialize replay memory D
initialize action—value function Q with random weights
observe initial state s
for episode in 1:M
reset open gym environment
while episode is not done
select an action a
with probability epsilon select a random action
otherwise select a= argmax Q(s,a’)
carry out action a
observe reward r and new state s
store experience <s,a,r,s’> in replay memory D

B

sample random transitions <ss,aa,rr,ss’>

from replay memory D

calculate output y for each minibatch transition
if next state ss’ is end of episode then y=rr
else y=rr + gamma * max Q(ss’,aa’)

train Q network using (y —Q(ss,aa))"2

s=s’

until we finish iterating M episodes

4.5. Target Network

Before we explain DDQN, it is better to understand the
intuition behind target networks. A target network is used
to generate the target-Q values that will be used to compute
the loss for every action during training. Using one network

for both estimations is not very stable as Q-networks values
shift, and if we are using a constantly shifting set of values
to adjust our network values,then the value estimations can
easily spiral out of control. The network can become desta-
bilized by falling into feedback loops between the target and
estimated Q-values. In order to mitigate that risk, the target
networks weights are fixed, and only periodically updated
to the primary Q-networks values. In this way training can
proceed in a more stable manner [1].

4.6. Double DQN

Double DQN is based on Double Q learning algorithm
and motivation behind this algorithm is that regular DQN
often overestimates Q-values of potential actions to take
in a given state. This over-estimation would not have
been a problem if all the actions are overestimated but that
is not always the case.In order to correct this authors of
DDQN][9]proposed a simple trick : instead of taking the
max over Q-values when computing the target-Q value for
training step, use your primary network to chose an action,
and target network to generate the target Q-value for that
action

So equation of Q target can be written as :

y = reward + yQiarget(s’, argmaz(Q(s’,d’))) (3)

Now we can write Double Deep Q-learning algorithm as:

initialize replay memory D
initialize action—value function Q with random weights
initialize action—value function for Q_target
observe initial state s
numlterations =0
for episode in 1:M
reset open gym environment
while episode is not done
select an action a
with probability epsilon select a random action
otherwise select a= argmax Q(s,a’)
carry out action a
observe reward r and new state s
store experience <s,a,r,s’> in replay memory D

B

sample random transitions <ss,aa,rr,ss’>

in replay memory D

calculate output y for each minibatch transition
if next state ss’ is end of episode then y=rr
else

y = rr + gamma * maxQiarget(ss’, argmazx(Q(ss’, aa’)))

train Q network using (y — Q(ss,aa))?

s=s’

increment numlterations

if numlterations % targetNetworkUpdateThreshold
update target network weights equal to primary
network until we finish iterating M episodes

5. Experiments

We measure the performance of a particular model us-
ing metrics provided by the OpenAl Gym interface, namely
the average score over 100 episodes of a particular envi-
ronment. We will explore different reinforcement learning
techniques as well as experiment with the tuning of hyper-
parameters.

Learning performance Episode Total Reward =] Episode =)

Figure 4. Flappy Bird scores when training a first epoch of 5000
episodes with standard exponentially decaying e function

Learning performance B B

OSSN/

Figure 5. Flappy Bird scores when training a first epoch of 5000
episodes with our sinusoidal decaying function. Peaks continue to
rise as training progresses, instead of getting stuck.

5.1. Sinusoidal Exploration Decay

Typically, reinforcement learning algorithms begin with
a high exploration rate, and decay it as training progresses.
The decay method is traditionally a linear or exponential
decay. In our early trials, we found that after a certain num-
ber of iterations, training would progress would flatten, but
then continue to improve when a new epoch was started.
The most significant difference in our implementation when
a new epoch begins is the reset of the exploration hyperpa-
rameter, €. As shown in figure [], with an exponentially
decaying ¢, the episode score for our model levels out about
half way through, essentially wasting half an epoch of train-
ing time. In contrast, figure [] shows our sinusoidal decay
allowing the model to continue to improve across the entire
epoch, finishing with a better top score.

We have introduced a new e decaying function: one
which exponentially decays over episodes in a sinusoidal
fashion.

2rxn
X

1
1+ cos(

S) @

€E=¢€p-€y-

- €p is initial epsilon

- €4 1s decay rate

- n is number of mini epochs

- X is number of training episodes

- X is current training episode number

The main motivation behind this function was for our
model to be able to escape local optima while training with
an already reduced e. Since it is difficult to model an ideal
exploration rate for a particular environment, a decaying
sinusoidal function makes less assumptions about the ex-
pected decay of €, hopefully finding the correct decay rate
periodically during the entire epoch. An analogy can be

NP
5000 20000

Figure 6. Plot of equation []. Save the model at every minimum,
creating a mini-epoch. Parameters used: X=20000, n=7, €o=1,
€4=.9998

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

4 ‘J A //
A Ay A
SOV AV Wi\ Ve PN N WAV

Figure 7. Preliminary OpenAi Gym score results for Flappy Bird
using DQN (left) and DDQN (right)

{/ﬁ\ /r\/\\ A “W“”

/
/
/
J

Figure 8. Preliminary OpenAi Gym score results for Pixel Copter
using DQN (left) and DDQN (right)

made about the suggested strategy. It focuses on the idea
how one should use car brakes on a slippery road (without
ABS): it is difficult for a driver to apply the brakes an op-
timal amount while maintaining rolling friction, but if the
driver pumps the brakes repeatedly, they will achieve the
correct amount of pressure periodically.

5.2. DQN vs DDQN

We ran 5000 training iterations of both Flappy Bird and
Pixel Copter using DQN and then Double DQN. The results
show an improvement in best average 100 episode score for
Flappy Bird as shown in figure []. Interestingly, for Pixel
Copter, there was very little difference in performance, as
shown in figure []. These results offer evidence that DDQN
is not a guaranteed improvement over DQN.

5.3. DDQN Variations

The following section describes details about three ex-
periments for DDQN.

L2 Loss: In this experiment we tried to optimize L2 loss
using Adam Optimizer Huber Loss: In this experiment we
tried to optimize Huber Loss using Adam Optimizer Huber
Loss and Dynamic Target Network Update: In this exper-
iment we tried to optimize Huber Loss using Adam Opti-
mizer. We also did dynamic target network updates. In-
stead of updating target network to primary network after
every N constant iterations we instead updated target net-
work dynamically using an experimental formula where in-
tuition was to freeze target network for longer if the current

L2 Loss

Huber Loss

Huber Loss & Dynamic Target
Network Update

Max average reward =11.78

Max average reward = 17.20

Max average reward = 12.01

Average reward dropped
drastically after 4.5 K episodes
and never recovered

Average score dropped after 4.5 K
episodes but performed better
than L2 loss

Average score dropped after 4.5 K
episodes but performed better
than rest of the two

Network didn't converge

Network didn't converge

Network didn't converge

Figure 9. Preliminary OpenAi Gym score results for Flappy Bird
using DQN (left) and DDQN (right)

Avg Reward vs Episode Number (DDQN)

Figure 10. Preliminary OpenAi Gym score results for Flappy Bird
using DQN (left) and DDQN (right)

network is achieving a higher score. The formula used is
listed in equation [5].

updateT argetThresh = 750(avgReward + 1) + 9000
&)

6. Results
6.1. Flappy Bird

Ultimately, we were able to train a model using DQN
to learn Flappy Bird with superhuman performance. This
was accomplished with two training epochs totaling 18000
episodes and about 7 million iterations. Figure [] shows the
OpenAl Gym submission of the second epoch, which is cur-
rently the third highest submission on OpenAl Gym with a
best 100 episode average score of 62.26. This likely per-
form better with more training since each exploitation spike
was continuing to increase. Figure [] shows the predicted
Q-value of our model throughout the same training epoch,
which follows a similar shape to the score graph. It is worth
noting that even though the predicted Q-value was begin-
ning to converge to about 8, the score of the actual game
was continuing to increase.

6.2. Pixel Copter

Preliminary results for Pixel Copter using DQN have
achieved a promising score of 16.89 with less than 2 million
iterations, and is expected to surpass human performance.

Learning performance Episode Total Reward] Episode ¥)

Figure 11. OpenAi Gym submission of score over about 7 million
iterations

Figure 12. DQN predicted Q-value over the course of training

7. Conclusion

We were able to receive superhuman results on Flappy
Bird using Deep Reinforcement Learning. We reduced
training time by utilizing our new sinusoidal epsilon func-
tion. We can further reduce training time and improve
performance by using Double Deep Q-Learning The first
epoch of Double Deep Q-Learning for Flappy Bird shows
a much smoother score curve over episodes, confirming the
increased stability hypothesis, as well as improved perfor-
mance.

Our model was able to transfer over to another game,
Pixel Copter. Preliminary results are promising, can sig-
nificantly improve if given the same amount of training
time as our successful Flappy Bird model. Double Deep
Q-Learning does not seem to offer as significant of an im-
provement in Pixel Copter compared to Flappy Bird. This
may be due to the simplicity of the graphics in Pixel Copter.

