
FoxNet: A Deep-Learning Agent for Nintendo’s Star Fox 64

Kevin Looby
Stanford University

Stanford, CA
klooby@stanford.edu

Joshua Grinberg
Stanford University

Stanford, CA
jgrinber@stanford.edu

Kat Gregory
Stanford University

Stanford, CA
katg@stanford.edu

Abstract

In this paper, we explore a number of models and learn-
ing strategies for autonomous aircraft navigation and com-
bat through the simplified environment of the Nintendo
video game, Star Fox 64. Our primary model builds off
DeepMind’s 2015 DQN model. We first compare the per-
formance of this model and three other neural architectures
in an on-policy classification task, achieving up to 71% val-
idation accuracy with the DeepMind DQN model. We then
improve these models with off-policy Deep Q-Learning. Af-
ter 80,000 training iterations on Level 1, our best agent
achieves an end-of-game score of 61 points, surpassing a
random baseline’s score of 12 but falling short of a hu-
man player’s score of 115. We also demonstrate our agents’
abilities to generalize game strategy to unseen levels. After
140,000 training iterations in “Train Mode”, our best agent
achieves an end-of-game score of 63 after only 10,000 ad-
ditional training iterations on Level 1.

Figure 1. Sample training image from Star Fox 64. We extract the
score (in this case, 10) and the health (max of 10) from the pixels.

1. Introduction
Autonomous vehicle navigation is a common problem in

the field of artificial intelligence control. Video games pro-
vide an excellent framework for testing and evaluating con-
trol models, as they represent an encompassing simulation
environment that approximates realistic vehicle navigation

in repeatable training scenarios. We present a deep learning
model that pilots a video game aircraft through a hostile en-
vironment, seeking both to eliminate adversarial agents and
navigate past obstacles.

We believe that developing such an agent is valuable be-
yond the scope of the video game itself because of poten-
tial applications in fields that include autonomous airborne
vehicles. For example, training a military drone in a simu-
lated environment using the methods described in this paper
could serve as an effective warm-start before training the
drone in the real world.

1.1. Game Description

We chose to focus on Star Fox 64, a popular 3D scrolling
shooter game originally released on the Nintendo 64 con-
sole in 1997. The player controls a one-person aerial com-
bat vehicle called Arwing. Each level, or “mission,” begins
with a phase in which the player must destroy or navigate
past a series of enemies and obstacles. The second phase of
each level consists of a “boss fight” in which the player and
its allies must destroy a single, powerful enemy agent. We
focus only on the first level.

The player’s movement is restricted to navigation within
a 2D plane (i.e., the player can move up, down, left, and
right), which travels through space at a fixed speed Each
mission is populated with numerous enemy crafts that at-
tack or obstruct the progress of the player. In addition to the
four navigational commands, the player can fire its semi-
automatic primary weapon at these enemy agents. Each
eliminated enemy rewards the player with points that con-
tribute to an accumulated score across all completed mis-
sions in a single game. If the player itself comes under en-
emy fire or fails to avoid obstacles, its health decreases until
it loses a life. After three lives, the game ends.

1.2. Objective

We aim to develop an agent that can outperform an ex-
perienced human player, as measured by the final score. At
every time step in the game, given an input frame from the
video game as represented by a 2D pixel array, our model

1

uses a CNN to output one of six actions for the agent to
take. We consider the game to be over if the agent loses all
three lives or completes the first level.

2. Related Work
Hubel and Wiesel’s 1959 revelations on the layered ar-

chitecture of neurons in cats’ primary visual cortex [6] in-
spired the use of convolutional neural networks (CNNs)
to perform similar pattern recognition for computer vision.
CNNs have since become one of the dominant tools in the
field. Our work is inspired by recent advancements in a
number of different research areas related to computer vi-
sion. Below, we present relevant research in each.

2.1. Imitation Learning

Imitation learning involves training a model to imitate
a set of “correct” decisions in a classification setting. For
example, in “Deep Neural Network for Real-Time Au-
tonomous Indoor Navigation” [7], Kim and Chen train a
drone equipped with a single camera to navigate through
hallways in order to find a target object, predicting from
each frame which action to take. Training data was obtained
primarily by recording the actions of an expert human drone
pilot. This imitation learning approach performs well and is
dramatically more efficient than other approaches to locat-
ing points in 3D spaces, such as SLAM and Stereo Vision.
The first approach to our own project similarly frames the
game as a classification task.

2.2. Reinforcement Learning

While classification tasks are interesting, recent research
suggests that reinforcement learning has the potential to de-
velop even more powerful systems. As Sutton and Barto de-
scribe in their overview of the field, reinforcement learning,
agents learn a policy for how to operate in an environment,
optimizing not for consistency with an existing policy (as
in a classification task) but instead for maximizing reward
[16]. Chris Watkins introduced the Q-learning algorithm in
1989 as a method to find the optimal policy for action se-
lection in a controlled Markovian environment [19].

Bellemare et al. created the Arcade Learning Environ-
ment, a framework to interact with Atari games, in 2013
as a way to evaluate the performance of different reinforce-
ment learning agents [1]. Mnih et al.’s 2015 paper “Playing
Atari with Deep Reinforcement Learning” [11], in present-
ing an agent for this environment, was the first to combine
Q-learning with convolutional neural networks. Although
the same authors later demonstrated in their paper “Asyn-
chronous Methods for Deep Reinforcement Learning” [10]
that Policy Gradients can actually outperform Q-learning,
Deep Q-learning continues to be a popular approach. Deep-
Mind Technology’s paper “Human-level control through
deep reinforcement learning” [12], took this research a step

further, presenting a model trained with Deep Q-learning
that matches the performance of a professional game player
across 49 different Atari games. A number of recent pa-
pers have noted performance boosts from a variety of DQN
variations: Stadie et al. proposed new exploration strategies
[15], van Hasselt et al. pioneered Double Q-learning [17],
Schaul et al. explored experience replay buffers [13], and
Wang et al. originated a dueling network architecture [18].
These models for Deep Q-learning formed the primary in-
spiration for the second part of our project.

2.3. Navigational agents

While the performance and the adaptability of these
model is impressive, we were interested in whether mod-
els could adapt to more varied and realistic visual environ-
ments than that of Atari games. We thus looked into several
navigational agents.

Given the raw pixels of the scene ahead of a real-life car,
Bojarski et al’s 2016 paper “End to End Learning for Self-
Driving Cars” [2] uses a CNN without any reinforcement
learning component to steer the car on local roads.

Dewing and Tong’s project “Now this is podracing - driv-
ing with neural networks” [4], uses a deep convolutional
network and reinforcement learning to train an autonomous
driving agent to play the Star Wars Episode I Podracer rac-
ing game, which involves a significantly more complex vi-
sual environment than the Atari games.

2.4. Visualizing Networks

In “Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps” [14], Si-
monyan et al. present a method for visualizing image clas-
sification models by producing a class saliency map for a
specific output class and input image. Taking the gradient
of the loss for a given class with respect to the pixels of an
image helps highlight the most significant regions of the im-
age. We employ this technique in order to get a sense of how
well our models learn to detect game-specific components,
such as enemy ships and obstacles that must be avoided.

3. Dataset
Below we explain how we interface with the video game

and describe the data we collected and processed.

3.1. Emulator

We use an emulator, software that simulates a video
game console’s hardware, to run Star Fox 64 on a com-
puter rather than on the original Nintendo 64 console. We
chose to use the mupen64plus emulator, which is free, open
source, and allows us to interface with the game via TCP
sockets. At each time step, the emulator sends the current
video frame to our model and waits for our trained agent to

2

give it a command to perform at that time step. The frame-
work for enabling this connectivity was graciously provided
by Alexander Dewing and Xiaonan Tong [4].

3.2. Data Collection

We acquired training data by recording human players
over the course of many games. Twenty times per second,
we save a snapshot of the video game screen as a single
image frame of size 640× 480 pixels. We label the sample
with the alphanumeric key corresponding to the action the
human took at that timestep. The human player’s action
space is limited to six primary actions: do nothing (“noop”);
move up, left, down, or right; and fire weapon. In addition,
there is a seventh action used for selecting options in menus
and skipping cut-scenes.

The final dataset we used to train our model consists of
16,828 samples. This represents nearly 40 minutes of game
play encompassing 5 successful passes through the level,
with no lives lost. Figure 2 overviews the distribution of
samples.

Action Label Count
up w 2292
left a 3989

down s 2109
right d 4946
fire j 1990

do nothing l 1502
Figure 2. Available in-game actions, corresponding labels, and
counts of each action in our final dataset.

Note that this dataset is only used in the classification
part of our project, as online Q-learning does not require an
existing dataset.

3.3. Data Processing

3.3.1 State Representation

Our default state is defined as the pixels in one frame. Since
each frame is a 480×640 pixel image with 3 color channels,
this is a 480× 640× 3 tensor.

We also explored the use of a MultiFrame state consist-
ing of a stack of three consecutive frames. This more com-
plex representation allows our model learn dynamic fea-
tures such as the velocity and acceleration of objects mov-
ing across the screen. A MultiFrame state is a 3 × 480 ×
640× 3× 3 tensor.

3.3.2 Subsampling

One episode of the game, lasting 5-6 minutes, produces
6,000 to 7,200 frames. Close to 70% of these frames have
“no-op” (no operation) actions. In order to increase our data

efficiency, we subsample the recorded frames by discard-
ing each “no-op” frame with a 95% chance. The result is
roughly 3,000 to 4,000 frames for 5 to 6 minutes of play.

3.3.3 Image Compression

Figure 3. An original 480x640 frame (left) compared to a com-
pressed 48x64 frame (right).

Since the number of parameters in our neural network
models increases dramatically with the number of input pix-
els, we compress each frame to a 48× 64 pixel image using
bilinear interpolation using the misc.imresize function
from the scipy library. Although the compressed frames
have only 1% of the original number of pixels, they re-
tain enough resolution to identify important features of the
game, such as enemy ships and incoming lasers (see Figure
3).

3.4. Reward Inference

Our second approach, Q-learning, requires that we need
to know the reward associated with being in a particular
state. We quantify the reward of a given state as a summa-
tion of the current score (>0) and the agent’s health (0-10):
reward = game_score + agent_health. Below
we describe how we calculate these components.

3.4.1 Score Extraction

Each frame of the game displays the agent’s score in the top
left corner. In order to extract this value, we implemented
a simple optical character reader (OCR). Since the score is
always displayed in three digits at the same pixel coordi-
nates on the screen, the reward extractor crops each digit to
a 31 × 26 pixel image, then classifies each digit indepen-
dently. Classification is performed using a nearest-neighbor
model with only 10 training data points (i.e. one template
image per digit). Each pixel is treated as its own feature. We
tested the model using 1,340 frames. When using all three
color channels and inner-product as the similarity metric,
accuracy fell short of 90%. However, by using only the
blue color channel and Pearson correlation as the similarity
metric, we achieved an accuracy of 100%. Perfect perfor-
mance is not surprising because the only variability in the
test data comes from discoloration in the background and
small amounts of occlusion in the foreground.

One of the challenges involved with reward extraction
was that the transition between score values when the agent

3

kills an opponent is not reflected instantaneously; instead,
the number appears to flip around sideways in 3D space.
Since the digits appear squeezed during this animation, our
extractor performed poorly on these frames, achieving an
accuracy below 25%. In order to handle these frames, if
the maximum Pearson correlation classification value for a
digit is less than 0.9, we return the score extracted from the
previous frame. This method achieves an accuracy of 100%
on transition frames.

3.4.2 Health Extraction

Similarly, we extract the health by calculating the fraction
of the health bar, located in the top right corner, that is filled
in. We represent the agent’s health as a float between 0 and
1, with 1 being peak health, and scale it by a hyperparameter
health_weight.

Another challenge is that health and score are sometimes
obscured by explosions on screen. When health or score are
occluded, we simply return the previous value.

3.4.3 Train-Test-Validation Split

In total, we have 5 episodes consisting of a total of 16,828
frames. We randomly selected 10% of the frames from each
episode to use as validation data.

3.5. Approach

We framed this problem in two ways - as a classification
problem and as a Q-learning challenge - and will describe
both approaches.

4. Classification Task to Compare Models
We developed and evaluated four different models with

on-policy classification, optimizing for consistency with a
human players actions. Below is a brief description of each
of the four models we evaluated.

4.1. Models

4.1.1 Linear

Our baseline was a fully connected, two-layer neural net-
work with 1024 nodes in the hidden affine layer and ReLU
activations. It outputs a probability distribution over the 7
possible actions.

Figure 4. Fox CNN model architecture.

4.1.2 Fox CNN

Our first CNN model, illustrated in Figure 4 has two convo-
lutional layers, each followed by ReLU activation and spa-
tial batch normalization. Both layers have 32 filters: the first
layer has a kernel size of 7, while the second has a kernel
size of 9. The output of the convolutional layers undergoes
max pooling with a kernel of size 2 and a stride of 2. It is
then flattened and fed into a two-layer neural network with
50% dropout after a 1024 node hidden layer.

4.1.3 DeepMind DQN

We also implemented a model based on the DQN published
by Google DeepMind [12]. This model has three convolu-
tional layers with ReLU activations but no batch normaliza-
tions. The three layers have 32, 64, and 32 filters each, with
kernel sizes 8, 4, and 3, respectively. The output is flattened
and fed into a two-layer neural network with a 512 node
hidden layer, and it is not subject to dropout.

4.1.4 DeepMind DQN MultiFrame

Our final model is a version of the DeepMind DQN model
that uses 3D convolutions over MultiFrame states (com-
posed of the frame in question and its two predecessors)
to incorporate temporal information.

4.2. Methods

model . t r a i n (s t a t e s t r a i n , a c t i o n s t r a i n)
a c t i o n s = model . p r e d i c t (s t a t e s e v a l)
a c c u r a c y = sum (a c t i o n s == a c t i o n s e v a l) / l e n (a c t i o n s)

Figure 5. Pseudocode for computation of classification accuracy.

The goal of the classification task is for the model’s pre-
dicted action for a given state to correspond to the action
taken by a human player in the same state. To accomplish
this, we perform stochastic gradient descent with Adam op-
timization to minimize the softmax cross entropy loss be-
tween the model’s probability distribution over different ac-
tions and the human player’s actual action.

4.3. Experiments

For each of our experiments, we iterate over the train-
ing dataset in minibatches of size 100 for up to 20 epochs.
After each epoch (which represents a full pass through the
training data), we perform incremental validation using the
validation dataset.

Our experiments use an initial learning rate of 4e−6
combined with Adam optimization to compute an adaptive
learning rate for each parameter that anneals over time. To
reduce overfitting, we incorporate L2 regularization into our
loss with a regularization lambda of 0.001. Although we do

4

Figure 6. Training and validation accuracy of Fox CNN with
dropout (right) and without (left).

Model Train Validation
Linear 64% 41%

Fox CNN 84% 35%
DQN 93% 71%

DQN MultiFrame 100% 48%

Figure 7. Accuracies of four models after 20 epochs of offline
training.

not perform dropout on the DQN or DQN MultiFrame mod-
els, our 50% dropout when training the Fox CNN model has
an important role in reducing the gap between training and
validation accuracies, as demonstrated in Figure 6.

4.4. Results

Figure 7 compares the training and validation accuracies
of the four models trained offline to perform classification.

Figure 8. Accuracy and loss of DeepMind’s DQN Model for of-
fline classification.

The performance of the DeepMind DQN model is im-
pressive: it achieves a validation accuracy over five times
what we would expect from a random player, and its ac-
curacy and loss graphs shown in 8 demonstrate a rela-
tively smooth increase in accuracy and decrease in loss over
epochs, as well as a reasonable gap between training and
validation accuracy.

In contrast, the lower training and validation accuracies
of the Linear model and Fox CNN suggest that both models
lack the complexity to handle the task. The DQN model has
more convolutional layers, which create more nonlineari-
ties, than the Linear and Fox CNN models. Theoretically,
it should be able to perform at least as well as shallower
models.

The DeepMind DQN MultiFrame model seems to have
the opposite problem. It is powerful enough to completely
memorize the training set, but overfits and thus does not per-
form as well as the single frame version on the validation
set. We believe that the model shows promise but acknowl-
edge that it would require hyperparameter optimization to
reduce overfitting, as well as more training time and data to
achieve this potential.

4.5. Confusion Matrix

The confusion matrix in Figure 9 visualizes the perfor-
mance of the DQN model against the validation set. This
model achieves 71% accuracy, which is reflected in the
strong diagonal of correctly predicted actions. It has the
highest recall - over 81% - for the action ‘do nothing’,
closely followed by the action ‘right’, and is particularly
good at identifying directional actions, like ‘right’ and ‘left’
and, to a lesser extent, ‘up’ and ‘down’. In contrast, it strug-
gles most with the action ‘fire’, achieving under 30% recall
and predicting ‘left’ nearly as often as ‘fire’ in situations
where it ought to do the latter. The may reflect how objects
that signal dodging are larger and more persistent than the
small enemy planes that signal firing.

Figure 9. Noramlized confusion matrix of our best performing
DQN model evaluated on the validation set.

4.6. Saliency Maps

Figure 10. Saliency maps.

5

The saliency maps in Figure 10 indicate that though our
classification models do prioritize the center of the screen,
they have yet to identify the most relevant features of a
given frame, such as the enemy planes or the upcoming ob-
stacles. However, that they focus on a different area when in
a menu state than when in game play suggests that the mod-
els are learning and that more training time may improve
their ability to identify salient features from their surround-
ings.

Further, the saliency maps demonstrate the difficulty of
the classification task: The image pairs 355 & 100 and 59 &
357, for example, look nearly identical but are labeled with
different actions. We sample frames from the game at 20
frames per second. As the player transitions from one action
to the next, this high frame rate may capture consecutive
images that are visually nearly identical but are labeled with
different actions. This increases the difficulty of the task of
identifying the correct action.

4.7. Weights Visualization

In Figure 11, we show a visualization of the 32 8×8 filter
weights in the first convolutional layer of the DQN model
trained for classification. Some interesting features can be
seen in many of the weights, including small regions of sim-
ilar shapes (2) and lines (13). We expect that more training
iterations would result in more clearly defined features.

Figure 11. Visualization of the weights of the first convolutional
layer of the DQN model.

5. Deep Q-Learning for Online Learning
The best model trained through our classification task

above can only hope to match the performance of the expert
human player it was trained to emulate. However, our stated
objective was to create an agent that can outperform a hu-
man player. To pursue that goal, we turned from on-policy
learning to off-policy learning.

5.1. Methods

With off-policy Deep Q-learning, we evaluate perfor-
mance based on the agents max score for the game, re-

gardless of the intermediate actions it takes to arrive at that
score. Conceptually, this makes sense: an agent can per-
form well even if it does not follow the same policy our
human player used; indeed, it might discover an even more
successful policy. The goal of Q-learning is therefore to use
numeric reward signals to improve a game-playing policy
over time, optimizing, in our case, for the maximum end-
of-game score.

i n i t s t a t e , Q
w h i l e True :

P i ck a c t i o n a f o r s t a t e u s i n g e−g re ed y
Observe reward r , n e w s t a t e s ’
t a r g e t = r + max a ’ Q(s ’ , a ’)
l o s s = 0 . 9 9 (t a r g e t − Q(s , a)) ˆ 2

Figure 12. Pseudocode for Q-learning.

To do this, we aim to learn an optimal Q-value function
Q ∗ (s, a), which gives us the maximum expected cumu-
lative reward possible when taking action a from state s.
Figure 12 outlines the basic algorithm. The extraction of re-
ward r from an image frame is described in Section 3.4. We
made a number of modifications to the vanilla Q-learning
algorithm:

5.1.1 Experience Replay Buffer

Since consecutive frames from online playing are often
correlated, the agent can get stuck in local minima when
trained on frames in the order in which they appear in a
given episode. In order to mitigate this issue, we make use
of Experience Replay: we maintain a buffer queue of the
past 1000 frames of game play. When returning a batch of
frames, we sample randomly from the buffer. This allows
the agent to train on past data in a randomized order.

5.1.2 Target Network

θ = θ + α

(
r + γmax

a′∈A
Qθ−(s

′, a′)−Qθ(s, a)
)
∇θQθ(s, a)

Figure 13. Update rule for Q-learning with a Target Network,
where Qθ uses the parameters of our primary network while Qθ−

uses the parameters of our target network.

In vanilla Q-learning, we use our estimated Q-value
function to compute both the target and estimated Q-values.
This means that each update shifts our network values to-
wards a set of values that is also shifting, which can lead to
feedback loops. Instead, we maintain a second target net-
work, whose values are only occasionally updated to the
primary network’s Q-values. In our simulations, we experi-
mented with several different frequencies with which to up-

6

Model Maximum Score
Random 12
Linear 14

Fox CNN 18
DQN 44

Figure 14. Maximum end of game score via different models
after 10,000 training frames.

date the primary network. Our update rule is described in
Figure 13.

5.1.3 Warm Start

We can run Q-learning offline on the dataset from our clas-
sification task to initialize a preliminary Q-value function
before we begin online training.

5.2. Experiments

While our Classification task happened offline on a pre-
recorded and labeled dataset, Q-learning happens online, in
real-time. Every 5 frames, the emulator sends our model
the current frame, which represents state s. The model uses
its current Q-value function to return the argmax action a to
Q(s, a).

We compared the results of deep Q-learning using dif-
ferent models, then ran several additional experiments with
the DQN model. We tested various target network up-
date frequencies and replay buffer sizes to better under-
stand how they affect the agent’s learning. In addition,
in order to help our models learn to avoid obstacles,
we introduced a new hyperparameter, health_weight:
When returning the reward for a particular state and ac-
tion, rather than extracting just the score, we also ex-
tract the health and return a weighted sum computed as
score + health_weight * health. Since health
ranges from 0 to 1, the health_weight hyperparameter
corresponds to the number of score points that having full
health is worth. Without any additional modifications to the
reward, increasing the value of health_weight resulted
in the agent colliding more often because the agent learned
that once it dies, it begins a new life with full health. In
order to mitigate this issue, we artificially inflict a score of
-health_weight each time the agent loses a life.

With regard to other experimental parameters, we use a
batch size of 10 and an E-greedy exploration rate epsilon of
0.05. Like in classification, we add L2 regularization to the
loss with a regularization lambda of 0.01.

5.3. Results

Figure 14 compares the maximum score achieved us-
ing different models. Results were obtained without us-
ing a target network, a replay buffer of size 1000, and

DQN Configuration Maximum Score
Update T.N. every batch 61

Update T.N. every 10 batches 52
Update T.N. every 100 batches 44
Update T.N. every 1000 batches 17

With replay buffer 44
Without replay buffer 52
health_reward = 0 20
health_reward = 10 44
health_reward = 100 53

Figure 15. Maximum end of game score via different versions
of DQN after 10,000 training iterations. Default parameters
were updating the target network (T.N.) every 100 batches,
replay buffer of size 1000, and health reward of 10.

health_reward value of 10. We selected the DQN
model for the remaining experiments because it outper-
formed the other models and runs in close to real-time.

Figure 16 compares the maximum score achieved us-
ing different configurations of DQN. The DQN model with
the default parameters utilizes a target network with an
update frequency of 100 batches, a replay buffer of 1000
frames, and a health_weight of 10. Each of the runs
involved removing one of these optimizations and train-
ing for 10,000 iterations (1,000 batches * batch_size
10). The results of the experiments suggest that removing
the target network, removing the replay buffer, and setting
health_reward to 100 produces the best results. How-
ever, the authors of this paper might argue that 10,000 iter-
ations may not be enough for the models, particularly the
model updates the target network every 1000 batches, to
converge.

The experimental results above suggest that updating the
target network more frequently improves results. However,
we suspect that if the experiment were rerun with much
longer training periods, the opposite may be true. Target
networks are known to help stabilize feedback loops, and
with sufficient training time, may converge to better optima.

5.3.1 Loss

Figure 16. Score (left) and loss (right) plotted over 8,000 training
batches using online q-learning.

7

Figure 16 shows the maximum score achieved at the end
of games and the corresponding Q-loss as the DQN model
is trained over time. Over the course of training, the loss
on the whole decreases but retains smaller spikes that cor-
respond to points at which the agent scores points by shoot-
ing an enemy ship or dies and is given (artificial) negative
reward for having lost all its health. The more our model
trains, the stronger it plays; we believe that it has yet to con-
verge and will continue to benefit from more online learn-
ing. Nevertheless, these initial results are promising.

5.3.2 Strategy

Qualitatively, the difference between untrained and well
trained models is striking. While new models seem to op-
erate randomly, running into objects and enemy fire indis-
criminately and rarely shooting, let along aiming for oppo-
nents, trained models quickly adopt what an experienced
player describes as the “simplest effective strategy” for the
game. The agent stays high on the screen, where it can avoid
most obstacles. It learns to charge its weapon to fire hom-
ing shots, whose homing mechanism eliminates the need for
accurate aim and whose wider blast range often takes out
other nearby enemies. However, we notice that the agent
seems less inclined to fire while flying over open water at
the beginning of the level despite the enemies present at that
stage. This suggests it may associate shooting more with the
ground and buildings than with enemy aircrafts. We hope
that with more training time, it will learn to recognize en-
emy crafts.

5.3.3 Generalization

Figure 17. Score (left) and loss (right) recorded when the model
played 140,000 iterations in Training Mode before being entering
Level 1.

Finally, we tested our model’s ability to generalize by
spending 140,000 training iterations in Star Fox’s Training
Mode, which represents a less hostile environment with an
infinite supply of enemies to shoot and very few obstacles
to avoid. Correspondingly, during this time, the agent sur-
vived for a long time and achieved high scores (note the
widely spaced peaks in the score graph). We then set the
model loose on Level 1. After an initial (expected) drop in
score, marked by corresponding spikes in the loss graph, the

model quickly recovered and learned to apply what it had
learned in Training Mode to the new, more challenging en-
vironment in less than 10,000 additional training iterations.
Its best score of 63 is still substantially less than that of an
experienced human player (115), yet its ability to generalize
to unseen environments is exciting.

6. Conclusion and Future Work
Although more training time is required to explore the

full extent of its potential, our initial results suggest that on-
line Deep Q-Learning with DeepMind’s DQN model yields
promising results for autonomous navigation and combat.

In the future, with more time and compute power, there
are a number of directions we would like to explore. First,
we would optimize our hyperparameters using random grid
search. We are particularly interested in experimenting
with the learning rate and regularization lambda, though
we would also like to explore changes to the counts and
kernel sizes of the filters in our convolutional layers. For
Q-learning, we would like to modify the batch size and de-
crease exploration over time by decaying the value of ep-
silon in e-greedy.

Second, we would increase training data and time. While
each experiment ran at a minimum for several hours, our on-
line models would benefit from days to weeks of learning.
In particular, we believe that the DeepMind DQN Multi-
Frame model has the potential to outperform the standard
version, so we would like to experiment with using it for
online Q-learning. We would recompute saliency maps and
convolutional filter weights for these models, anticipating
more refined and recognizable features in both.

Finally, after the success of our first generalization exper-
iment, we would like to test how a model trained on Level 1
performs on Level 2 of the game. This level takes places on
an asteroid field, where the obstacles themselves have ve-
locities and, for a human, are more difficult to discern from
the background. Success is this task would be a testament
to the learning capacity of our model.

We are optimistic that agents trained in realistic virtual
environments, where they can develop advanced policies
online, could provide a warm start to physical autonomous
navigation and combat systems.

8

References
[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling.

The arcade learning environment: An evaluation platform for
general agents. CoRR, abs/1207.4708, 2012.

[2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learn-
ing for self-driving cars. CoRR, abs/1604.07316, 2016.

[3] E. Brunskill. Cs234 assignment 2 replay buffer starter code,
2017.

[4] A. Dewing and X. Tong. Now this is podracing - driving with
neural networks. 2016.

[5] J. J. Fei-Fei Li and S. Young.
[6] D. H. Hubel and T. N. Wiesel. Shape and arrangement of

columns in cat’s striate cortex. The Journal of Physiology,
165(3):559-568.2, 1963.

[7] D. K. Kim and T. Chen. Deep neural network for real-
time autonomous indoor navigation. CoRR, abs/1511.04668,
2015.

[8] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Ger-
shman. Building machines that learn and think like people.
CoRR, abs/1604.00289, 2016.

[9] C. Man, K. Xu, and K. Gregory. Nli-calypso. https://
github.com/katgregory/nli-calypso, 2017.

[10] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lilli-
crap, T. Harley, D. Silver, and K. Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. CoRR,
abs/1602.01783, 2016.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Play-
ing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wiestra, S. Legg,
and D. Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[13] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized
experience replay. CoRR, abs/1511.05952, 2015.

[14] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep in-
side convolutional networks: Visualising image classifica-
tion models and saliency maps. CoRR, abs/1312.6034, 2013.

[15] B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing explo-
ration in reinforcement learning with deep predictive models.
CoRR, abs/1507.00814, 2015.

[16] R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition,
1998.

[17] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement
learning with double q-learning. CoRR, abs/1509.06461,
2015.

[18] Z. Wang, N. de Freitas, and M. Lanctot. Dueling net-
work architectures for deep reinforcement learning. CoRR,
abs/1511.06581, 2015.

[19] C. J. Watkins and P. Dayan. Q-learning. Machine learning,
8(3):279–292, 1992.

9

https://github.com/katgregory/nli-calypso
https://github.com/katgregory/nli-calypso

