

1

Abstract

This paper focuses on the problem of navigation in a

space using dynamic reinforcement learning. We build on

the work by Zhu et.al. [1], and explore the performance of

target-driven visual navigation with memory layers added

to the network. We evaluate our models using simulated

3D indoor scenes rendered by Thor framework [1], and

we show that in many cases, adding memory results in

small improvements in episode path lengths for targets not

trained on earlier. We use an actor-critic model with

policy as the function of goal as well as current state to

allows for better generalization.

1. Introduction

Reinforcement Learning (RL) enables machines and

software agents to automatically determine their actions in

the context of a specific environment. Agents observe

environment, and compute a reward feedback

(reinforcement signal) to learn behavior and take actions to

maximize the reward. Applications of RL include video

and board game playing [2], robotic obstacle avoidance

[3], visual navigation [1], and driving. Combining deep

learning with reinforcement learning, termed Deep

Reinforcement Learning (DRL) is helping build systems

that can at times outperform passive vision systems [6].

Recent work with deep neural networks to create agents,

termed deep Q-networks [9], can learn successful policies

from high-dimensional sensory inputs using end-to-end

reinforcement learning.

This paper focuses on the problem of navigation in a

space using DRL. The task of the agent is to navigate to a

given visual target, using only visual input. This requires

that the agent should learn the relationship between actions

(movement in different directions), and the spatial view,

and learn how to navigate towards the target. We build on

the work by Zhu et.al. [1], that overcomes the limitations

of traditional visual DRL agents that have the target

embedded into the agent’s model which requires re-

training DRL agents for new model parameters to handle

new target. In contrast, this paper uses the approach

developed in [1], to create a target-driven model that

learns a policy based on both the target and the current

state. This makes it possible to avoid re-training the model

for new targets.

 Figure 1: DL Agent with current observation and target

makes navigational decisions to reach target.

For example, Figure 1 illustrates two navigation

problems, where the agent takes the observation, on the

left, and the image of target on the right, and determines

next action to the taken. The problem in navigation to

target 2 involves going to a target that is initially partially

occluded, and requires navigating around an obstacle to

reach the target chair (a series of move forwards ‘F’,

followed by a left turn, ‘L’).

Generation of data for visual navigation can be tedious,

requiring running systems and capturing images in

physical space. However, we take advantage of the Thor

simulation framework [1], that allows agents to navigate in

a virtual space. The images in Figure 1 were generated

with Thor, and we employ this framework for visual

navigation for our work.

While the DRL approach described in [1] shows better

performance than many other target driven approach, such

as One-step Q [9], it does not maintain a history that could

potentially help it ‘remember’ past context to make future

navigational decision. In this project, we explore various

 Deep Reinforcement Learning using Memory-based Approaches

Manish Pandey

Synopsys, Inc.

690 Middlefield Rd., Mountain View

mpandey2@stanford.edu

Dai Shen

Stanford University

450 Serra Mall, Stanford
dai2@stanford.edu

Apurva Pancholi

Omnisenz Inc

872 Bandol Way, San Ramon
apurva03@stanford.edu

2

memory-based architectures such as Memory Q-Networks

(MQN) [8], with single-layer and multi-layer LSTMs to

determine if adding this state to the DRL model yields

navigational paths with shorter trajectory lengths.

2. Related Work

Visual navigation is an active research area with a

number of approaches, that can be classified as map-based

[13] or map-less approaches [1]. Map-based approaches

require a prior map of the environment, or reconstruct the

map on-demand. In contrast, map-less approaches do not

use a prior map, and do not assume a set of landmarks in

the navigational environment. The advantages of map-less

approaches include the ability to dynamically handle new

situations and changes to the navigational landscape.

Reinforcement Learning (RL) has been applied to a

variety of problems, such as robotic obstacle avoidance

[2], and visual navigation [1]. Deep Reinforcement

Learning (DRL), a combination of reinforcement learning

with deep learning has shown unprecedented capabilities

at solving tasks such as playing Atari games or the game of

Go [2].

[8] has added ‘context’ to DRL by adding past

“context” or history of observations to determine agent

action with architectures such as Memory Q Network

(MQN). We seek to use this idea of [8], to extend the

target-driven visual navigation approach by Zhu et.al. [1],

and investigate, how adding context can lead to better

performance.

The idea of asynchronous reinforcement learning is

particularly important to enable parallel training with

multiple scenes to improve learning. Parallel weight

updates to a global graph from multiple threads helps

generalize training [15].

3. Methods

Though the Deep Reinforcement Learning yields

proficient controllers for complex tasks, these controllers

have limited memory and rely on being able to perceive

the complete information (game screen, scenes, etc.) at

each decision point. To address these shortcomings, in this

paper, we introduce a new architecture for Target driven

Deep reinforcement learning and investigate the effects of

adding recurrency to a Deep Q-Network (DQN) by

introducing recurrent LSTM layers. Our proposed

architecture introduces the memory layer in the existing

network architecture of deep Siamese actor-critic model

proposed by [1] as is shown in Figure 2. Our proposed

architecture is based on Memory Q-Network (MQN)

which is a feedforward architecture that constructs the

context based on only the current observation, which is

very similar to MemNN except that the current input is

used for memory retrieval in the temporal context of RL.

(a) Siamese actor-critic model with one LSTM layer

(b)Siamese actor-critic model with two LSTM layers, dropout

(c) Siamese actor-critic model with n LSTM layers, dropout

Figure 2: LSTM layer(s) added to Siamese actor-critic

model in [1].

3

We begin by reviewing the network used in [1], which is

essentially the same as Figure 2(a) except that the LSTM

layer in the scene specific layer is absent. The inputs to the

network are two images of the agent’s current position and

the target to reach. These two images are then processed

by a ResNet-50 network and outputted as two 2048D

vectors. These two vectors are then fed into two fully

connected layers which output 2 512D vectors, which are

then concatenated as one 1024D vector and fed into a

second fully connected layer. The output is then a vector

containing information of both the agent’s current position

as well as the target. This output vector is then fed into

scene specific layer which consists of a third fully

connected layers and two other fully connected layers for

calculating policies and values.

The architecture adopts a model similar to A3C [14],

where several worker networks are trained in parallel and

are asynchronously synched with one global network for

variable updates. The global network has exactly the same

structure as the worker networks except that the global

network has all the scene specific layer whereas each

worker network only interacts with one scene and has only

one scene specific layer. Making each worker interact with

different scenes effectively separates the experience gained

by each and creates a more diverse update of the network

variables. This is claimed to stabilize the training process.

Figure 3: A3C global network and worker networks

Building on the existing architecture, we introduce

memory into the network by adding LSTM layers into the

scene specific layers as shown in Figure 2 (a, b, c). We

also attempt the test the generalizability of our model by

evaluating its performance on targets unseen during

training. More specifically, we run the following

experiments:

1. Train DRL model using existing architecture

(Architecture without memory) on all scenes but

only partial set of targets. Evaluate on the unseen

targets.

2. Train and evaluate the DRL model using new

architecture (with memory) on all scenes and

targets.

3. Train DRL model using new architecture (with

memory) on all scenes but only partial set of

targets. Evaluate on the unseen targets.

In addition to the code we have developed, we have used

code from https://github.com/yukezhu/icra2017-visual-

navigation (non-public repository due to copyright), and

https://github.com/miyosuda/async_deep_reinforce for our

implementation.

4. Dataset and Features

Our training data consists of a set of simulated 3D

indoor scenes rendered by the Thor framework [1]. Each

of the scene consists of images created by artists to

simulate the texture and lightings of the real environment.

The scenes are of four common types in a household

environment, namely kitchen, bathroom, bedroom, and

living room. The use of the simulated scenes makes the

training process much more affordable and easier to scale

than training robots in real world. Figure 4 shows four

example simulated scenes we captured from Thor.

Figure 4: Sample generated scene models from THOR.

For training, we use hdf5 dumps of the simulated scenes

in [1, 16]. Each dump contains the agent's first-person

observations sampled from a discrete grid in four

directions. To be more specific, each dump stores the

following information row by row:

1. observation: 300x400x3 RGB image (agent's first-

person view)

2. resnet_feature: 2048-d ResNet-50 feature of the

observations extracted using Keras

3. location: (x, y) coordinates of the sampled scene

locations on a discrete grid with 0.5-meter offset

4. rotation: agent's rotation in one of the four cardinal

directions, 0, 90, 180, and 270 degrees

5. graph: a state-action transition graph, where

graph[i][j] is the location id of the destination by

taking action j in location i, and -1 indicates

4

collision while the agent stays in the same place.

6. shortest_path_distance: a square matrix of shortest

path distance (in number of steps) between

pairwise locations, where -1 means two states are

unreachable from each other.

5. Experiments and Results

We discuss below data from the following experiments

and the results we obtained:

• Training of baseline network for multiple targets

(section 5.1)

• Training of memory-enhanced network for multiple

targets (section 5.2)

• Evaluation of target-driven navigation for multiple

targets (with baseline and memory-enhanced)

(section 5.3)

• Multi-layer LSTM architectures (section 5.4)

All experiments were performed on a Google Compute

Instance with a n1-highmem-8 with 8 vCPUs, 52GB

memory, and 1 Nvidia Tesla K-80 GPU.

5.1. Baseline Network

The first step in running the DRL system is to train it on a

number of different scenes and targets. The DRL system

implements an asynchronous actor-critic model, and this

training proceeds in parallel with a total of 20 targets

distributed equally across 4 scenes. An indication of the

progress in training is the convergence of the episode path

length, max Q value, and the rewards value, as shown in

figures 5 through 7 below.

 Number of training steps

Figure 5: Episode length for baseline training for target 26.

(Y-axis represents episode path length).

 Number of training steps

Figure 6: Max Q value during baseline training for target

26. (Y-axis represents Q value).

 Number of training steps

Figure 7: Episode reward while navigating to target 26.

(Y-axis represents episode path length).

The convergence of path length to a small target value,

approximately 10, in figure 5, and convergence of max-Q

value to 1 is an indication of completion of training.

5.2. Memory-enhanced Network

Adding memory to the base system architecture

significantly increases the number of steps needed during

training. Table 1 shows that the increase in the number of

training steps ranges between 89% – 174%, i.e., the

number of steps can possibly increase by a factor of 3.

This however is accompanied by a small decrease in

episode path lengths between 2.6% to 11%. There are

some cases where the path length may increase (e.g., target

43 in table).

Table 1: Baseline vs LSTM Episode Lengths in Training.

5

5.3. Target-driven Navigation

Table 2 shows the results of evaluating the trained model

for a subset of scenes and targets.

Table 2: Baseline model evaluation results summary for a

subset of targets.

This table is indicative of training quality, and suggests

“over fitting.” The true test of target driven navigation [1]

is how well does the DRL architecture perform for

navigating to targets that it has not been trained for, i.e., a

“target-driven” evaluation.

We have validated this in a series of experiments where

we train models with all targets but one, and then navigate

to that model specifically. Our results for this are included

in table 3.

For example, in the case of target #43, we train the

network for 19 targets, excluding #43 for both the baseline

and the memory enhanced models. Then, for each of these

models, we evaluate the network for navigating

specifically to the specified target. We repeat this

experiment 100 times and report the average number of

steps, reward and the number of collisions in the table. For

target #43, with 100K training steps, the baseline model

yields result with an average path length of 426.85 steps.

The memory enhanced model has a shorter path length of

399.80 steps.

Table 3: Target driven navigation for baseline and

memory-based models.

We measure the baseline and memory enhanced model

performance for average episode length, reward and

number of collisions for three cases: Untrained network,

target-driven with 100K training steps, and 1 Million

training steps. As we can see from the table, adding

6

memory in many cases helped improve the model quality

with shorter evaluated paths and fewer collisions. In one

case, for target #53, the path length does increase. This

could be potentially due to limited number of training

steps (1 Million). However, the huge amount of training

needed, and available CPU/GPU time was a limiting factor

for us. The Google Compute instance we used ran at the

rate of 100 training steps per second. As such, the table 3

represents over 42 hours of training time (which we ran

multiple times).

Excluding the outlier case of baseline target 37 result

(which could be a victim of runaway gradient), the

improvements in path lengths ranged from 5 – 23%, and in

one case the path length got worse.

5.4. Multi-layer LSTM architectures

We have in addition run training on multi-layer LSTM

implementations, described earlier in Section 3 (Figure

2(b), (c)). With two LSTM layers, using dropout, we

observe faster training convergence, within a million time

steps as shown in figure 8 below. This is in contrast to

longer training episodes in training in the base memory

layer. While we have not done target driven evaluations on

this model, the episode length and reward values in

training are indicative of good evaluation performance,

without the disadvantage of long path lengths as in number

of LSTM training steps in table 1.

 Number of training steps

Figure 8: Multi-layer LSTM episode length (Y-axis is

number of episode steps)

 Number of training steps

Figure 9: Multi-layer LSTM episode reward graph (Y-axis

is episode reward)

6. Conclusion and Future Work

Our work indicates that adding memory “context” to the

model helps improve the performance of target-driven

visual navigation. We have validated this through multiple

runs of independent targets, and have succeeded in

improving upon baseline results in several cases. However,

this comes at the cost of longer training episodes (up to 3X

longer). Also, in some cases, the episode length may

actually increase. Multi-layer LSTM-based A3C

architectures seem to require fewer training cycles to

converge, but require further investigation.

The experiments reported in table 3 have been run with

models trained up to only a million cycles due to

computational resource constraints mentioned in section

5.3. An obvious extension of this would be to train for

additional 10-20 million cycles and study target-driven

performance.

In addition, [8] has a number of variations on retaining a

recent history of observations and context vector (for

memory retrieval and action-value estimation) such as

Memory Q-Network (MQN), Recurrent Memory Q-

Network (RMQN), and Feedback Recurrent Memory Q-

Network (FRMQN). These architectures allow the network

to refine its context based on previous retrieved memory

so that it can do more complex reasoning with time.

7. Honor code related information

The work in this project uses code from

https://github.com/yukezhu/icra2017-visual-navigation and

https://github.com/miyosuda/async_deep_reinforce . The

first repository has the baseline A3C model which we have

https://github.com/yukezhu/icra2017-visual-navigation
https://github.com/miyosuda/async_deep_reinforce

7

improved upon. The first, repository, however, is not

public as the Thor database is proprietary, and it has been

made accessible to team members for the purpose of the

CS231n project.

Acknowledgement

The team would like to acknowledge Yuke Zhu for making

accessible Thor database, the visual navigation codebase,

and answering numerous questions.

References

[1] Zhu, Yuke, et al. "Target-driven visual navigation in indoor

scenes using deep reinforcement learning." arXiv preprint

arXiv:1609.05143 (2016).

[2] Mnih, Volodymyr, et al. "Playing atari with deep

reinforcement learning." arXiv preprint arXiv:1312.5602

(2013).

[3] Kober, Jens, J. Andrew Bagnell, and Jan Peters.

"Reinforcement learning in robotics: A survey." The

International Journal of Robotics Research 32.11 (2013):

1238-1274.

[4] Silver, David, et al. "Mastering the game of Go with deep

neural networks and tree search." Nature 529.7587 (2016):

484-489.

[5] Ba, J., Mnih, V. & Kavukcuoglu, K. Multiple object

recognition with visual attention. In Proc. International

Conference on Learning Representations http://

arxiv.org/abs/1412.7755 (2014).

[6] Mnih, V. et al. Human-level control through deep

reinforcement learning. Nature 518, 529–533 (2015).

[7] Mnih, Volodymyr, et al. "Asynchronous methods for deep

reinforcement learning." International Conference on

Machine Learning. 2016.

[8] Oh, Junhyuk, et al. "Control of memory, active perception,

and action in minecraft." arXiv preprint arXiv:1605.09128

(2016).

[9] Hausknecht, Matthew, and Peter Stone. "Deep recurrent q-

learning for partially observable mdps." arXiv preprint

arXiv:1507.06527 (2015).

[10] Konda, Vijay R., and John N. Tsitsiklis. "Actor-Critic

Algorithms." NIPS. Vol. 13. 1999.

[11] Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep

Reinforcement Learning with Double Q-Learning." AAAI.

2016.

[12] Duan, Yan, et al. "Benchmarking deep reinforcement

learning for continuous control." Proceedings of the 33rd

International Conference on Machine Learning (ICML).

2016.

[13] J. Borenstein, and Y. Koren, “Real time obstacle avoidance

for fast mobile robots,” IEEE Trans on Cybernetics, 1991.

[14] Mnih, Volodymyr, et al. "Asynchronous methods for deep

reinforcement learning." International Conference on

Machine Learning. 2016.

[15] Juliani, A, Simple Reinforcement Learning with

Tensorflow: Asynchronous Actor-Critic Agents (A3C),

https://medium.com/emergent-future/simple-reinforcement-

learning-with-tensorflow-part-8-asynchronous-actor-critic-

agents-a3c-c88f72a5e9f2

[16] Zhu, Yuke: ICRA 2017 paper code repository

https://github.com/yukezhu/icra2017-visual-navigation

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

