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Abstract 

 

This paper focuses on the problem of navigation in a 

space using dynamic reinforcement learning. We build on 

the work by Zhu et.al. [1], and explore the performance of 

target-driven visual navigation with memory layers added 

to the network. We evaluate our models using simulated 

3D indoor scenes rendered by Thor framework [1], and 

we show that in many cases, adding memory results in 

small improvements in episode path lengths for targets not 

trained on earlier. We use an actor-critic model with  

policy as the function of goal as well as current state to  

allows for better generalization.   

1. Introduction 

Reinforcement Learning (RL) enables machines and 

software agents to automatically determine their actions in 

the context of a specific environment. Agents observe 

environment, and compute a reward feedback 

(reinforcement signal) to learn behavior and take actions to 

maximize the reward. Applications of RL include video 

and board game playing [2], robotic obstacle avoidance 

[3], visual navigation [1], and driving. Combining deep 

learning with reinforcement learning, termed Deep 

Reinforcement Learning (DRL) is helping build systems 

that can at times outperform passive vision systems [6]. 

Recent work with deep neural networks to create agents, 

termed deep Q-networks [9], can learn successful policies 

from high-dimensional sensory inputs using end-to-end 

reinforcement learning.  

 

This paper focuses on the problem of navigation in a 

space using DRL. The task of the agent is to navigate to a 

given visual target, using only visual input. This requires 

that the agent should learn the relationship between actions 

(movement in different directions), and the spatial view, 

and learn how to navigate towards the target. We build on 

the work by Zhu et.al. [1], that overcomes the limitations 

of traditional visual DRL agents that have the target 

embedded into the agent’s model which requires re-

training DRL agents for new model parameters to handle 

new target. In contrast, this paper uses the approach 

developed in [1], to create a target-driven model that 

learns a policy based on both the target and the current 

state. This makes it possible to avoid re-training the model 

for new targets. 

 
  Figure 1: DL Agent with current observation and target 

makes navigational decisions to reach target. 

 

For example, Figure 1 illustrates two navigation 

problems, where the agent takes the observation, on the 

left, and the image of target on the right, and determines 

next action to the taken. The problem in navigation to 

target 2 involves going to a target that is initially partially 

occluded, and requires navigating around an obstacle to 

reach the target chair (a series of move forwards ‘F’, 

followed by a left turn, ‘L’). 

 

Generation of data for visual navigation can be tedious, 

requiring running systems and capturing images in 

physical space. However, we take advantage of the Thor 

simulation framework [1], that allows agents to navigate in 

a virtual space. The images in Figure 1 were generated 

with Thor, and we employ this framework for visual 

navigation for our work. 

 

While the DRL approach described in [1] shows better 

performance than many other target driven approach, such 

as One-step Q [9], it does not maintain a history that could 

potentially help it ‘remember’ past context to make future 

navigational decision. In this project, we explore various 
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memory-based architectures such as Memory Q-Networks 

(MQN) [8], with single-layer and multi-layer LSTMs to 

determine if adding this state to the DRL model yields 

navigational paths with shorter trajectory lengths.  

2. Related Work 

Visual navigation is an active research area with a 

number of approaches, that can be classified as map-based 

[13] or map-less approaches [1]. Map-based approaches 

require a prior map of the environment, or reconstruct the 

map on-demand. In contrast, map-less approaches do not 

use a prior map, and do not assume a set of landmarks in 

the navigational environment. The advantages of map-less 

approaches include the ability to dynamically handle new 

situations and changes to the navigational landscape.  

 

Reinforcement Learning (RL) has been applied to a 

variety of problems, such as robotic obstacle avoidance 

[2], and visual navigation [1]. Deep Reinforcement 

Learning (DRL), a combination of reinforcement learning 

with deep learning has shown unprecedented capabilities 

at solving tasks such as playing Atari games or the game of 

Go [ 2]. 

 

[8] has added ‘context’ to DRL by adding past 

“context” or history of observations to determine agent 

action with architectures such as Memory Q Network 

(MQN). We seek to use this idea of [8], to extend the 

target-driven visual navigation approach by Zhu et.al. [1], 

and investigate, how adding context can lead to better 

performance.  

 

The idea of asynchronous reinforcement learning is 

particularly important to enable parallel training with 

multiple scenes to improve learning. Parallel weight 

updates to a global graph from multiple threads helps 

generalize training [15]. 

3. Methods 

Though the Deep Reinforcement Learning yields 

proficient controllers for complex tasks, these controllers 

have limited memory and rely on being able to perceive 

the complete information (game screen, scenes, etc.) at 

each decision point. To address these shortcomings, in this 

paper, we introduce a new architecture for Target driven 

Deep reinforcement learning and investigate the effects of 

adding recurrency to a Deep Q-Network (DQN) by 

introducing recurrent LSTM layers. Our proposed 

architecture introduces the memory layer in the existing 

network architecture of deep Siamese actor-critic model 

proposed by [1] as is shown in Figure 2. Our proposed 

architecture is based on Memory Q-Network (MQN) 

which is a feedforward architecture that constructs the 

context based on only the current observation, which is 

very similar to MemNN except that the current input is 

used for memory retrieval in the temporal context of RL. 

 
(a) Siamese actor-critic model with one LSTM layer 

 
(b)Siamese actor-critic model with two LSTM layers, dropout 

 
(c) Siamese actor-critic model with n LSTM layers, dropout  

Figure 2: LSTM layer(s) added to Siamese actor-critic 

model in [1]. 
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We begin by reviewing the network used in [1], which is 

essentially the same as Figure 2(a) except that the LSTM 

layer in the scene specific layer is absent. The inputs to the 

network are two images of the agent’s current position and 

the target to reach. These two images are then processed 

by a ResNet-50 network and outputted as two 2048D 

vectors. These two vectors are then fed into two fully 

connected layers which output 2 512D vectors, which are 

then concatenated as one 1024D vector and fed into a 

second fully connected layer. The output is then a vector 

containing information of both the agent’s current position 

as well as the target. This output vector is then fed into 

scene specific layer which consists of a third fully 

connected layers and two other fully connected layers for 

calculating policies and values.  

 

The architecture adopts a model similar to A3C [14], 

where several worker networks are trained in parallel and 

are asynchronously synched with one global network for 

variable updates. The global network has exactly the same 

structure as the worker networks except that the global 

network has all the scene specific layer whereas each 

worker network only interacts with one scene and has only 

one scene specific layer. Making each worker interact with 

different scenes effectively separates the experience gained 

by each and creates a more diverse update of the network 

variables. This is claimed to stabilize the training process.  

 

 
Figure 3: A3C global network and worker networks 

 

Building on the existing architecture, we introduce 

memory into the network by adding LSTM layers into the 

scene specific layers as shown in Figure 2 (a, b, c).  We 

also attempt the test the generalizability of our model by 

evaluating its performance on targets unseen during 

training. More specifically, we run the following 

experiments:  

1. Train DRL model using existing architecture 

(Architecture without memory) on all scenes but 

only partial set of targets. Evaluate on the unseen 

targets. 

2. Train and evaluate the DRL model using new 

architecture (with memory) on all scenes and 

targets. 

3. Train DRL model using new architecture (with 

memory) on all scenes but only partial set of 

targets. Evaluate on the unseen targets. 

In addition to the code we have developed, we have used 

code from https://github.com/yukezhu/icra2017-visual-

navigation (non-public repository due to copyright), and 

https://github.com/miyosuda/async_deep_reinforce for our 

implementation. 

4. Dataset and Features 

Our training data consists of a set of simulated 3D 

indoor scenes rendered by the Thor framework [1].  Each 

of the scene consists of images created by artists to 

simulate the texture and lightings of the real environment. 

The scenes are of four common types in a household 

environment, namely kitchen, bathroom, bedroom, and 

living room. The use of the simulated scenes makes the 

training process much more affordable and easier to scale 

than training robots in real world. Figure 4 shows four 

example simulated scenes we captured from Thor. 

 

 
Figure 4: Sample generated scene models from THOR. 

 

For training, we use hdf5 dumps of the simulated scenes 

in [1, 16]. Each dump contains the agent's first-person 

observations sampled from a discrete grid in four 

directions. To be more specific, each dump stores the 

following information row by row: 

 

1. observation: 300x400x3 RGB image (agent's first-

person view) 

2. resnet_feature: 2048-d ResNet-50 feature of the 

observations extracted using Keras 

3. location: (x, y) coordinates of the sampled scene 

locations on a discrete grid with 0.5-meter offset 

4. rotation: agent's rotation in one of the four cardinal 

directions, 0, 90, 180, and 270 degrees 

5. graph: a state-action transition graph, where 

graph[i][j] is the location id of the destination by 

taking action j in location i, and -1 indicates 
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collision while the agent stays in the same place. 

6. shortest_path_distance: a square matrix of shortest 

path distance (in number of steps) between 

pairwise locations, where -1 means two states are 

unreachable from each other. 

5. Experiments and Results 

 

We discuss below data from the following experiments 

and the results we obtained: 

• Training of baseline network for multiple targets 

(section 5.1) 

• Training of memory-enhanced network for multiple 

targets (section 5.2) 

• Evaluation of target-driven navigation for multiple 

targets (with baseline and memory-enhanced) 

(section 5.3) 

• Multi-layer LSTM architectures (section 5.4) 

 

All experiments were performed on a Google Compute 

Instance with a n1-highmem-8 with 8 vCPUs, 52GB 

memory, and 1 Nvidia Tesla K-80 GPU. 

5.1. Baseline Network 

The first step in running the DRL system is to train it on a 

number of different scenes and targets. The DRL system 

implements an asynchronous actor-critic model, and this 

training proceeds in parallel with a total of 20 targets 

distributed equally across 4 scenes. An indication of the 

progress in training is the convergence of the episode path 

length, max Q value, and the rewards value, as shown in 

figures 5 through 7 below. 

 

 
                      Number of training steps 

 

Figure 5: Episode length for baseline training for target 26. 

(Y-axis represents episode path length). 

 
                      Number of training steps 

 

Figure 6: Max Q value during baseline training for target 

26. (Y-axis represents Q value). 

 
                      Number of training steps 

 

Figure 7: Episode reward while navigating to target 26. 

(Y-axis represents episode path length). 

 

The convergence of path length to a small target value, 

approximately 10, in figure 5, and convergence of max-Q 

value to 1 is an indication of completion of training.  

5.2. Memory-enhanced Network 

Adding memory to the base system architecture 

significantly increases the number of steps needed during 

training. Table 1 shows that the increase in the number of 

training steps ranges between 89% – 174%, i.e., the 

number of steps can possibly increase by a factor of 3. 

This however is accompanied by a small decrease in 

episode path lengths between 2.6% to 11%. There are 

some cases where the path length may increase (e.g., target 

43 in table). 

 
 

Table 1: Baseline vs LSTM Episode Lengths in Training. 
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5.3. Target-driven Navigation 

 

Table 2 shows the results of evaluating the trained model 

for a subset of scenes and targets.   

 

 
 

Table 2: Baseline model evaluation results summary for a 

subset of targets. 

 

This table is indicative of training quality, and suggests 

“over fitting.” The true test of target driven navigation [1] 

is how well does the DRL architecture perform for 

navigating to targets that it has not been trained for, i.e., a 

“target-driven” evaluation. 

 

We have validated this in a series of experiments where 

we train models with all targets but one, and then navigate 

to that model specifically. Our results for this are included 

in table 3. 

 

For example, in the case of target #43, we train the 

network for 19 targets, excluding #43 for both the baseline 

and the memory enhanced models. Then, for each of these 

models, we evaluate the network for navigating 

specifically to the specified target. We repeat this 

experiment 100 times and report the average number of 

steps, reward and the number of collisions in the table. For 

target #43, with 100K training steps, the baseline model 

yields result with an average path length of 426.85 steps. 

The memory enhanced model has a shorter path length of 

399.80 steps.  

 

 

 
 

Table 3: Target driven navigation for baseline and 

memory-based models. 

 

We measure the baseline and memory enhanced model 

performance for average episode length, reward and 

number of collisions for three cases: Untrained network, 

target-driven with 100K training steps, and 1 Million 

training steps. As we can see from the table, adding 
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memory in many cases helped improve the model quality 

with shorter evaluated paths and fewer collisions. In one 

case, for target #53, the path length does increase. This 

could be potentially due to limited number of training 

steps (1 Million). However, the huge amount of training 

needed, and available CPU/GPU time was a limiting factor 

for us. The Google Compute instance we used ran at the 

rate of 100 training steps per second. As such, the table 3 

represents over 42 hours of training time (which we ran 

multiple times). 

 

Excluding the outlier case of baseline target 37 result 

(which could be a victim of runaway gradient), the 

improvements in path lengths ranged from 5 – 23%, and in 

one case the path length got worse. 

 

5.4. Multi-layer LSTM architectures 

We have in addition run training on multi-layer LSTM 

implementations, described earlier in Section 3 (Figure 

2(b), (c)). With two LSTM layers, using dropout, we 

observe faster training convergence, within a million time 

steps as shown in figure 8 below. This is in contrast to 

longer training episodes in training in the base memory 

layer. While we have not done target driven evaluations on 

this model, the episode length and reward values in 

training are indicative of good evaluation performance, 

without the disadvantage of long path lengths as in number 

of LSTM training steps in table 1. 

 

 

 
                    Number of training steps 

 

Figure 8: Multi-layer LSTM episode length (Y-axis is 

number of episode steps) 

 

 
                  Number of training steps 

 

Figure 9: Multi-layer LSTM episode reward graph (Y-axis 

is episode reward) 

 

6. Conclusion and Future Work 

Our work indicates that adding memory “context” to the 

model helps improve the performance of target-driven 

visual navigation. We have validated this through multiple 

runs of independent targets, and have succeeded in 

improving upon baseline results in several cases. However, 

this comes at the cost of longer training episodes (up to 3X 

longer). Also, in some cases, the episode length may 

actually increase. Multi-layer LSTM-based A3C 

architectures seem to require fewer training cycles to 

converge, but require further investigation.   

 

The experiments reported in table 3 have been run with 

models trained up to only a million cycles due to 

computational resource constraints mentioned in section 

5.3. An obvious extension of this would be to train for 

additional 10-20 million cycles and study target-driven 

performance. 

 

In addition, [8] has a number of variations on retaining a 

recent history of observations and context vector (for 

memory retrieval and action-value estimation) such as 

Memory Q-Network (MQN), Recurrent Memory Q-

Network (RMQN), and Feedback Recurrent Memory Q-

Network (FRMQN). These architectures allow the network 

to refine its context based on previous retrieved memory 

so that it can do more complex reasoning with time. 

 

7. Honor code related information 

The work in this project uses code from 

https://github.com/yukezhu/icra2017-visual-navigation and 

https://github.com/miyosuda/async_deep_reinforce . The 

first repository has the baseline A3C model which we have 

https://github.com/yukezhu/icra2017-visual-navigation
https://github.com/miyosuda/async_deep_reinforce
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improved upon. The first, repository, however, is not 

public as the Thor database is proprietary, and it has been 

made accessible to team members for the purpose of the 

CS231n project. 
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