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Abstract

Robust navigation in uncertain, cluttered environments
is one of the major unsolved technical challenges in
robotics. Many recent advances in navigation have come
from applying empirically justified techniques (e.g. neu-
ral networks or complex vision systems) which work well
but rarely provide robustness guarantees. The goal of this
project is to use a neural network to accurately predict and
track the error rate of the pose estimate of Google Tango
on a quadcopter in the Autonomous Systems Laboratory.
We compare our approach to a baseline method that pre-
dicts error rate using classical machine learning techniques
on features extracted by standard image processing algo-
rithms. We also analyze the performance of three differ-
ent network architectures: Deep RNN, CNN-RNN and Deep
CNN, and demonstrate that a deep CNN works best for our
problem with a normalized RMSE with respect to nominal
of 0.983 and a correlation of 0.504.

1. Introduction
Robotic navigation increasingly relies on complex vision

systems such as the Google Tango which are presented to
practitioners as a black box. Generating robust motion plans
for use with these systems requires knowledge of the reli-
ability of such systems, which the current state of the art
does not provide. The objective of this project is to design
and test a network which predicts the error rate of such vi-
sion systems for use by mid-level path planners which ac-
count for safety (e.g. [12]). The inputs available to our
network are the IMU data (accelerations) and images from
the Tango. The ground truth from a VICON motion capture
system is used to calculate the pose error rate, which serve
as the labels for our inputs. Several networks are trained to
predict the error rate for a new image.
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1.1. Related Work

1.1.1 Motivating Work

Our work is directly motivated by Ichter et al. ’s work [12].
This work implements a robust motion planning algorithm
that attempts to minimize path cost, as well as adhere to
a constraint on perception quality. The approach used in-
volves 1) building a graph through the state space corre-
sponding to possible trajectories, 2) computing a heuristic
for perception quality, 3) performing multi-objective search
subject to a constraint on the heuristic value, and 4) verify-
ing the motion plan in a Monte Carlo fashion. The percep-
tion heuristic used in this paper involved counting the num-
ber of hand-chosen features in view and checking whether
this meets a certain threshold. We propose to learn a model
mapping image sequences and IMU data to estimates of per-
ception quality in order to create a more precise indicator of
perception quality and therefore path safety.

1.1.2 Correcting odometry errors

Correction of odometry errors using neural networks has
been a recent subject of interest for researchers in robotics.
The authors of [22] discuss calibration of such errors us-
ing a two layer feed-forward neural network with Bayesian
regularization. The inputs to the network were Generalized
Linear Model (GLM) estimates and the targets were the ac-
tual positions of the mobile robot. They compare their Arti-
ficial Neural Network approach with traditional localization
modules and demonstrate a significant improvement in per-
formance. The authors of [16] discuss similar objectives,
but compare a Radial Basis Function neural network trained
to predict the position of a robot to Kalman filter estimates
of the same.

1.1.3 Localization

On the subject of localization, [3] describes a modular
MultiLayer Perceptron algorithm for robot pose estima-
tion in a general indoor environment using SONAR sen-
sor measurements as training data. The work in [5] de-
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scribes W-LAN based localization system that is based on
a discriminant-adaptive neural network (DANN) architec-
ture. Useful client position information is extracted among
access points (APs) and fed into the discriminative compo-
nents (DCs) of the network, which ranks different positions
by information quantity. The DCs are then used to recur-
sively update the weights of the network and a pose esti-
mate is learnt. [8] explores global self-localization as an
optical character recognition problem of an indoor room.
They experiment with Kohonen and Region Feature Neural
Networks (RFNN), which are known to perform association
tasks well. All of works cited in 1.1.2 and 1.1.3 demonstrate
better performance with neural networks than with classical
filtering systems, thus motivating the use of neural networks
in odometry and localization systems, which are two prob-
lems very closely related to our problem.

1.1.4 Filtering approaches

Filtering-based approaches such as those described in [7]
have been used for decades to estimate pose and statistical
uncertainty using inertial data such as acceleration. Incor-
porating vision into such systems, as described in [2], where
information from accelerometers and gyroscopes is com-
bined with monocular camera images to derive the pose and
velocity of an Unmanned Aerial Vehicle, is a more recent
development. [2] uses a non-linear complimentary filter
for estimation, but endorses the concept of concatenating
image features and IMU data. There has also been a sig-
nificant body of work focused on identifying and matching
hand-defined features from frame to frame in sequences of
images [7] in order to feed optical flow estimates into filter-
ing algorithms. A drawback of these methods is that they
can require careful calibration and are therefore not robust.

1.1.5 CNNS for human body pose

CNNs are widely used for human pose estimation, as de-
scribed in [21] and [20]. In [21], they use a seven layer con-
volutional Deep Neural Network (DNN) to predict a pose
vector by minimizing the L2 distance between true and pre-
dicted pose vectors. What is interesting is that they train
a cascade of pose regressors, i.e. a linear regression layer
on top of the last layer of each convolutional block of the
network, to capture finer details of the human joint move-
ment. An alternate method is described in [15], where re-
gression and detection tasks are trained simultaneously, and
their performances are comparable. In [20], they introduce
a unifed network consisting of a ConvNet Part-Detector and
a Markof Random Field (MRF) inspired spatial model to
detect human body pose and demonstrate higher accuracy
than existing architectures. The work in [1] explores com-
bining a pre-trained CNN (as a fixed feature extractor) and

continuity filters to recognize geographical places from im-
ages. In particular, they first create a confusion matrix from
the CNN features to depict place match hypotheses, and ap-
ply a spatial continuity check and a sequential filter that
captures the motion between two images to compute the
strongest place match hypothesis. The idea of capturing in-
formation between two images motivates the use of optical
flow techniques in our project.

1.1.6 CNNS for optical flow

In the area of using neural networks for optical flow extrac-
tion, which we believe to be highly relevant to pose estima-
tion, Fischer et al. [6] demonstrate that it is possible to beat
model-based optical flow approaches and blended matching
and variational approaches using a CNN trained end-to-end
on both 1) several stacked image frames, and 2) two suc-
cessive frames convolved together. Their network architec-
ture provides a useful reference for designing our network,
and provides confidence that end-to-end approaches can be
successful for these types of estimation problems. In [14],
an interesting motion extraction method is presented where
they detect ”synchronicity” across stereo frames, unlike tra-
ditional optical flow extraction methods.

1.1.7 CNN + RNN for pose

Finally, Clark, Wang et al [4] train a recurrent, convolu-
tional neural net end-to-end for visual-inertial odometry.
This approach concatenates IMU information from a re-
current network setup, and images processed using con-
volutional filters and a correlational map between succes-
sive frames in order to achieve performance on-par with an
EKF that incorporates optical flow information. This model
learns to predict pose – which is very similar to our goal of
predicting pose error rate. For this reason, we use similar
architechtures for our project.

2. Problem Statement and Approach
The network seeks to learn a transform from an input

sequence of N images and inertial data to a sequence of N
error rates for the pose estimate:

E : {(R640×480,R9)1:N} → {(R1)1:N} (1)

This particular combination of inputs and outputs is mo-
tivated by the Tango itself. The Tango performs localiza-
tion using inertial data, image data, and a map of the room.
Therefore, we hypothesized that error rates could be learned
from this input information as well.

Additionally, we were inspired by the success of [4].
This work describes a successful approach to sequence-to-
sequence visual-inertial odometry learning. The goal is to
predict the pose of a robot based on a sequence of images
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and inertial measurements. The network architecture pro-
posed in [4] is shown in Figure 1. A CNN is used to process
the image sequence, and an RNN is used to process the pose
data. The two are fused by concatenating the feature vec-
tors and passing it through an LSTM layer. A convolutional
and recurrent architecture which works on raw images also
makes intuitive sense for our problem, as it should be able to
capture the fine features, time dependent nature of the error
rate changes, and the dynamics of the Tango estimator.

The deep convolutional architecture used in [4] follows
the trend of success of deep convolutional networks in im-
age classification competitions such as Imagenet. ResNet, a
winner of the 2015 ILSVRC challenge, has 152 layers [10].
For this reason, we also explore using deep convolutional
nets for our problem. Although our problem involves re-
gression and not classification, we believe that the powerful
generalization ability of a deep network could provide good
predictions.

2.1. Experimental Setup

Our data comes from the experimental setup developed
by Benoit Landry, Brian Ichter, Ed Schmerling, and Prof.
Pavone of the Autonomous Systems Laboratory (described
in detail in their paper, [12]). The testbed is equipped with
a VICON system, which uses eight infrared cameras to esti-
mate the pose of special reflective markers. Several markers
were placed on a quadcopter and its position relative to the
starting point recorded using the Robot Operating System
(ROS). The quadcopter was also equipped with a Google
Tango. The Tango does not give access to any quality met-
rics such as covariance estimates. The position estimate and
image data from the Tango was also recorded using ROS.
The quadcopter was put through several trajectories around
the testbed. White sheets were hung in the testbed room in
order to purposefully provide feature-poor localization ar-
eas.

Figure 2. Example dataset. X,Y & Z position estimated by VI-
CON system (green) and by Google Tango - unaligned (orange)
and aligned (blue).

2.2. Data Pre-Processing

Our dataset consists of 15,998 images and 67,964 iner-
tial and position messages. Figure 2.1 shows a sample of
position estimates. The reference frame of the Tango data
was aligned to the reference frame of the VICON system by
performing a least squares fit, as described by [17], over the
entire sequence of data.

The aligned position data from the Vicon and the Tango
was used to compute an error signal, with each time stamp
having an x,y, and z error. The norm of the error was com-
puted for each time stamp, and a finite-difference was taken
in order to produce the “label” for each image: the rate of
change of the magnitude of the error.

We experimented with several pre-processing schemes
for the image data. These pre-processing steps included:

• Subtracting the mean and normalizing

• Downsampling from 640 x 480 to 64x48

• Computing dense optical flow

• Cropping the image to 64x48, centered

• centering IMU streams

3. Experiments/Results/Discussion
3.1. Metrics

Given N test images, we denote yi as the true label for
image i, ŷi as the predicted label, and xi as the ith input data
which is either an image, IMU, or concatenation of the two,
depending on the setting. We also denote the mean label as
µ and the mean prediction as µ̂, and standard deviations of
the label and prediction as σ and σ̂, respectively.

We use several metrics to evaluate the quality of a pre-
diction. The root-mean squared error,

RMSE(y, ŷ) =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (2)

measures the power of the error signal and is a common
metric for comparing two signals. The relative RMSE,

RMSErel(y, ŷ) =
RMSE(y, ŷ)

RMSE(y,~0)
(3)

gives the ratio of the root-mean squared error relative to a
zero-prediction. This can be interpreted as the inverse of the
signal-to-noise ratio. One weakness of the RMSE is that it
does not necessarily reflect how similar the shape of two
signals is, and so we also compute the correlation:

1

σσ̂

N∑
n=1

|(yn − µ)(ŷn − µ̂)| (4)
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Figure 1. Network architecture from [4].

Input
640x480 Images

640x480 Opt. Flow
9DoF IMU

IMU + 64x48 Cropped Opt. Flow
64x48 Downsampled Opt. Flow

Architecture
SqueezeNet

ResNet
Single CNN + Deep LSTM

Single CNN + LSTM
SqueezeNet +LSTM

Output
Error Rate Magnitude

Discretized Error Rate Magnitude
Figure 3. List of inputs, architectures, and outputs used

In the discrete prediction setting, where we discretize the
error rates into a finite number of bins, we also consider
classification accuracy:

1

N

N∑
n=1

1{yn = ŷn} (5)

3.2. Traditional Baseline

3.2.1 Features

MATLAB’s Computer Vision System Toolbox was used to
extract features from the images. Three main types of fea-
tures were extracted:

• Local Binary Patterns: LBPs capture local textural in-
formation. A set of 8 neighbors was selected from a
circularly symmetric pattern of radius 1 around each
pixel to compute their correlations.

• BRISK Features: Since corners play a major role in
position estimation and hence the error rate, BRISK,
or Binary Robust Invariant Scalable Keypoints were
extracted using the BRISK algorithm in MATLAB. An
example of the feature is presented in 4.

• Harris Corner Detectors: This uses the Harris Stephens

Figure 4. Example Harris Cor-
ner Detections

Figure 5. Example BRISK Fea-
tures

algorithm [9] to detect corners in an image. An exam-
ple of the feature is presented in 5.

As a baseline, the non-linear regression module from
Statics and Machine Learning Toolbox in MATLAB was
used as a preliminary model for prediction. The metric
used for accuracy measurement was the Root Mean Squared
Error (RMSE), which is defined by equation 2. The first
step was to experiment with different non-linear regres-
sion models to conclude with the best model for testing.
The various models used were: Linear Regression (model
contains an intercept and linear terms for each predictor),
Quadratic Regression (model contains an intercept, linear
terms, and squared terms), Non-Linear Regression (SVM
regression for high dimensional data, commonly used for
images), Stepwise Linear Regression, SVM for Regression
and Gaussian Process Regression (GPR).

A comparison of the different methods is given in Fig 7.
Clearly, SVM for regression outperforms all other models,
hence this was used to perform predictions and set the final
error on the test set. An interesting observation was that
the error shot up for the Gaussian regression model, which
suggests that a Gaussian distribution may not represent the
data very well.

The predicted measurements were overlaid against the
ground truth to visualize the performance of the model. The
label used was the average error rate in x, y, and z directions.
Fig. 6 shows that the SVM predictor does a decent job in
retaining the overall shape of the ground truth. The RMSE
relative to nominal over the test data was 6.356, meaning
the classifier does not perform well according to this metric.
The correlation obtained was 0.0279, hence the model does
not qualitatively capture the error signal properties as well.
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Figure 6. Comparison between true and predicted error rate

Thus, we turn to CNNs and RNNs to accurately learn
and predict these error rates.

Figure 7. Comparison between different regression techniques

3.3. Recurrent Models

As a second baseline, we use a recursive network with
sequences of IMU data as input, sequences of error rate as
output, and with RMSE cost. To capture the image data we
added an additional input dimension for the Frobenius norm
of the optical flow. The best recursive model we trained
gave a relative RMSE of 1.05 and a correlation 0.002, which
means that it essentially performs as well as predicting zero
at every time step. This is not terribly surprising because
it does not utilize much image data, whereas the Google
Tango relies primarily on image input.

Figure 8. Squeezenet Architechture [11]

3.4. Convolutional Models

Next we considered purely convolutional models which
do not take IMU or position data as inputs, but only im-
ages or dense flows computed using OpenCV. We did lim-
ited training using the full 640x480 images (or flows), as
these images quickly filled the available GPU memory and
took excessive training time.

We pose the problem as a classification problem by dis-
cretizing the error rates into levels that were selected in or-
der to balance the number of training datapoints in each
level. We trained our networks using a softmax classifier
with entropic loss with anywhere from 3 to 128 levels of
discretization. The architectures we tried were a single layer
network, SqueezeNet [11] [18] , and ResNet [10] [19].

The SqueezeNet architecture (see Fig. 8) with 16 lev-
els is the only network which we were able to train to give
non-trivial results. The Squeezenet architechture features
Fire modules which involves “squeeze” layers (1x1 convo-
lutions) and “expand” layers. This structure was designed
to maximize accuracy and minimize the number of param-
eters needed, as a 1x1 convolutional filter has many fewer
parameters than a 3x3 filter.

We used a learning rate of 0.0002 with a decay of 0.98
applied every 300 iterations and batch size 1024. Low res-
olution (64x48) flows were fed into the network. After
30,000 training iterations, the network achieved a training
accuracy of 0.511, and validation accuracy of 0.09 (which is
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Figure 9. Comparison of predicted cumulative error (blue) versus
actual error (yellow) over a 10s window of validation data.

Figure 10. Left: Accuracy versus training iteration for training
(blue, mean shown in read), nominal (green) and validation (yel-
low). Right: Typical learning curve for SqueezeNet on our prob-
lem. Note the sharp decrease in loss after 8000 training iterations.
This long training time makes it difficult to work with large input
images.

47% better than random guessing). The normalized RMSE
with respect to nominal is 0.983 and correlation is 0.504.
Figure 9 shows the predicted sequence versus the ground
truth for the first 10 seconds of validation data (i.e. this ex-
ample was not cherry picked).

3.5. Hybrid Models

We also considered hybrid CNN and RNN approaches
inspired by the VINet architecture. We tried a network
with a single convolutional layer and three LSTM layers,

as well as the activations of SqueezeNet fed into an LSTM.
We found that the hybrid networks were difficult to train,
even when we loaded pre-trained weights to the squeezenet
portion of the network. The best results had low correlation.

3.5.1 Single CNN + Multilayer LSTM

This model used a single 2D convolutional layer to perform
feature extraction on the image inputs. 640x480 flows cen-
ter cropped to 64x48 were fed into the model. A dense layer
was used to extract features from the IMU data. The two
feature vectors were concatenated together and passed to a
three-layer LSTM, each layer with a hidden state size of
512 neurons, and which processed 10 timesteps of data at
time. The LSTM outputs were passed into a dense layer
to produce scores for 100 discretized bins. The model was
implemented in Keras [13].

The model was trained using the raw error rates, and then
a locally weighted average was applied to the predictions
and the true labels in order to calculate the signal statistics.

The resulting predictions have very low correlation of
0.029, but the RMSE was 0.0042 with a RMSE over nom-
inal of 1.66. While the validation accuracy for the dis-
cretized data was 0.012, the within-one-neighboring-bin ac-
curacy was 0.038. Our problem is a regression problem, not
truly a classification problem, meaning that this within-one
accuracy metric may better reflect the performance of the
model.

3.5.2 SqueezeNet + LSTM

Inspired by VINet, we built a network which passes op-
tical flows through SqueezeNet, then passes the concate-
nated vector of SqueezeNet activations and IMU data to an
LSTM. When the network weights were trained from ini-
tialization, we were not able to find a set of hyperparame-
ters that yielded better results than the nominal zero predic-
tions (the best network had correlation 0.005 and relative
RMSE 1.001). Since the SqueezeNet portion of the net-
work took a much smaller learning rate to train (0.0002)
versus the RNN portion (0.01) in our earlier experiments,
we tried pre-trained weights for the squeezenet portion of
the network but without improvements.

4. Conclusions and Future work
The model that yielded the best reqults was SqueezeNet.

With this model, we obtained statistically significant pre-
dictions with correlation 0.504. Qualitatively, the signals
output by the network are often the right ”shape” over
small time horizons, as illustrated in Figure 9 from 5700 to
5800. The network also predicts approximately correct dis-
turbance locations, as seen in figure 11. However what the
network does not do well is predict the correct magnitude

6



at the correct time - for the sample shown in Figure 11, the
predicted error bursts tend to be after the ground truth error
bursts. Quantitatively, our best network does significantly
better than the baselines, as shown by the high correlation
between the predicted and actual error rates.

Our best network appears to overfit, since it classifies
with 50% accuracy over the training set but only 9% accu-
racy on the validation set. Misclassification does not nec-
essarily mean that the prediction is bad, since adjacent bins
have relatively similar prediction values, but this discrep-
ancy is significantly higher than it should be. We did not
use dropout or other regularization techniques because they
slow convergence time and our training time was already
excessive.

The most difficult issues that we dealt with were 1) se-
lecting a learning rate which led to good performance, and
2) batching the data in a way that let the network learn the
appropriate time dependent relationship between the input
and outputs.

Finding a good learning rate is difficult because the net-
work takes a long time to start learning, as shown in Figure
10, where the loss does not decrease until 8000 training it-
erations. This is further exasperated by the high variance in
the loss curve, which makes automated approaches to iden-
tify good learning rates difficult.

Batching the data is a challenge due to the inherent cor-
relation in our data gathering process. Ideally training sam-
ples would be independent and identically distributed, but
in practice they correspond to maneuvers such as ‘turning’,
‘slowing down’, and so on, which have significant effects on
the error rate. Selecting batches in such a way that the net-
work can learn these maneuvers is something which should
be considered in future work.

Future work should also use higher resolution input data.
We were unable to train a stable network using high resolu-
tion images for the experiments described here, so low res-
olution flows were used. Additionally, in our experiments
cropping high resolution data was not effective. We hy-
pothesize that using another method that first incorporates
high resolution features, and then preserves high resolution
features from early activation layers, may significantly im-
prove results.
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