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Abstract

Reinforcement learning (RL) is an area of machine
learning which concerns on how to train agents in order to
achieve complex goals in uncertain and stochastic environ-
ments. Recently, combining deep learning techniques with
RL has shown promising results. However, there are two
well-known issues of Deep RL, which are (1) the problem
of specifying a suitable reward function for agent to opti-
mize and (2) the problem of time complexity, i.e., the model
requires multiple trial-and-error episodes for learning a be-
havior policy that indicates which actions to be selected in
a fashion that correctly achieves goals.

In this report, we address these issues and apply our
model to target-driven visual navigation. To address these
issues, we applied a novel approach, called imitation learn-
ing (IL), to sequential decision making based on RL frame-
work. Particularly, we used the behavioral cloning ap-
proach, which enables the active agent to mimic an expert
(or mentor) policy without usage of reward function. We
show that our method (1) requires less training time than
the state-of-the-art deep RL method with improved perfor-
mance in navigation problem and (2) generalizes across
targets.

1. Introduction

In recent years, supervised learning has shown great per-
formances in many practical applications such as image
classification and pattern recognition (e.g. [16l], [3]]). How-
ever, as pointed out by Andrew Ng, [11], it is difficult to
provide a large amount of proper training data in sequential
decision making problems and this prevents it to be used in
practice. For example, providing explicit supervision for a
four-legged robot to walk is difficult since we do not know
what the initial “correct” actions for walking.

Instead, we can train an agent to work correctly by letting
the agent perform various actions and providing a relevant
reward regarding the chosen action. By setting the main
goal of the agent to maximize the reward and solve this
optimization problem using learning algorithm, the agent
can learn how to choose an action so as to obtain large
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rewards. This framework, called reinforcement learning
(RL), is a common framework for solving sequential deci-
sion problems. In recent years, sequential prediction prob-
lems frequently arose in practice and several approaches
used the RL framework generated a string of successful re-
sults. For instance, [3]] proposes an RL based method which
also incorporated deep learning technique and applied it to
a quadrupedal robot system.
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Figure 1: Target-driven Navigation Decision Making

An agent navigating a space in pursuit of a target based
on its sight is a very representative problem of deep rein-
forcement learning (DRL). However, standard DRL models
(e.g., [8], [10]) address the problem by setting the main goal
embedded within the learned model parameters because the
policy learned can be used for determining actions for a va-
riety of agent states, but the goal is still fixed and cannot
be changed during application. Since training DRL agents
again for a new task is computationally expensive, we intro-
duce a Target-driven model which achieves a higher adapt-
ability and flexibility by taking targets as inputs rather than
hard-coded parameters [19]. In our model, the agent de-
termines the next action based on both its current state and
pursuing target, and the trained network will not be spe-
cific to a certain target used in the training. Figure [T] de-
scribes a simplified version of decision making process that
our target-driven navigation model uses.

However, gathering large-scale action and interaction



data in real world is difficult with current image data collec-
tion methods, and still is a bottleneck in training the agent.
Thus for training purpose, we use simulation frameworks
with high-quality 3D scenes, called The House Of inteR-
actions (AI2-THOR) [19]. This framework is capable of
collecting a large number of observations for action in var-
ious environment setting. Detailed discussion is written in
Methods section.

One of common issues of DRL is the requirement of
specifying a reward function. For each task, we want to
provide a correctly measured reward once an agent chooses
an action but this function is not deterministically known
for every environment and goal settings. For instance, we
can give -1 points for every step the agent makes without
reaching the target, and give 100 points when it finally finds
out the target. This heuristic method may not be optimal
and it is not guaranteed that this approach leads for the
agent to achieve the optimal policy, which ideally outputs
the best action for every state and target. Since RL is very
computation-expensive, trying a large number of hyperpa-
rameters to find out the best reward function is tedious.

To address this issue, we introduce imitation learning
(IL) method into the field of RL. We apply the behavior
cloning approach where we generate an expert policy and
incorporates this policy during the process of training the
agent. Given a current state-target pair, this policy outputs
a set of optimal actions (or ground truth actions) to reach
the goal. In other words, we form correct labels of actions
for each state just like in supervised learning method. Us-
ing this scheme, we train an agent to mimic this policy and
eventually learn the optimal policy.

We report that our IL method requires less training time
than DRL methods and also generate improved perfor-
mance in navigation problem. In terms of generating the
expert, we use the A-Star (A*) search algorithm to find the
shortest path at each location of the environment. We eval-
uate our method by comparison of our IL based model, the
DRL model of [19] and model that incorporates both IL and
DRL technique for the following task: Target generaliza-
tion; within the same environment (scene), the agent looks
for a target it has never seen during training. Although the
targets are not seen during the training, they might share
common routes with trained targets and we evaluate on the
knowledge transfer aspects of the trained agent.

2. Related Work

RL has been used and achieved a string of successful
results in many applications. [3] proposes a policy gradi-
ent RL approach and show its implementations in the com-
mercially available quadrupedal robot platform called Sony
Aibo robot. (6] proposes RL based method to autonomous
helicopter flight. [9] applies RL to sequential decision mak-
ing in ATARI games. In recent years, RL methods that com-

bine techniques from deep learning with RL has shown a
string of successful results. [15] proposes a DRL approach
that also incorporates Monte-Carlo tree search that beats the
world champion in the game of Go. Due to promising re-
sults from these methods, deep RL has gained wide popu-
larity.

Imitation learning (also called learning from demonstra-
tions), which considers the problem of acquiring complex
policies for sequential decision problems, also has a long
history. Survey articles can be found in [1] and [14]. Two
main branches within IL are (1) behavioral cloning, where
supervised learning technique is combined so that demon-
strations are directly used to learn a mapping from obser-
vations to actions (e.g. [13]]) and (2) Inverse reinforcement
learning, which is a problem of estimating an appropriate
reward function with an assumption that the given demon-
stration consists of optimal actions (e.g., [12]). [2] shows
how a reward function could involve feature learning and
[18] shows that a reward function could be represented as
a weighted combination of features. Since our work ad-
dresses behavioral cloning methods of IL and evaluate their
performances, our works are closely related to [13].

Our work mainly focuses on the problem of navigating a
space to find a given target using only visual inputs. There is
a long history of works on navigation problems and here we
present a brief overview. One of popular navigation meth-
ods is the map-based navigation method which requires a
global map of the environment in order to make relevant
decisions for navigation(e.g., [8]). Another class of naviga-
tion methods creates a map during the training phase and
use it for navigation [17]. In addition, some methods in-
volves humans guidances to build the map during a training
phase [4]]. In contrast to this class of navigation methods,
there are map-less navigation methods as well, which have
shown some promising results but focus on avoiding obsta-
cles rather than pursuing a target.

Our work is map-less and is closely related to [19]] which
is categorized as a map-less navigation method of solv-
ing navigation problem. Many previous standard deep RL
models focus on finding a direct mapping (a deep neural
network ) from state representations s to policy 7(s) and
these models suffers difficulties when changes in task goal
or changes in the rule of the game are adjusted. For exam-
ple, Luke et al [7] shows how the DRL-based Go-playing
system can be vulnerable to minor changes in the game rule.
One possible method to overcome this issue is proposed
at Yuke et al [19]. They propose that their model over-
comes this issue by learning how seek new targets without
re-training. It takes two RGB image inputs, one being the
current observation and the other being the target location.
It uses an actor-critic network whose policy is a function
of the goal as well as the current state. Motivated by this
method, our model also takes two inputs (i.e., current ob-



servation RGB image and target location RGB image) and
model finds a suitable policy. Note that the model in
designed a reward function heuristically in order to find the
minimum length sequence of actions that move an agent
from its current location to a target. For example, the model
proposed in [19] awards a goal-reaching reward (10.0) upon
task completion and small time penalty (—0.01) as imme-
diate reward. Instead of heuristically designing a reward
function, our models uses behavioral cloning technique to
find the optimal policy.

3. Methods
3.1. The AI2-THOR Framework

To train and evaluate our model, it is necessary to have
a suitable framework that allows performing actions and
showing corresponding results. In the navigation problem,
once the agent chooses an action, the framework should not
only clearly display the consequence of choosing the action
but also allow the agent to receive the resulting informa-
tion. Also, the framework should be a good representation
of the real world in terms of physics of the environment be-
cause detailed representation can assist the generalization
of our model into the real world applications. In addition,
the framework should be capable of incorporating different
types of environments because it is necessary for our model
to be trained and tested in various environments.

To efficiently apply our model with different types of
environments, we used The House Of inteRactions (AI2-
THOR) framework, proposed in [19]. This framework is
designed by combining a physics engine (Unity 3D) with
a deep learning framework (Tensorflow) which has a de-
tailed model of various scenes. Two main advantages of
this framework are as follows: (1) Direct communications
between the physics engine and the deep learning frame-
work. (2) 3D scenes in this framework include delicate tex-
ture and lighting similar to the real world. Python APIs of
the framework and detailed discussion on this framework
can be found in [19].

3.2. Target-driven Navigation Model with Imitation
Learning

3.2.1 Problem Statement

The main objective (goal) is to find the minimal sequence
of actions that lead the agent from its current location to a
target. Here we propose a deep RL model that takes two
inputs: (1) the current observation as an RGB image and
(2) the target as an RGB image. The output of the model is
actions in 3D such as move forward.
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Figure 2: The AI2-THOR Framework

3.2.2 Problem Formulation

Navigational decisions requires an understanding of the
current positions, the target locations and environment in-
formation (e.g., scene layout). Therefore, we propose the
model that accounts and uses these requirements. The main
objective of our target-driven model is to learn a policy
function 7 which takes two inputs, a representation of cur-
rent state s; and a representation of target g and produces a
probability distribution over the action space 7 (s¢, g).

an~ ’/T(stag | 0)

where 6 are the model parameters. In terms of a finite set
that contains navigation tasks (g € ), g can be refered as
an index for the right set of model parameters € for each
task.

3.2.3 Model

The neural network structure is exactly the same as that
of the Q-learning based DRL model of [[19], except for the
fact that our model skips the very last layer to compute the
value function. The figure[3]describes the common network
structure.

The whole network can be divided into two different
parts. The first half is called the generic Siamese layers, and
the latter half is called the scene-specific layers. The generic
Siamese layers are common to all scenes for training and
testing, whilst the scene-specific layers have different pa-
rameters for each scene of the THOR environment. Hence
this network is designed in attempt to separate parameters
for observation image processing and determination of pol-
icy and value as much as possible.

The first set of layers in the generic Siamese layers
are the ResNet-50. The ResNet-50 layers are pre-trained
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Figure 3: Network architecture of our imitation learning
model

on ImageNet, and they produce 10 2048-d features on a
224x224x3 RGB image. Among these, we only make use
of the first feature for each image to simplify the network.
As the input to the network, we use 5 different images: the
target observation and the four most recent agent observa-
tions(current state). The ResNet-50 features of the history
of four recent agent observations are concatenated into a
8192-d vector, passed to a fully-connected layer, and pro-
jected into a 512-d vector. In the same fashion, 4 copies
of the same target observations passed to the same struc-
ture with the shared parameters and result in a 512-d vector.
Then those two 512-d vectors, each from the current state
and target, are concatenated into a 1024-d vector and once
more passed through a 1024x512 fully-connected layer.

Then the output of this fully connected layer is fed into
different networks depending on the scene. These are the
scene-specific layers, where the structure (number of layers
and their sizes) is the same for all the scenes but their pa-
rameters differ. The first layer is 512x512 fully-connected
layer. The second one is 512x4 if this is for the policy cal-
culation, and 512x1 if this is for the value calculation. The
original DRL model uses both of them, but our imitation
model uses only the policy layer.

4. Dataset and Features

We describe the learning setup and dataset that we used
for our model.

1. Action space: Mobile robots in real world have to func-
tion well with a number of mechanics. Although incor-
porating detailed mechanics into the mobile robots are
significant part of real world applications, it makes dif-
ficulties in terms of learning. Therefore, we use AI2-
THOR framework to handle underlying physics of 3D
environment and train our model with four command-
level actions: turn left, turn right, move forward, move
backward. We use 0.5 meters of constant step length
and 90 degree of turning angle. Each rotation and for-

ward/backward movement by the agent is counted as
one step.

. Observations and goals: Both observations and goals

are RGB images as agent’s first person view. Given
a target image, agent’s objective is to navigate to the
location where the target image is taken.

. Scene data: We used 6 amongst the 20 scene data

dumps provided by THOR challenge [20]. The data
includes 5 kitchen scenes, 5 living rooms scenes, 5
bedroom scenes and 5 bedroom scenes, and we used
following files: bathroom_02, bathroom_03,
bedroom_03, bedroom_ 04, living._room_03,
and 1iving_room_08

. Optimal Policy Generation: One of the most difficult

problems in using supervised learning in robotics or
navigation problems is the generation of proper train-
ing set. The very first step to make a reasonable train-
ing set is to have an optimal policy function for enough
number of possible states. Procedure to generate the
optimal policy is following:

1. Accumulate the observation images and label
them with location ID number

2. State-action transition graph (G) where G;; indi-
cates the location ID of destination if action j is
taken at location i.

3. Calculate shortest number of steps from location
1 to location j (for all locations) and make it into
a square matrix, S.

4. Generate the optimal policy 7(s¢, g) that outputs
which action to take when two inputs current lo-
cation ID s; and destination ID g are specified.

5. Generate training input image set using the opti-
mal policy

Data for step (1), (2) and (3) were provided by scene
data from Allen Institute. Using the graph G and short-
est distance matrix, S, we obtained the optimal policy.

. Training Data Input Generation: Standard deep RL

models use history frames to learn a policy at the cur-
rent state. Yuke et al [[19] used concatenation approach
on 4 history frames to account for the agent’s past mo-
tions. Our model, expecting the feasible mixture of the
DRL and the IL, used the same network as the DRL.
However, since the optimal action in principle is deter-
mined solely by the current state and the destination in
the supervised learning, what to be input as the history
frames of the agent is ambiguous. Our first try was
to put zero features as the input to the history frames.
However, that led to a strong discrepancy when actual



features were input. Then we tried to input random
features as history frames, only to fail again. Realiz-
ing that those methods could not emphasize the signifi-
cance of the target and current observation over history
frames, we chose to use two input sets simultaneously:
(1) a training set that has all four history frames equal
to the current frame (2) a training set with four history
frames assuming that the agent is following the opti-
mal path. Our intuition is that (1) would urge the agent
to avoid getting stuck in a certain state, and (2) would
assist the agent to follow the optimal path once it enters
it. Together, they would give emphasis on the current
observation and the target.

5. Experiments

The main task of a navigation problem is to move from
the current location to the target with minimal time and ef-
fort. We evaluate our model with the target-driven naviga-
tion model of [19] as a baseline model. We measure and plot
the average trajectory lengths in evaluation versus training
time for both our imitation model and the baseline model.
From this we can compare the training time-efficiency of
two models. The evaluation is done for different targets
within the same scene (environment), which were unseen
during the training, to check the target generalization.

There were 6 different training methods for comparison:
(1) One-hour training using DRL, (2) one-hour training us-
ing IL, (3) two-hour training using DRL, (4) two-hour train-
ing using IL, (5) one-hour DRL followed by one-hour IL,
and (6) one-hour IL followed by one-hour DRL.

For each scene amongst 6 scenes, we randomly chose
5 targets guaranteed not to have been seen in any training.
For each target, we chose 100 random starting state of the
agent, and measured the average steps the agent took before
reaching the target. The maximum, minimum average steps
as well as their standard deviations were recorded.

Since different scenes had different complexities and
map scales (possible combination of locations and rota-
tions), we divided each number(maximum steps, etc.) of
the scene with the corresponding number of the one-hour
DRL.

Table [1| shows the maximum, minimum. average steps
and the standard deviations normalized in such a way that
those numbers for the one-hour training results are 100
steps.

One hour training of IL showed an inferior performance
compared to the 1-hour DRL. It showed 182% increased av-
erage steps, and extremely high instability of performance
from target to target. Hence, it implies that with short train-
ing IL is weak against over-fitting.

However, the imitation learning showed a much im-
proved performance when we increased the length of train-
ing. We trained our IL model for two-hour and it showed

Maximum Minimum Average Standard

Steps Steps Steps Deviation
DRL 1 hour 100.0 100.0 100.0 100.0
IL 1 hour 239.6 8.4 282.2 447.7
DRL 2 hours 115.9 81.6 98.5 147.9
IL 2 hours 135.6 201 71.6 203.6
ORLfhourt 5745 24.4 290.2 609.9
I;"R:_ :“;‘L’:r 93.2 80.6 112.8 99.2

Table 1: Performance of IL Methods AND Other Models

some promising results. It reduced the average number of
steps required by a factor of 4. The performance showed
much improvements than that of DRL model proposed by
Yuke et el [19]. The average steps of model proposed by
Yuke was 98.5 steps but our model was 71.6 steps. Al-
though our model achieves higher maximum steps than that
of the DRL model, our model can accomplish certain tasks
with much small number of steps as the minimum steps col-
umn in the table indicates.

However, the mixture of the two methods did not show
good performance. The imitation learning followed by the
DRL showed almost 3 times worse average steps as well as
6 times worse standard deviation than those of the one-hour
DRL.

Training the agent in the reversed order in such a way
that DRL follows IL, the average steps were a bit higher
but the standard deviation was a bit lower. Statistically this
was not very different from training the agent just for an
hour using DRL. For short-term trainings, the DRL and IL
seemed to be incompatible with each other even though they
shared exactly the same network structure.

Relative Performance of Training Schemes

Relative Steps Required

o
Bathroom 02 Bathroom 03 Bedroom 03 Bedroom 04 Livingroom 03 Livingroom 08

Training/Evaluation Scenes
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Figure 4: Target Generalization

Figure ] shows the average steps normalized to one-hour
DRL training for each scene used for training. Note that
lower height implies shorter steps for navigation and red
colored graph is our two-hour IL trained model.

One interesting thing to point out is that, each train-



ing methods showed its weaknesses at certain tasks. We
stopped the evaluation when the agent failed to find the tar-
get within 10,000 steps and defined this as a failure of the
trial. When more than 50 percent of the trials fails, we
defined this as a failure of that certain scene-target pair.
For example, two-hour IL method failed in task (target)
8 in the 1iving_room_03, and two-hour DRL failed in
task 130,140,150,160 in the bathroom_02. Each train-
ing methods totally failed for at least one of the evaluation
tasks. This implies that, regardless of the training method,
the small size of the network itself causes the lack of gener-
alization.

6. Conclusion

We proposed an imitation learning (IL) based DRL
framework for target-driven visual navigation. We ad-
dressed the problem of specifying a reward function for
agent to optimize and the problem of requiring multiple
trial-and-error episodes for the agent to learn a proper pol-
icy in RL. We compared our model with the state-of-the-art
DRL methods proposed by [19] and two combined mod-
els that incorporates both IL and state-of-the-art DRL meth-
ods. Our experiments showed that our method achieves less
number of steps for navigation tasks in comparison to other
DRL models. We also showed that our model requires less
training time in AI2-THOR framework.

We plan to investigate on why the mixture of two train-
ing methods led to a catastrophic results. If those two meth-
ods are trying to make the network resemble the same op-
timal policy, the ultimate network parameters should con-
verge in the same way. However our results showed other-
wise. Two possible reasons for this are (1) the sequential
learning (DRL) innately leads to different parameters than
parallel learning (IL). (2) The choice of observation history
in our model was not compatible. If there is fundamental
disparity between the parameters learned from two different
methods, then we can completely discard the history layers
to simplify the network in our model. If not, finding the
best ways to feed in the artificial history would be a key to
mixing different training methods with the same network
structure.

Our work and results can lead to many potential exten-
sions. We can train and test our model on environments (3D
scenes) that requires longer distances (e.g., 100 number of
steps). Also, we can extend the action spaces (e.g., add di-
agonal movements or yaw/pitch/roll) and build models that
also learns and performs physical interactions in the frame-
work. For example, instead of setting the target location as
input, we can extend our model to possibly accept a partic-
ular object as input and train our model to navigate to the
location where the object is.
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