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Abstract

Modern applications of Deep Reinforcement learning
center around game playing. Even though agents like the
Asynchronous Actor Critic model from Deepmind general-
izes well to playing a variety of games, the performance on
individual games is lacking when compared to human level
performance. In particular we look at racing flash games
like DuskDrive where the state of the art OpenAl universe
agent simply learns to go straight to achieve the optimal
reward. This behavior is analgous to being stuck in a lo-
cal minima. The following work demonstrates how deep
learning techniques in vision and methods such as immi-
tation learning and visual attention can influence an agent
to succesfully perform turns during the DuskDrive game.
While our results do not do better than the average reward
achieved the OpenAl’s agent, our agents are able to either
achieve the same convergent behavior faster or learn dif-
ferent behaviors such as avoiding cars or performing turns.

1. Introduction

Since DeepMind’s breakthrough in utilizing deep rein-
forcement learning to learn control policies for various Atari
games [|13], there has been a lot of interest in developing
better models for the task. Learning how to play games
is an incredibly interesting problem because games can be
thought of as simplified representations of the real world. A
model which can learn how to play a racing game may be
able to produce insight into the task of getting cars to drive
autonomously. Even if the above argument is a stretch, the
prospect of getting an autonomous agent to learn how to
play various genres of games without any prior information
is interesting in and of itself.

For this project, we will explore the effectiveness of im-
age processing techniques when applied to Asynchronous
Methods for Deep Reinforcement Learning. Specifically,
we will look at using various convolutional neural network
models and techniques to improve the asynchronous advan-
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Figure 1: The DuskDrive game

tage actor-critic (A3C)[12]] method for the purpose of gen-
eralizing game play across multiple game instances. We
leverage the agent-playable games found in OpenAl Uni-
verse. We also use the Gym library which provides a com-
mon interface to the variety of environments agents can play
in.

2. Problem Statement

The A3C algorithm is effective because it employs par-
allel actors which each follow a different exploration pol-
icy. It essentially aggregates and summarizes the experi-
ences of each actor, which effectively stabilizes training by
removing correlations in the data. This differs from a syn-
chronous approach such as experience replay used in Deep-
Q-Learning which also removes correlations, but at the cost
of more memory and computation. Experience replay re-
quires maintaining a history of state, action, reward, and
next state pairs. A batch is then randomly sampled from
the history and fed through a Deep Q Network to update the
policy gradients.

Thus, our dataset will be comprised of sequences of frames
from episodes of the DuskDrive game. Frames will be gath-
ered at each time step by each actor and fed into its corre-
sponding convolutional network and LSTM for feature ex-
traction. The actors will then use these features to predict
the next action they should take.

From our initial experiments, we see that the model learns a



suboptimal policy of taking a forward action at every state.
Clearly this will lead to issues when the road curves and the
agent fails to turn with the road. Our goal will be to try and
get the agent to learn to turn when it should.

3. Related Works

Deep Reinforcement learning has taken the Artifical in-
telligence community by storm. At the crux of these de-
velopments is game playing as noted by Mnih et al. [13].
It is important to note that despite recent trends deep rein-
forcement learning has been used in the past to play games
like backgammon [22]]. Recent developments leveraged the
asynchronous actor critic method [12] which uses inherent
agent-level parallelism to train deep reinforcement learning
models. We see that these models are limited by their sole
reliance on the reward function. We adopt methods from
imitation learning [18] to train an inference model which
will be used to provide an intermediate reward signal during
the A3C game play. One of the motivations behind training
game playing agents is achieving human level control as
noted by Mnih et al. [14]]. While game playing agents can
perform in discrete timesteps, deep reinforcement learning
has also been shown to be effective in scenarios requiring
continuous control [[10].

Deep Learning has shown to be effective at a variety of
classification tasks, as it leverages representation layers in
the form of weights to learn complex models [7]]. Of these
tasks is video classification, with several works from a vari-
ety of domains including geography [11], medical imagery
[3]], sports [2], and robotics [8]. Game playing is not nec-
essarily a novel application area for Deep Learning, despite
its recency. Schuurmans et al. [19] has shown that the Nash
equilibria from game theory can be extended to a general
neural network architecture. We see that the key differen-
tiator in immitation game playing online is the aspect of
vision. Our methods are partly inspired by the work of
Yeung et al. [6] [24] in identifying actions in video data.
Furthermore, the central component of deep learning vision
applications are convolutional neural network. Analysis of
CNN architectures have culminated in work by Szegedy et
al. [21] whose study of the structural characteristics of the
Inception-v4 demonstrated the importance of residual con-
nections and deeper convolutional architectures. Similar
work in the study of CNN’s is also done by Karpathy et
al. [17].

4. Methods
4.1. A3C

The asynchronous advantage actor critic algorithm is
a relatively recent innovation by DeepMind introduced in
[12]. We leverage the universe-starter-agent codebase [15]]
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Figure 2: A3C high level architecture [3]]
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Figure 3: A3C workflow [5]]

and build additional functionality around the OpenAl gym
framework.

The asynchronous aspect of A3C simply means that the
algorithm utilizes worker threads to collect independent ex-
perience rollouts while having a global network to aggre-
gate all of the information into its network parameters. The
workflow can be broken down into a simple cycle as de-
picted in Figure [3] At each step, the worker threads get
a copy of the global network’s parameters and use those
to select its agent’s next action. Each worker computes its
corresponding loss and gradients using the experiences and
then the global network’s parameters are updated. The ben-
efits of using an asynchronous algorithm are two-fold: there
is no explicit need for experience replay as used in the DQN
algorithm [[13]] since rollouts are independent of one another
(although it could still be used for data efficiency [23]]) and
the other is faster data collection.

The A3C algorithm computes advantages for each state-



action pair instead of Q-values. The advantage is defined as
the difference between the value of a particular state-action
pair and the value of the state. Intuitively, this represents
how well taking one action would be compared to taking
any other action for some state and allows the agent to know
where it should focus its learning. Note that since we do
not actually have the Q-values, the algorithm uses the dis-
counted returns from the rollouts to estimate the Q-values.

A(Sa Cl) = Q(S7a) - V(S)
A(s,a) = R—V(s)
R=r,+ V-1 + 72rn—2 + ..

With each of the workers, the algorithm keeps estimates
of the policy 7(a¢|s¢; 0) and value function V' (s¢; 6,,) which
are used in the following advantage estimate and losses.

A(sy ar) = S0y Tovi + YV (36485 00) = V(5450
Value Loss:L,, = %(R — V(s))?
Policy Loss: L, = log(w(s)) * A(s) + SH(w)

Formulas adapted from [S]]

In the policy loss above, an entropy term H () is used to
drive the agent to learn policies which prefer one particular
action with high probability over the others.

The entry point to the model will be a convolutional neu-

ral network which will take in image frames and output high
level spatial features of the game state. The baseline model
uses 4 convolutional layers, each with 32 filters of size (3,3)
and stride 1. We will experiment with more complex CNN
architectures by making use of heterogeneous convolutional
layers (varying the filter sizes and counts per layer), pool-
ing techniques to down-sample the data, as well as placing
activation functions between the layers.
The output of the CNN is then fed into an LSTM to incorpo-
rate the temporal features of the game and the outputs of the
LSTM are sent through two separate linear layers to predict
the values and policies mentioned above.

4.2. Imitation Learning
4.2.1 Baseline architecture and Improvements

Our imitation learning baseline architecture consisted of a
convolutional layer that leveraged an 8x4 kernel and 4x4
stride with 10 filters. This was followed by a two dimen-
sional average pooling layer with an 16x16 kernel and 8x8
stride. The final layer consisted of a simple affine layer,
which was then used to calculate the softmax cross entropy.
As per convention, the convolution was expected to capture
structural feature correlations. We did note that because the
input image was not the usual 3 channel volume our results
may not match with our expectations. We also did not use

relu activation in this architecture, because we wanted to
study the full behavior of the gradient for such a simple
model. The saliency maps for the baseline model loss can
be seen in

4.2.2 Modified Inception Net for Inference

Instead of cascading input through several layers, we de-
cided to apply the Inception Net architecture. Our first in-
ception module consisted of a convolutional layer with an
8x8 kernel, a 4x4 stride, and 10 filters. Instead of utiliz-
ing the previous output, we then passed the original image
through another convolutional layer with a 4x4 kernel, a 2x2
stride, and 10 filters. Finally, we passed the original in-
put image again through a two dimensional average pooling
layer with a 16x16 kernel and 8x8 stride, and a max pooling
layer with a 12 x 12 kernel and a 6 x 6 stride. Thus an in-
ception module consists of multiple channel networks each
capturing different features and feature granularities of the
original input.

The inception architecture then concatenates the results
of these layers and passes it through an affine layer, which
is then used to calculate the loss. Note that we modified the
original inception architecture and removed module internal
1x1 convolutional layers as we though it was unnecessary
to reduce channels since we only have one channel to start
with. However, we kept the 1x1 convolutional layer after
the concatenated result, to reduce the dimensionality. Oth-
erwise, we would run into out of memory errors and could
not cascade modules as well.

We then appended two more inception modules to the
original one. That is we used the output of one inception
module as the input of another inception module. During
our exploration we observed that the saliency maps of the
loss from the first inception layer were not what we ex-
pected. The highlighted regions are faint as noted in[d As
a consequence we decided to change our architecture.

Our optimal model was configured to have an inception
module consisting of a 5x5 of the original image, a 3x3 con-
volution of the original image, the output of a 5x5 convo-
lution followed by a 3x3 convolution and a 1x1 convolu-
tion. We also utilize an average pooling layer over the input
image. The key difference here is that instead of feeding a
max pooling layer over the image, we concatenate the above
mentioned layers and then pass the resulting tensor through
a max pooling layer. We cascade the output of the module
through three more of the same layers. Note that this is very
similar to the original inception net module.

When including the models to be used in tandem with the
A3C agent, we use the softmax vector from the inference
model. We compute an additional loss term using softmax
cross entropy. We need the labels to be a distribution since
we are comparing with the policy out vector. The final loss
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Figure 4: Shows saliency maps from the different loss computations for the inference model and their corresponding images.
On the right hand side is the simple baseline architecture. In the middle is the initial inception model. Note that it the model
gradients are affected by relatively few points on the input frame. On the far left is the best model. Note that the extra
maxpooling layer following the filter concatenations are able to bring to the front features that would otherwise be glossed
over in a simple 1x1 convolution.
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4.2.3 Data Pre-Processing
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In order to generate an appropriate dataset to train our In-

e e (R ) ) ) ception net, we needed to implement additional functional-

ity that was not there in the OpenAl Gym [4]. Internally,

@ ] BB~ the Gym framework leverages the selenium framework to

capture and send keys to the browser. However, there is no

functionality to retrieve keys pressed by a human agent and

pass that data to the python runtime. We realized, the key

capture had to occur in the python runtime, before it was
sent to the browser.

Figure 5: Final inception network architecture

equation is given below. ) )
First, we needed to extract frame and key pairs from sev-

Modified Loss with Inference Signal: eral game plays. In order to do this we built a key cap-
L=L,+05xL,—-001xFE+L; ture framework that routed keys from Standard Input to the



browser. The framework also recorded the observation data
seamlessly. The modified gym framework was then used to
manually play through six instances of DuskDrive level 1,
which generated approximately 10 gigabytes of video data.
The first three instances were used as the training set and the
latter three as the test set. Note that each dataset consisted
of pairs of frames and their corresponding key vectors.

After noting the distribution of keys pressed, we ob-
served that the key vector distribution was skewed towards
the "up’ key[6] This is a consequence of a human agent play-
ing optimally for a game that consists of seven turns. We
needed to make sure that keys were equally represented in
the distribution of data points. We did so by replicating the
underrepresented key-frame pairs. Finally, in order to be
compatible with the A3C agent which processes frames as
a 2D tensor rather than the normal 3D tensor (including rgb
channels) we also reduced the resolution of the image to be
128 x 200 and removed of the extra channels resulting in a
black and white image. This reduced our dataset size down
from 10 gigabytes to 100 megabytes.

Importing the pre-trained model to be used in A3C
proved to be a challenge as well, given the distributed nature
of A3C. We needed to reduce the number of worker agents,
as we encountered a Tensorflow bug when importing an ex-
ternal model in different session instances at the same time.
In short, the pre-processing setup to incorporate raw video-
frames was substantial.

4.3. Spatial Softmax

We experimented with a spatial softmax layer as intro-
duced by Levine et al [9] to see if it could improve the base-
line A3C convolutional network’s ability to represent fea-
ture coordinates, thus improving both the value and policy
estimates. The layer would aim to achieve this by first com-
puting a distribution over each of the activation maps from
the output of the CNN and then performing an expected
value computation over each of the distributions. This ef-
fectively transforms the feature representation from pixel
space into spatial coordinates which may better serve the
fully connected layers that follow. Another benefit could be
that the softmax operation allows the network to differen-
tiate between strong activations and low ones, giving it the
ability to ignore such distractor signals.

Contrary to all the benefits that the authors detailed, the
spatial softmax layer had little effect on the A3C model’s
performance. The augmented model still converged to the
same value, but at a slightly slower rate. While this result
was discouraging, it led us to explore other modes of mea-
suring attention which we detail in the next section.

4.4. Attention Network

We adapted the soft attention mechanism used in the
Deep Attention Recurrent Q-Network model [20] into the
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Figure 7: A3C with attention net architecture

A3C baseline with the goal of allowing it to leverage more
efficient spatial features of the input frames. The idea is that
with attention, the agent could focus on small, yet important
sections of the input in order to determine how it should act
next.

Soft attention works by computing a weight for each spa-
tial region of the CNN output. In this case, for each element
of the batch there would be H' « W' vectors, each of which
has dimension R® where the output of the CNN has shape
(batchsize, H',W' C). Bach of these v{, 1 < i < H' W'
vectors represents a spatial location within the frame. The
context vector z; is therefore a weighted sum of the v} vec-
tors with weights g(vi, h;_1). The weights can be com-
puted as follows:

g(vi, hi—1) = exp((tanh(viAl +bi+hi_1W))As+bs)/Z

The spatial vectors can be combined along with the weights
to get the context vector:

At each time step, a context vector is then fed into an LSTM
cell and the resulting next hidden state is used in the com-
putation of the weights in the next time step.

One clear benefit of computing the attention at each time
step is that we are able to visualize the weights of each spa-
tial location as seen in Figure [§] We take the low resolu-
tion weights mapping and upsample it to the original input
frame size. Finally, overlaying the attention map onto the
input frame gives us some intuition about what our model
is learning.

5. Dataset and Features

The OpenAl Universe environment automatically deals
with preprocessing of the frames from the game by resiz-
ing them and eliminating all channels except one. They are



Figure 9: Universe DuskDrive environment input frame

modified to have dimensions (128, 200, 1) as shown in Fig-
ureEl For the main A3C model, these processed frames are
used directly while we manually preprocessed a dataset for
the inference model as described in section 4.2.3.

6. Experiments and Results

The main metric we used for evaluating the A3C model
was the average reward per episode that the agent achieved.
The inference model uses a different metric while training
as detailed below.

6.1. Baseline

The baseline with 8 worker threads was able to converge
to an average per episode score of 350000 as shown in Fig-
ure[I0} The baseline uses an Adam optimizer with learning
rate le-4 and batch size of 20 experience samples. It learns
the policy of taking a forward action for every state.

6.2. Attention Network

The A3C with attention network model converges to
the same average reward per episode score as the baseline
as well as the same policy, but converges much faster and
with fewer workers. A plot of its performance compared
to the baseline is given in Figure [TT] It uses the same
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Figure 10: Baseline Model Avg Reward

hyperparameters as the baseline except: the weight of the
entropy loss term [ is decreased from 0.01 to 0.001 because
we initially observed that the entropy term was dominating
the loss entirely. We also increased the number of filters in
the convolutional layers from 32, 32, 32, 32 to 32, 64, 128,
256 in order to give the attention network a hidden state of
256.

Figure [12] compares the attention network with a baseline
model that uses the modified hyperparameters (entropy
weight and filter counts). This shows that the hyperparam-
eters are not the cause of the faster convergence observed
with the attention model.

Another interesting result worth noting is depicted in the
saliency map in Figure [I3] Note that the turn arrow signs
which appears before and during turns has some impact in
the computation of the policy loss. However, why the agent
is not able to learn to turn correctly is not completely clear
to us. We suspect that it is because the state-action space
is too complex for the model to learn the optimal policy di-
rectly without any intermediate signals. In implementing
the code for this, I used suriyadeepan’s rnn-from-scratch
code base [16].

6.3. Inception Powered Inference

We now present the results from the three inference mod-
els we used to provide intermediate reward signals to the
A3C agent. We evaluate our results using three metrics, first
the accuracy of the inference model on the test and training
dataset generated from the human agent playthrough. Sec-
ond we evaluate the performance of the inference model as
the sole decision maker for playing DuskDrive. We also
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Figure 13: Attention Saliency Map

evaluate the model in tandem with the A3C agent. Our fi-
nal evaluation consists of observing game-play, as our goal
is to ensure that the agent makes turns.An important caveat
to note here is that we could not evaluate the A3C agent
in multi-agent mode due to inherent challenges with dis-
tributed Tensorflow [1] and replicating checkpointed mod-
els.

The results of the models on the generated dataset are
shown in [T4] As expected the inception models are sub-
stantially (about 30 percent) more accurate than the baseline
model. However, it is interesting to note that the two vari-
ants of the inception model converge to the same accuracy.

00 4000 600 80 1000k 1200k 1400k 1600k 1600k

Smoothed Value Step Time

Figure 14: The Inception_1 plot shows the validation accu-
racy of the initial inception network. The Inception_2 plot
shows the validation accuracy of the second inception net-
work plot. Note both networks have a far greater perfor-
mance than the simple baseline model.
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Figure 15: The corresponding training and validation losses

Next we evaluate the trained models as the sole deci-
sion maker while playing DuskDrive. We note that these re-
sults were quite poor. From simple observations we see that
neural network by themselves are not adequate for solving
problems in real time asynchronous systems. Furthermore,
the number of states the human agent would have needed to
explore and have exemplar data points for would have been
too many. Thus the experiment demonstrates why we need
reinforcement learning for playing games. We did however,
test the model in tandem with human agent key presses. The
model did well on ideal scenarios where it was in the middle
of the road during a turn or avoiding a car that is coming up
to it. However, during non-ideal scenarios the model would
be stuck and unable to move often pressing ’up-right’. Dur-
ing these scenarios we coaxed the model back into an ideal
position by pressing keys. We observed that providing mod-
erate human guidance was enough for the model to finish
the race.
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Figure 16: The above figure shows the score of a single AC3
agent instance. The yellow line represents the inception-net
powered agent while the pink line represents the baseline
powered agent.

For the final evaluation we compare the baseline in tan-
dem with the AC3 model in[I6] and the modified Inception
network. We do not compare both inception networks as
their results are quite similar. We also discovered an in-
teresting property. Initially, we had the keys in the incep-
tion net following the same one-hot vector mapping as the
A3C agent. However, we noticed that by swapping the map-
ping representation the model did exponentially better. We
observed it avoid cars, press the 'x’ key to speed up, and
for the most part make turns. The model covered a greater
distance than the A3C agent without the additional infer-
ence signal, with some instances almost finishing the level.
We believe that because we swapped the key-vector embed-
dings the model was given a greater hypothetical key-vector
space to optimize over rather than the simple 6 element vec-
tor. An important caveat here is that the model is still about
200,000 points away from the baseline A3C score. One ex-
planation for this is that the 'x’ key actually speeds up the
game, giving less time for the model to gain points. Other
reasons include an incomplete dataset. We believe the in-
ference model could be far more effective, if we played had
data from playing hundreds of games rather than twelve.

7. Conclusion and Future Work

In exploring ways to teach a reinforcement learning
agent to learn how to play the DuskDrive game, we have
touched on many aspects and techniques lying at the inter-
section between visual image processing as well as deep re-
inforcement learning. As a baseline model, A3C performs
exceptionally well considering the complexity of the task
at hand. Our first approaches to improving on the base-
line amounted to investigating ways to help the model learn
better visual and spatial representations of the state space.
When this itself turned out not to be enough, we considered

ways to help guide the agent through the learning process
by solving a simpler, human guided problem and combin-
ing the results in an ensemble-like fashion. Additionally,
we looked into several ways to help visualize the learning
process in the form of saliency maps and attention weights.
While none of the models we built upon were able to strictly
beat the baseline model in terms of average reward per
episode achieved, one of our models (A3C with attention
network) was able to learn much more quickly while the
other was able to learn how to utilize turns in ways the base-
line was not.

We would like to work further with integrating the influ-
ence models with A3C. Currently, we are not able to run
the A3C model with more than 1 worker thread when im-
porting the inference model as a meta graph. Running A3C
with only 1 worker could lead to instability in the training
since the lack of any experience replay or asynchronicity
could cause the model to fail to converge. Once there is
more support for distributed Tensorflow, we would like to
further tune the model to get it to learn how to make turns
successfully.
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