
End-to-End Learning for Fighting Forest Fires (EELFFF)

Ravi Haksar and Adam Caccavale
Department of Mechanical Engineering, Stanford University

{rhaksar,awc11}@stanford.edu

Abstract

Fighting fires is a dangerous task for firefighters, and
therefore provides an opportunity for automation. Wild-
fires happen over large areas, which suggests using mul-
tiple firefighting agents is a good approach. A challenge for
systems like these is coordination, since as the number of
agents increase the computational and communication re-
quirements increases and can overwhelm a single central-
ized controller. Decentralized systems, where agents have
little to no communication and only local information, re-
solve this issue, though at a cost of sub-optimality. This
paper proposes training a convolutional neural network ar-
chitecture using simple local data to provide control for any
number of agents in an environment of any size. Informa-
tion is limited to what can be collected with no communica-
tion (desirable for a scalable system). The data includes an
overhead image of a small subregion of the environment, the
location of the nearest agent, and the ignition point of the
fire. Results show promise for the single agent case, with the
agent moving balancing the objectives of fire coverage and
limited path lengths. The case with multiple agents does not
exhibit the desired level of cooperation suggesting that the
gathered information is insufficient for coordination. Fu-
ture work will focus on determining what minimum level of
information is required to achieve cooperation (e.g. infor-
mation about several nearest agents and potentially their
planned paths) as well as different problem formulations.

1. Introduction
Fighting forest fires is an appealing application for

robotics as terrain, weather, and other factors can create sig-
nificant challenges for firefighters – including the potential
for loss of life. An attractive solution is to use multi-agent
systems, such as a team of quadrotors, to monitor and con-
tain a wildfire. Autonomous aerial vehicles can be more ag-
ile, can be disposable, can be deployed in much larger num-
bers, and can also be distributed – there is no centralized
agent gathering information and making decisions, elimi-
nating a single point of failure. Information can also be

provided to firefighters to assist their planning, monitoring,
and control efforts.

The goal of this work is to use a convolutional neural
network architecture to plan the actions for autonomous
quadrotor agents. The input data consists of images of the
forest as well as a distance measurement to the nearest agent
and to the initial ignition point. The output of this network is
a series of waypoints which defines the agent’s motion tra-
jectory. A single trained network will be used for all agents
so that the system scales linearly with the number of agents
and so that there is no influence from the size of the forest.

1.1. Related Work

Prior work for this type of application has introduced
methods for various aspects of fighting fores fires.

A number of models have been introduced to describe
the spread of a wildfire, including elliptical PDE mod-
els [10], vector propagation models using spatial data [11]
(used by US agencies), and a probabilistic lattice-based
model [12].

Several methods have been published on using au-
tonomous agents to surveil and monitor a forest fire. Meth-
ods include using computer vision techniques (but not us-
ing neural networks) to detect a fire [4][13] or to monitor
a fire and relevant data of the fire (e.g. temperature, flame
height) [14][7][8][2]. Neural networks have however been
used successfully for other multi-robot tasks like collision
avoidance with no communication [3]. Most notably, some
of the monitoring work is based on systems of autonomous
agents, typically centralized. Types of agents used include
fixed-wing aircraft, quadrotors, and ground vehicles. Some
works, like [5], use both ground and aerial vehicles.

Surprisingly, there are relatively few published methods
for control. One method [6] constructs a fully decentral-
ized method using potential field methods, which is com-
mon in robotics applications. The agents are able to sur-
round a wildfire and suppress it. Another method [9] uses
a centralized formulation, with one agent collect observa-
tions, which are then sent to a base station. The station then
commands other agents to take actions.

The fire models in literature are roughly comparable and

1



are able to capture the bulk behavior of the fire. A strength
of the probabilistic model is that it can also describe other
spreading processes (e.g. epidemics). The monitoring
methods are typically based on a single agent, which may
not be sufficient for large fires and can be prone to failure.
These methods are also usually concerned with systems de-
ployed in the field (e.g. fixed sensor stations) that would not
be suitable for the control aspect. Finally, it is clear the pub-
lished control methods rely on classical control methods,
which can suffer from modeling or computational issues.

A focus of this work is to augment the classical sensing
and control literature for this application with a neural net-
work approach. These control techniques can be combined
with hardware that is being developed, like that in [15], to
combat wildfires.

2. Methods
2.1. Problem Formulation

A probabilistic discrete-time model from literature [12]
is used to represent the spreading of a wildfire. The for-
est representation is therefore a NxN sized grid of trees,
with three possible states for each tree: healthy, on fire, and
burned. It is only possible to “treat” trees on fire, which
has the effect of reducing the probability that the fire con-
tinues to burn. Parameters for this model are chosen so that
the wildfire is predicted to burn down at least 90% of the
total forest area. Figure 1 shows the fire at various itera-
tions demonstrating how an unconstrained fire will spread.
The ignition point is the center of the forest and the wildfire
spreads to burn almost the entire forest.

Figure 1: Evolution of fire over time (no control)

There are r quadrotor agents attempting to prevent the
forest from burning down. Each agent is equipped with a
downward-facing camera that produces an image contain-

ing a region of hxw trees. The agents are also equipped
with a simple sonar sensor that provides the Euclidean dis-
tance to other agents. The position of each agent pi is con-
tinuous, in contrast to the grid description of the forest. Fig-
ure 2 shows an example quadrotor with a downward facing
camera.

Figure 2: Example quadrotor agent1

At the beginning of the simulation, a fire is started at the
center of forest and it is assumed that each agent knows this
position pf .

At each time step, the agents take an image of the for-
est. The image is passed through a convolutional neural
network (CNN) and produces a list of k waypoints that de-
fine a path in R2 that the agent will move along. The path is
created by linearly interpolating between each pair of way-
points (i.e. connecting a straight line between each pair of
waypoints). All trees that are on fire and intersect this path
are considered to be “treated.”

Table 1 shows the values used for the parameters defined
by the problem formulation.

Table 1: Problem parameters

Parameter Value
Grid size N simulation dependent
Number of agents r simulation dependent
Image pixel size 16x16x3
Image tree size hxw 16x16
Number of waypoints k 6

2.2. CNN Architecture

Figure 3 shows the CNN architecture2. The network con-
sists of a subsection that generates image features and an-
other section that takes the image features and the other data
to generate waypoints.

Note that the first fully-connected layer combines the
output of the image processing filters with the input dis-
tance measurements (the distances are appended to the end
of the vector of image features).

1Source: http://bit.ly/2rHb7Ud
2The network architecture was inspired by code that the authors wrote

for CS231N Assignment 2

2

http://bit.ly/2rHb7Ud


Table 2: Network parameters for CNN

Layer
Parameter Convolution 1 Convolution 2 Max Pool 1 Max Pool 2
Number of filters 128 128 – –
Filter size 5x5 3x3 4x4 2x2
Filter stride 1 1 2 1
Padding 0 0 0 0

Figure 3: CNN architecture used to generate waypoints.
Numbers next to each set of layers represents the output
size.

The output is a vector with 2k elements, representing the
x and y coordinates for all k waypoints. Table 2 shows the
parameter values the convolutional network section of the
architecture. The first fully connected layer has a size of
1156x2048 and the second fully connected layer has a size
of 2048x12.

2.3. Loss Function

The loss function is used to evaluate how well a set of
waypoints, generated by agent i, will perform. Equation 1
describes the loss function at a high level; a more rigor-
ous definition is given in Appendix A. In Equation 1, the
λ values are hyperparameters that control the relative influ-
ence of each term. The choice of hyperparamter values is
discussed in section 4.2. The term λ1 weights the Euclidean
distance between the agent’s location and the ignition point.
The next term with λ2 discourages the agent from being
too close (measured by Euclidean distance) to the nearest
agent. The λ3 term can be used to encourage or discourage
the agent to cover a large area of the forest. The λ4 min-
imizes the path length to discourage physically unrealistic
paths. The path length is measured by the straight line dis-
tance between each pair of waypoints. Finally, the λ5 term
encourages using the waypoints to cover trees that are on

fire.

Lossi “ λ1‖qend ´ pf‖2 ` λ2
k
ÿ

i“1

i{k

‖qi ´ pj‖2 ` ε
` . . .

` λ3 pmax qx ´min qxq pmax qy ´min qyq ` . . .

` λ4

k
ÿ

i“1

‖qi`1 ´ qi‖2 ` λ5
k
ÿ

i“1

‖qi ´ pfire‖1 (1)

3. Dataset and Features

The data required to train the CNN consists of a local
image observation of the forest and the relative positions of
the ignition point and the closest agent. For this problem, all
data can be generated offline and the network can be trained
offline before being implemented online. This is desireable
so behavior can be verified before deployment.

First, the image data is generated by creating a forest size
equal to the size of the images, which is 16x16 trees. Fig-
ure 4 shows what each image represents: a small subsection
of the entire forest. Then, the fire ignition point is set to
one of nine different locations spread across the forest, and
the simulator is run until the fire self extinguishes (since no
control is used). At each time step, the state of the forest is
saved as an image to be used for training. Figure 5 shows
the different ignition points used. Different random num-
ber generator seeds were used to deterministically generate
different wildfire spreading patterns. Roughly 5,000 images
were generated for training.

Next, positions of the ignition point and the nearest agent
were generated by first randomly sampling one of eight di-
rection vectors, denoted v. Then, a distance t was ran-
domly sampled, and a position p was calculated as p “ tv.
Roughly 5,000 of these positions were generated for both
the ignition point and the nearest agent point (the same
number as the number of images generated). The blue vec-
tors in Figure 5 denote the direction vectors used to generate
the position data.

Finally, Figure 6 shows a complete set of data that would
be generated by an individual agent and provided to the
CNN online to produce a set of waypoints.

3



Figure 4: Top: snapshot of forest wildfire simulation, or-
ange box denotes example location of agent observation.
Bottom: example observation given to an agent.

Figure 5: Illustration of method that generates the dataset.
The red squares denote different points where the simulated
fire is started to create different spreading patterns for the
CNN to generalize from. The blue vectors denote direc-
tions used to generate the sensor data (e.g. nearest agent
position).

3.1. Training

The major benefit of the problem formulation previously
described is that the training is very similar to a supervised
learning problem. The loss function is used in place of la-
bels to quantitatively judge the performance of the CNN
output. The loss function therefore must be differentiable.
As a result, simple gradient descent can be used to train

Figure 6: Example of a complete dataset that would be cre-
ated by an agent. White lines denote the direction of the
ignition point (solid) and the nearest agent (dashed) – the
lines are scaled to be the same length, and the true distance
values are given in the legend. Blue star denotes the agent
position, which is assumed to be the center of the sampled
image.

the CNN. This is in contrast to an unsupervised learning
problem formulation, which would involve trying to learn
a good approximation of the value function. Of course, the
requirement of a strictly differentiable loss function may be
restrictive, whereas the reinforcement learning task simply
requires a reward value to be specified.

4. Results
4.1. Baselines

Four methods have been implemented as a baseline on
a grid size of 25x25 and a varying number of agents, and
the results are shown in Figure 7. The performance metric
is given in Equation 2 and is calculated over many different
simulation runs and then averaged.

Fraction Burned “
number of burned trees
total number of trees

(2)

First, without any treatment, on average 95% of the for-
est burns down which provides an upper bound for the
methods.

Two methods use a centralized agent that gathers infor-
mation and then computes an action. The “random fires”
method simply randomly chooses fires to treat; the number
of treated trees is limited by the number of agents. The “pri-
ority” method chooses to treat fires in order of how many
healthy trees they neighbor. The “priority” method per-
forms better than the “random” method for a fewer number
of agents, but the results equalize once there are an over-
whelming number of agents.

The last two methods use a decentralized scheme. The
“decentral+weight” method has each agent compute a
Voronoi partition of the space (see [1] for details regarding

4



Voronoi partitions), and then treat the area with the high-
est density of fires. The “decentral+priority” method again
computes a Voronoi partition, and then has each agent pri-
oritize fires in each cell by the number of healthy neighbors.
As expected, the decentralized methods do not perform as
well initially compared to the centralized methods, as each
agent has less information available to compute a solution.
However, all solutions asymptotically tend to the same per-
formance given enough agents to overwhelm the wildfire.

The results of the convolutional neural network approach
will be compared to these baseline methods. Note that a rel-
atively small grid size of 25x25 was used as these methods
scale poorly with both domain size and number of agents.
This is something that the network approach is expected to
address.

Figure 7: Performance of several baseline methods

4.2. Tuning the Loss Function

The loss function (Equation 1) was created by mathe-
matically describing features of the waypoints and their re-
lation to the environment. However, the relative importance
of these features is unclear, so each is weighted by a hy-
perparameter which was then tuned to achieve good per-
formance. An example of how the total loss decreased for
a given set of weights is shown in Figure 8. In order to
gain insight into which features in the loss function were
contributing the most to the loss, an additional visualization
was used which shows the contribution from each of the
terms in the loss function as a function of training iteration
(see Figure 9). Many combinations of weights were eval-
uated, and throughout this process several trends became
apparent.

The first step in tuning the loss function was to verify that
each term correctly led to the desired behavior. To test this,
all weights except one were set to zero. It was expected
that the first term should draw the robot towards the igni-
tion location, the second term should repel the agent from
its neighbors, and so on. This process revealed that the third

Figure 8: Plot of evolution of loss

Figure 9: Contribution of each term in the loss function ver-
sus training iteration. The values in the legend correspond
to the hyperparameter value used for each term.

term in the loss function, the one corresponding to the area
covered by the path, performed as it should but would be a
poor indicator of path value. In some scenarios the agent
is far from the fire and the best path is for it to move in a
straight line, resulting in a very small area (e.g. if the agent
moves solely in the x direction, then ∆y is zero). How-
ever, any path where the agent should move in both x and y
results in a non-zero area. Due to this realization, the corre-
sponding weight term λ3 was set to zero. All other terms in
the loss function performed as expected in isolation.

Another lesson learned while tuning these hyper param-
eters was that the “attraction” of the initial fire had to be
carefully balanced with the penalty on path length. This
term was important because if agents are initialized over all
healthy trees they should fly towards the only location that
is known to have been on fire – the ignition point. How-
ever, the path regularization term needed to be significant
enough to prevent the agent from making unrealistically
large jumps. When these terms were not balanced well, the

5



agent would not move towards the ignition point, even if it
was only observing healthy trees. Logic could have been
added so that if the agent doesn’t see any burning trees than
it should move in the direction of the ignition point, but this
additional layer of control was deemed to violate the goal of
training a single CNN as a controller. A hybrid controller
approach is being considered for for the future work on this
project.

4.3. Hyperparameter Values

Training was performed by sampling mini-batches of im-
age data and ignition point and nearest agent data and then
using backpropagation to update the weights. The batch
size used was 500. The Adam update rule was used with a
learning rate of 10´4 and a weight decay (l2 regularization
strength of weights) of 10´2. Stochastic gradient decent
is the naive approach, and Adam improves on this by in-
corporating momentum along with a smoothed version of
gradient (via a running average). The default coefficients
for computing the running averages of the gradient and its
square were used (0.9 and 0.999, respectively). The Py-
Torch library was used to perform the training on a GPU
which greatly reduced training time.

A large batch size was used to expose the CNN to many
different data combinations. Considering the low dimen-
sionality of the input data, not many training iterations were
required to find a local minima. The regularization was in-
cluded to avoid producing waypoints with large values.

The final hyperparameter values for the loss function are
given below. The values were chosen after many iterations
of choosing weights, training the CNN, and then qualita-
tively judging the performance of the waypoints on various
test data cases.

λ1 “ 0.1, λ2 “ 1, λ3 “ 0, λ4 “ 0.5, λ5 “ 10´4

4.4. Single Agent Results

Figure 10 shows four examples of inputs given to the
CNN and the corresponding waypoints chosen. The exam-
ples qualitatively show that the agent is balancing all of the
objectives: the agent moves toward the fires, does not make
long paths, and tries to move closer to the ignition point
and further from the nearest agent (these positions are not
plotted). When the CNN is provided with an image of all
healthy trees, the agent moves to ward the ignition point. It
is also clear that the agent will struggle with areas that have
a lot of fires. However, if the agents are able to treat separate
boundary areas of the overall wildfire, then this cooperation
should overcome the deficits of a single agent.

4.5. Multi-agent Results

While the behavior of the individual robots was appro-
priate, the collective behavior of the system was disappoint-
ing. Figure 11 shows a sequence of states of a simulation

Figure 10: CNN output in various configurations for single
agent scenarios

with 6 robots that initially surround a fire. Iterations 1 - 7
show the robots converging on the fire, which is the desired
behavior. Unfortunately the agents are unable to realize that
the best approach to putting out the whole fire is to divide
and conquer, instead clumping together in a small area. As
the fire spreads, this clump moves along with it and contin-
ues to extinguish fires, but the lack of cooperation dooms
the effort as shown by iteration 50. Qualitatively, the agents
merge and start to act as a single agent.

Figure 12 shows the quantitative results of the CNN con-
trol compared to the baseline approaches. These poor re-
sults are likely due to our clump of agents “chasing the
fire,” i.e. putting out unimportant fires that would eventually
burn themselves out, instead of treating the wildfire front
(the burning trees that are most likely to spread to healthy
trees). It is clear that the agents are not able to cooperate ef-
fectively, as they probably required more information from
other agents in order to create better cooperative paths.

After being unable to achieve cooperation between the
agents, visualizations of the weights were generated to try
to gain insight into the behavior of the CNN. However, the
visualizations (which can be found in Appendix B) did not
have any clear interpretation.

5. Conclusions

In this project several variations of loss functions were
explore with the aim of training a convolutional neural net-
work to enable agents to cooperatively fight fires. The re-

6



Figure 11: Evolution of multi-agent simulation over time.
The dashed lines denote the path created by each agent after
interpolating between the waypoints. The white triangles
denote the new position of each agent after executing the
complete path.

sults of the simulation show successful training of agents to
move to and treat fires. The ability to cooperate with nearby
agents was less successful.

In testing of various loss function weights and formula-
tions, it became clear that certain features had a tendency
to dominate the agent behavior. As might be expected, the
agents were strongly compelled to travel to the trees that
were burning. In order for the other objectives to be met,
the weights on penalizing the path length and closeness of
the nearest neighbor had to be set larger by two orders of
magnitude.

Despite tuning these hyperparameters to encourage
meeting multiple objectives, the data was not rich enough
for the agents to make nuanced decisions – if the agent

Figure 12: Results of EELFFF algorithm compared to base-
line methods

learned to go toward the fire it would do so regardless of
the other agents position or actions. Each component of the
loss function was tested individually to ensure proper be-
havior, but when combined one or two objectives always
dominated (usually the fire coverage objective and the path
length objective).

6. Future Work
Future work will focus on optimizing the balance be-

tween the cooperation, scalability, and complexity of the
system. It is strongly desirable for agents to only rely on in-
formation they can directly sense, but if needed this require-
ment can be relaxed to include information transmitted by
their nearest neighbors. More sources of data that are ex-
pected to assist the CNN in learning to cooperate include
the locations of more agents, these agents planned trajecto-
ries, and potentially information about the closest burning
tree.

It may also be necessary to modify the network architec-
ture if more information is added. More nonlinear layers
and a deeper network overall could help in capturing some
of the subtleties that are missed by the current network.

Another possibility for future direction is to add a higher
level of logic that can direct the robot in simple cases and
save the neural network for when there are more complex
choices to be made. For example, when there are no burning
trees in view, the agent could head directly to the ignition
point.

Finally, it is possible to cast this problem in a Reinforce-
ment Learning framework, which may alleviate some is-
sues with evaluating the performance of an agent’s actions.
Instead, the agent could make discrete actions in the do-
main and have a reward provided to it. Multi-agent deep
Q-learning is being considered as another possible problem
formulation.

7



A. Loss Function
A more rigorous definition of the loss function follows.

The output of the CNN is denoted as q P R2k where k is
the number of waypoints generated. Decompose q as q “
“

qx qy
‰T

with qx, qy P Rk. The sub-vectors qx and qy
describe the x and y coordinates of each waypoint. The
loss function can be written as the sum of five functions:

Lossi “λ1ffirepq, pf q ` λ2fagentpq, pjq ` λ3fareapqq`

` λ4fpath lengthpqq ` λ5fcover firepq, pfiresq

The first function ffire encourages the agent to approach
the ignition point pf P R2 based on the last waypoint on the
path.

ffirepq, pf q “ ‖
“

qx,k qy,k
‰T
´ pf‖2

The second function fagent penalizes a path that ap-
proaches the nearest agent position pj P R2. A small pos-
itive constant is used to prevent numerical issues. If the
waypoints were to lie exactly at the position pj then the loss
for this term would be very high. This term affects all way-
points, but with a increasing cost for each waypoint. This
emphasizes the desire that the agents should not end their
path close to another agent.

fagentpq, pjq “
k
ÿ

i“1

i{k

‖
“

qx,i qy,i
‰T
´ pj‖2 ` 10´4

The third function farea encourages a path that covers
a large area by constructing a rectangular bounding box
around the waypoints. Larger bounding box areas can be
penalized or encouraged depending on the sign of the hy-
perparameter λ3.

fareapqq “ pmax qx ´min qxqpmax qy ´min qyq

The fourth function fpath length penalizes long paths. A
path is constructed from the waypoints by a simple linear
interpolation. The local origin for each agent is assumed to
be the position px, yq “ p0, 0q.

fpath lengthpqq “‖
“

qx,1 qy,1
‰T ‖2 ` . . .

`

k
ÿ

i“2

‖
“

qx,i qy,i
‰T
´
“

qx,i´1 qy,i´1

‰T ‖2

Finally, the fifth function fcover firepq, pfiresq encourages an
agent to use the waypoints to move close to trees on fire.
The positions of these fires in an image frame are given as
pfires P Rmˆ2 where m denotes the number of fires present.
For a given input image, there are three possible scenarios.
First, if there are no fires (m “ 0), then the loss is zero.

fcover firepq, pfiresq “ 0 if no fires

Second, if there are less fires than waypoints (m ď k), then
the loss is based on the first m waypoints.

fcover firepq, pfiresq “

m
ÿ

i“1

‖
“

qx,i qy,i
‰T
´
“

pfires,x,i pfires,y,i
‰T ‖1

Third, if there are more fires than waypoints m ą k, then
intermediate points are created along the path, using linear
interpolation, to match to the fire positions. Specifically,
m{pk ´ 1q points are added per pair of waypoints. The
vector q̃ P Rm contains these new interpolated points as
well as the original waypoints.

fcover firepq, pfiresq “

m
ÿ

i“1

‖
“

q̃x,i q̃y,i
‰T
´
“

pfires,x,i pfires,y,i
‰T ‖1

B. Network Visualizations
Figures 13 and 14 depict visualizations of the first and

second layer weights3. Unfortunately, there are no clear pat-
terns to suggest what could be done to improve this part of
the network.

Figure 13: Visualization of weights of first convolution filter
layer

Figure 14: Visualization of weights of second convolution
filter layer

3The code to visualize the network weights was adapted from code
provided for CS231N Assignment 1

8



References
[1] F. Aurenhammer. Voronoi diagrams – a survey of a fun-

damental geometric data structure. ACM Comput. Surv.,
23(3):345–405, Sept. 1991.

[2] D. W. Casbeer, R. W. Beard, T. W. McLain, S.-M. Li, and
R. K. Mehra. Forest fire monitoring with multiple small uavs.
In Proceedings of the 2005, American Control Conference,
2005., pages 3530–3535 vol. 5, June 2005.

[3] Y. F. Chen, M. Liu, and H. J. P. Everett, Michael. Decen-
tralized non-communicating multiagent collision avoidance
with deep reinforcement learning. IEEE, 2017.

[4] J. M. de Dios, B. Arrue, A. Ollero, L. Merino, and F. Gmez-
Rodrguez. Computer vision techniques for forest fire percep-
tion. Image and Vision Computing, 26(4):550 – 562, 2008.

[5] K. A. Ghamry, M. A. Kamel, and Y. Zhang. Cooperative
forest monitoring and fire detection using a team of uavs-
ugvs. In 2016 International Conference on Unmanned Air-
craft Systems (ICUAS), pages 1206–1211, June 2016.

[6] M. Kumar, K. Cohen, and B. HomChaudhuri. Cooperative
control of multiple uninhabited aerial vehicles for monitor-
ing and fighting wildfires. Journal of Aerospace Computing,
Information, and Communication, 8(1):1–16, 2011.

[7] L. Merino, F. Caballero, J. R. Martı́nez-de Dios, J. Ferruz,
and A. Ollero. A cooperative perception system for multi-
ple uavs: Application to automatic detection of forest fires.
Journal of Field Robotics, 23(3-4):165–184, 2006.

[8] L. Merino, F. Caballero, J. R. Martı́nez-de Dios, I. Maza, and
A. Ollero. An unmanned aircraft system for automatic forest
fire monitoring and measurement. Journal of Intelligent &
Robotic Systems, 65(1):533–548, 2012.

[9] C. Phan and H. H. Liu. A cooperative uav/ugv platform
for wildfire detection and fighting. In System Simulation
and Scientific Computing, 2008. ICSC 2008. Asia Simu-
lation Conference-7th International Conference on, pages
494–498. IEEE, 2008.

[10] G. D. Richards. An elliptical growth model of forest fire
fronts and its numerical solution. International Journal for
Numerical Methods in Engineering, 30(6):1163–1179, 1990.

[11] R. C. Rothermel. A mathematical model for predicting fire
spread in wildland fuels. 1972.

[12] A. Somanath, S. Karaman, and K. Youcef-Toumi. Control-
ling stochastic growth processes on lattices: Wildfire man-
agement with robotic fire extinguishers. In 53rd IEEE Con-
ference on Decision and Control, pages 1432–1437, Dec
2014.

[13] D. Stipaničev, M. Štula, D. Krstinić, L. Šerić, T. Jakovčević,
and M. Bugarić. Advanced automatic wildfire surveillance
and monitoring network. In 6th International Conference
on Forest Fire Research, Coimbra, Portugal.(Ed. D. Viegas),
2010.

[14] P. Sujit, D. Kingston, and R. Beard. Cooperative forest fire
monitoring using multiple uavs. In Decision and Control,
2007 46th IEEE Conference on, pages 4875–4880. IEEE,
2007.

[15] D. Twidwell, C. R. Allen, C. Detweiler, J. Higgins, C. Laney,
and S. Elbaum. Smokey comes of age: unmanned aerial

systems for fire management. Frontiers in Ecology and the
Environment, 14(6):333–339, 2016.

9


