
Indoor Target-driven Visual Navigation Using Imitation Learning

Xin Zheng
Stanford University

xzheng3@stanford.edu

Yu Guo
Stanford University

yuguo68@stanford.edu

Abstract

We investigate visual navigation in a virtual house-
hold environment using imitation learning, where the robot
learns the expert’s policy to navigate to given targets. For
targets whose expert’s policy is known to the robot, our
model achieves great performance on navigating to those
targets from randomly chosen starting states. Taking both
the current state observation and the target as input, our
model is able to generalize to new targets without retrain-
ing. We also implement DAGGER (Dataset Aggregation)
and safeDAGGER, and compare their performance to the
base imitation learning model. We find that DAGGER can
bring robot’s and expert’s trajectory distributions closer
and safeDAGGER can dramatically reduce queries to the
expert. However, we also observe that DAGGER does not
generalize well to new tasks, which needs to be addressed
in future work.

1. Introduction
Robots play significant roles in improving people’s lives.

Some home robots have already been used to make domes-
tic life easier, such as robot vacuum clearer. However, for
robots to complete more complicated task, e.g. grasping a
cup of coffee from kitchen, a good capability of indoor nav-
igation is necessary for a robot to successfully move to the
target. Inspired by this requirement, in our project, we focus
on the problem of navigating a robot to find a given target in
common household environments using only visual inputs.

In our setup, a robot searches for a given target in an en-
vironment consisting of 3D scenes. The visual observation
data we will use for action and reaction in environments is
from The House Of inteRactions (AI2-THOR) framework
[1], which provides an environment with high-quality 3D
scenes and a physics engine. Our scene set is composed of
20 scenes belonging to 4 common scene types in a house-
hold environment: kitchen, living room, bedroom, and bath-
room (Fig. 1). The robot’s action space includes four ac-
tions: moving forward, moving backward, turning left, and
turning right. Upon every action, the robot will observe a

new current state image, as illustrated in Fig. 1. At each
time step, taking the target image and the current state im-
age as input, the robot decides which action to take to reach
the target (Fig. 2).

Figure 1. Dataset: 20 scenes belong to 4 common scene types,
kitchen, living room, bedroom, and bathroom; Action Space:
moving forward, moving backward, turning left, and turning right.

Figure 2. The goal of our model is to navigate towards a visual tar-
get with a minimum number of steps. Our model takes the current
state image and target image as the input and outputs a sequence
of actions taken by robot to reach the target.

In this work, we use imitation learning [2, 3] to train
our action policy. The base imitation learning model can
have difficulty dealing with states that the agent never ex-
periences before. The DAGGER model [4] aims to im-
prove upon base imitation learning by letting a primary pol-
icy collect training examples referring to expert policy si-
multaneously. In our setting, it can bring robots and ex-
perts trajectory distributions closer by labeling additional
data points resulting from applying the current policy. In
DAGGER, every states experienced when applying the cur-

1

rent policy need to be labeled, so it can be very expensive.
The safeDAGGER model [5] aims to ease this problem by
designing a safe policy that determines whether to query
the expert or not. Here we implement both DAGGER and
safeDAGGER, and compare their performance to the base
model.

The metric of our results will be the average trajectory
length for the robot to navigate from a random starting state
to the target in a scene. The best possible performance is
provided by the shortest path came with each scene. We
evaluate our method for the following tasks: (1) Navigate to
trained targets, where the goal is to navigate from random
starting states to targets that have been used during train-
ing within a scene. (2) Navigate to new targets, where the
goal is to navigate to targets that have not been used during
training within a scene.

The structure of our report is as following: In Section 2
we review the background and related work on indoor nav-
igation. In Section 3 we present our imitation learning net-
work architecture and DAGGER models. In Section 4 we
discuss and analyze our results. We conclude and point out
future work in Section 5.

2. Background/Related work
The mathematical description of visual navigation task is

as following: Let o(s) denote an observation for state s. The
policy is specified as a parametrized function πθ(a|o(s))
mapping observations to a probability over actions, where
πθ(a|o(s)) can be generated with neural network with θ de-
noting the weights. The goal is to achieve the optimal policy
π∗ to navigate the agent to the target.

There exists multiple approaches for visual navigation.
In general, the approaches can be generalized into two dif-
ferent categories: (1) mapping, which decomposing the
navigation task into two stages: mapping the environ-
ment and generating the path through constructed map (e.g.
[6, 7, 8, 9, 10, 11, 12]). For example, in [12], the main
architecture contains a mapper to integrate first-person im-
ages into a top-down 2D representation of the environment,
follows by a planner which outputs the actions to take. The
planner in [12] is based on value iteration networks(VIN)
proposed by [13]. VIN model[13] provides a novel dif-
ferentiable approximation of the value-iteration algorithm,
which can be represented as a convolutional neural network
(CNN), and trained end-to-end using standard back propa-
gation. It has been shown that such a model leads to better
generalization in a diverse set of tasks [13]. (2) mapless,
which does not need a prior map of the environment. (e.g.
[1, 14, 15, 16]). The research most directly relevant to our
work is the work of Zhu et al. [1], which also study first-
person view target-driven visual navigation. The implemen-
tation in [1] uses a deep reinforcement learning model that
takes as input an RGB image of the current observation and

another RGB image of the target. The output of the model
is an action. Zhu et al. also parallelize the training pro-
cess using a method similar to actor-critic (A3C) algorithm
[17] but with each thread running with a different naviga-
tion target. Our approach is based on [1] but using imitation
learning instead of reinforcement learning.

3. Approach

Figure 3. ResNet architecture to extract 2048-d features from each
observation image, taken from [18]

3.1. Dataset

We use [hdf5](http://www.h5py.org/) dumps of the sim-
ulated scenes [1]. Each dump contains the agent’s first-
person observations sampled from a discrete grid in four
cardinal directions. To be more specific, each dump stores
the following information :

• observation: 300x400x3 RGB image (agent’s first-
person view)

• ResNet feature: 2048-d extracted feature of the obser-
vations

• location: (x, y) coordinates of the sampled scene loca-
tions on a discrete grid with 0.5-meter offset

• rotation: agent’s rotation in one of the four cardinal
directions, 0, 90, 180, and 270 degrees

• graph: a state-action transition graph. e.g. graph[i][j]
is the location id of the destination by taking action j
in location i.

• shortest path distance: a square matrix of shortest path
distance (in number of steps) between pairwise loca-
tions, where -1 means two states are unreachable from
each other.

2

In simulation, we choose the targets based on their ap-
pearance in the RGB images. We use ResNet to extract fea-
tures from these RGB images. The architecture of ResNet
is shown in Fig. 3. We do imitation learning by cloning the
behavior of shortest path. The shortest path contains a se-
quence of state observations and corresponding optimal ac-
tions (o1, a1, ..., oN , aN) to move an agent from its current
location to a target in the least steps. We recover the short-
est path between pairwise locations using ‘shortest path dis-
tance’ information as listed above. At each step on the
shortest path ok, the ‘shortest path distance’ from current
location to the target is denoted as dist(ok). We can recover
the action taken by the agent at step k through searching in
the action space, looking for the action ak that can lead to
the next location o(k+1) with dist(ok+1) = dist(ok)− 1,
where dist(ok+1) is the shortest path distance from next lo-
cation to the target. We repeat this process until target is
reached. The sequence of actions (a1, a2, ..., aN) forms a
shortest path.

3.2. Network Architecture

Figure 4. Our network architecture consists of generic layers and
scene-specific layers; The numbers in parentheses show the output
dimensions.

Our network consists of two parts as in Fig. 4: the first
part is generic siamese layers where targets across all the
scenes share; The second part is scene-specific layers which
are used to capture the special characteristics of each scene.
The inputs to the networks are two images representing
the agent’s current state and the target respectively. Two-
streams of weight-shared siamese layers are used to trans-
form the two images into the same embedding space. To
be more detailed, the bottom part of the siamese layers are
ResNet-50[19] (Fig. 3)which are pretrained and frozen dur-
ing our network training. The outputs of ResNet-50 are two
8192-d vectors which are both projected into a 512-d em-
bedding space, where they are fused and projected to a 512-

d joint representation. The second part of the network use
two fully-connected layers to transform the 512-d joint rep-
resentation into a 4 policy output and a single value output.
The two fully-connected layers are unique to each scene.
We minimize the cross entropy loss between our predicted
policy and the shortest path labeling using stochastic gradi-
ent descent method.

3.3. DAGGER (Dataset Aggregation)

Result: best π∗ on validation
Initialize D0 and π1;
for i← 1 to N do

Step1: train policy πθ(at|ot) from human data
Dπ∗ = (o1, a1, ..., oN , aN);

Step2: run policy πθ(at|ot) to get observations
Dπ = (o1, ..., oM);

Step3: ask human to label dataset Dπ with optimal
actions at;

Step4: Aggregate Dπ∗ ← Dπ∗ ∪Dπ;
end

Algorithm 1: DAGGER Algorithm [4]

DAGGER[4] fine-tunes the policy trained with the imita-
tion learning. With the policy trained with imitation learn-
ing as the initial policy, in each iteration of DAGGER, the
robot follows the current policy and undergo a path, which
might be different from the shortest path. For each step on
this path, we label the state with the optimal action given
by shortest path. As a result, we get a new dataset of state-
action pairs. This new dataset is aggregated with the previ-
ous dataset. This aggregated dataset is then used to retrain
the policy. The algorithm of Dagger is shown in Algorithm
1. Note that here we choose the βi parameter in the DAG-
GER model to be βi = Indicator(i = 1).

3.4. safeDAGGER

In DAGGER, we need to label every state that the robot
undergoes under the current primary policy in each itera-
tion. This is very expensive and sometimes impossible be-
cause the the human labeling might not be available in a tim-
ing manner. To make DAGGER more efficient in terms of
querying the expert, we also implement safe DAGGER [5].
The basic idea of safe DAGGER is to construct a safe policy
that determines whether an action by the robot is safe or not
without querying the expert, along with the primary policy
that determines which action the robot should take. Also, in
safeDagger, a so called safe strategy [5] is used when run-
ning the current policy based on the safe policy. For a pre-
dicted move by the primary policy, if the safe policy predicts
that it is safe, then we go with the primary policy, otherwise
we query the export policy and take the expert’s move. The
algorithm of safeDagger is is shown in Algorithm 2. In

3

Result: πM and πsafe,M
Initialize D0 using a reference policy π∗;
Initialize Dsafe using a reference policy π∗;
π0 = argminπlsupervised(π, π

∗, D0);
πsafe,0 =
argminπsafe

lsafe(πsafe, π0, π
∗, Dsafe ∪D0);

for i← 1 to M do
Step1: Collect D′ using the safety strategy using
πi−1 and πsafe,i−1;

Step2: Subset selection:Di ← {φ(s) ∈
D′|πsafe,i−1(πi−1, φ(s)) = 0)} ;

Step3: Di ← Di−1 ∪D′;
Step4: πi = argminπlsupervised(π, π

∗, Di);
Step5: πsafe,i =
argminπsafe

lsafe(πsafe, πi, π
∗, Dsafe ∪Di);

end
Algorithm 2: SafeDAgger Algorithm [5]

our implementation, we use the 512-d scene specific layer
as the input and a network with one fully connected layer to
train the safe policy.

4. Experiment

Figure 5. Representative Success Case for our model: Topview of
the living room scene, with the model-predicted paths and shortest
paths between random start and target.

All our models are implemented in Tensorflow [20] and
trained on an NVIDIA Tesla K80 GPU. We train our model
on two sets of scenes. The first one contains 4 scenes in
total, coming from 4 different environments, with 5 targets
in each scene. The larger set contains in total 10 scenes(3
scenes for bedroom, 3 scenes for bathroom, 3 scenes for liv-
ing room and 1 scene for kitchen), with 8 targets in each
scene. During training, we randomly choose 50 starting
states for each target and collect the shortest path of each

Figure 6. Representative Failure Case for our model: Topview
of the kitchen scene with the model-predicted paths and shortest
paths between random start and target.

Bed. Bath. Living Kitchen
imitation learning
success rate 0.80 0.93 0.90 0.96
avg. shortest length 13.04 6.58 12.78 17.60
avg. predicted length 76.76 37.57 67.68 33.92
avg. successful length 22.11 18.82 40.91 21.86
DAGGER (1)
success rate 0.89 0.96 0.88 0.93
avg. shortest length 12.90 6.47 14.10 17.67
avg. predicted length 45.34 19.94 51.04 41.23
avg. successful length 14.93 9.28 18.16 21.75
DAGGER (2)
success rate 0.98 0.98 0.92 0.92
avg. shortest length 12.44 6.76 13.59 17.71
avg. predicted length 20.98 15.29 37.38 41.56
avg. successful length 15.29 9.48 15.58 20.10

Table 1. Navigation Results for a small scene set with 4 scenes and
5 targets for each scene. Here all the paths get cut off at 300 steps.
success rate: the portion of success cases; avg. shortest length: av-
erage shortest length between pairwise starting points and targets;
avg. predicted length: average path length predicted by our model;
avg. successful length: average path length in success cases pre-
dicted by our model. The numbers in parentheses represent the
numbers of iteration in DAGGER.
.

starting state and target pair to form the training dataset.
Our goal is to navigate the robot from the current loca-

tion to the target. For testing, we report the performance as
the number of steps it takes to reach a target from a random
starting point. Here we set a maximum number of steps(e.g.
200 steps) for the agent to reach target, since in our experi-
ment either the robot reaches the target quickly or it cannot
reach the target. We consider the navigation as successful

4

if the agent can reach the target within maximum number
of steps, and failure otherwise. For each target, we ran-
domly generate 50 starting points to evaluate the model per-
formance and compute the average statistics. We compare
our model with the shortest path.

4.1. Test on trained targets

Here we evaluate our model on the trained targets, where
the goal is to navigate from random starting states to targets
that have been used during training within a scene. Note that
although we test on the targets that are used for training, the
starting states for test are chosen purely randomly, so they
are different from the starting states for training.

We first show some qualitative results. Fig. 5 and Fig. 6
visualizes representative success and failure cases for our
model, respectively, where we simplify our environment to
a 2D grid and the black regions denote where the robot
does not have access to. In the success case, the agent is
able to figure out actions to take and reach the target image.
Fig. 5 shows that the path taken by the agent in success case
can be different from the given shortest path. In the fail-
ure case(Fig. 6), the agent cannot reach the target from the
starting state. It collides into the wall and stays there until
reaching the maximum steps.

We now present the quantitative results on the smaller
scene set with 4 scenes and 5 targets in each scene, as shown
in Table 1. Firstly, the baseline, i.e., imitation learning
without DAGGER already achieves reasonably good per-
formance, with success rate all above 80% for the 4 scenes.
However, the average length of successful path are much
larger than the shortest path. For example, in the living
room scene, the average length of successful path is about 3
times of the average short path length. Yet with DAGGER,
we observe that not only the success rate approves, but also
the average length of successful length is much closer to
shortest path length. The latter observation makes sense
because DAGGER collects more optimal state-action pairs
during training. If the robot deviates from the shortest path,
the extra data points collected by DAGGER will bring it
closer to the optimal path.

We also show the results on the larger scene set with 10
scenes and 8 targets in each scene in Table 2. Here again, all
models achieve great performance in terms of success rate.
Also, with DAGGER, the predicted path for robot to reach
the targets is closer to shortest path than the basic imitation
model. However, the improvement is not as prominent as
the case with the smaller scene set.

4.2. DAGGER VS safeDAGGER

The results presented in Table 2 do not suggest much
difference between DAGGER and safeDAGGER. The main
purpose of safeDAGGER is to reduce the number of queries
that the robot makes to the expert on the optimal action cor-

Bed. Bath. Living Kitchen
imitation learning
success rate 0.90 0.97 0.82 0.80
avg. shortest length 10.82 7.25 16.31 17.45
avg. predicted length 37.19 15.58 55.95 66.34
avg. successful length 18.76 9.55 24.69 32.92
DAGGER (1)
success rate 0.95 0.96 0.82 0.78
avg. shortest length 10.87 7.11 15.36 16.02
avg. predicted length 23.35 18.41 53.83 59.82
avg. successful length 13.40 9.85 21.02 19.12
DAGGER (2)
success rate 0.94 0.93 0.84 0.87
avg. shortest length 10.71 7.23 15.98 15.45
avg. predicted length 30.10 24.31 49.64 43.37
avg. successful length 19.58 10.41 20.64 19.97
safeDAGGER (1)
success rate 0.93 0.88 0.78 0.84
avg. shortest length 10.84 7.08 15.58 16.21
avg. predicted length 26.88 34.45 59.00 48.88
avg. successful length 14.52 11.88 20.00 20.10
safeDAGGER (2)
success rate 0.95 0.95 0.88 0.91
avg. shortest length 11.05 7.23 16.21 17.27
avg. predicted length 22.70 17.98 42.37 38.92
avg. successful length 13.69 9.40 19.85 22.99

Table 2. Navigation Results for a larger scene set with 10 scenes
and 8 targets for each scene. Here all the paths get cut off at 200
steps. success rate: the portion of success cases; avg. shortest
length: average shortest length between pairwise starting points
and targets; avg. predicted length: average path length predicted
by our model; avg. successful length: average path length in suc-
cess cases predicted by our model. The numbers in parentheses
represent the numbers of iteration.

Model DA 1 DA 2 sDA 1 sDA 2
Total queries 69915 114898 3478 14212

Table 3. Total number of queries made during training for DAG-
GER with iteration 1 (DA 1), DAGGER with iteration 2 (DA 2),
safeDAGGER with iteration 1 (sDA 1), and safeDAGGER with
iteration 1 (sDA 1).

responding to shortest path in our case. To see the effects
of the safe policy implemented in safeDAGGER, we record
the total number of queries during training for DAGGER
and safeDAGGER with iteration number of 1 and 2 in Ta-
ble 3. The results demonstrate that, in our implementation,
with the same iteration number, the total number of queries
of safeDAGGER is about one order of magnitude less than
that of DAGGER, which proves the principle of safeDAG-
GER.

4.3. New target generalization

In addition to navigating the robots from a random start-
ing point to the targets used during training, our model is
also capable of generalization across targets, which means it

5

Distance 1 2 4 8
imitation learning
success rate 0.49 0.18 0.17 0.07
avg. shortest length 11.03 11.49 11.32 14.60
avg. predicted length 119.13 174.98 174.98 189.58
avg. successful length 33.94 60.21 55.36 57.95
DAGGER (1)
success rate 0.31 0.07 0.06 0.01
avg. shortest length 10.90 11.62 11.64 14.83
avg. predicted length 143.62 189.85 190.85 197.63
avg. successful length 19.88 50.80 38.09 22.31

Table 4. Navigation Results for new targets with 1, 2, 4 and 8 steps
from the nearest trained targets. Here all the paths get cut off at
200 steps.

Figure 7. Target generalization performance of imitation learning
and DAgger with iteration 1. The four bars in each group indicate
the impact of distance between the new targets and nearest trained
targets on generalization performance.

can navigate to targets that have not been used during train-
ing within a scene. To test our model’s generalization abil-
ity, for each scene in the larger scene set with 10 scenes,
we compare the success rate of navigation to new targets
with 1, 2, 4 and 8 steps from the nearest trained targets.
The results are summarized in Table 4. First, the success
rate decreases as the distance to the nearest trained target
increases(Fig. 7), which is expected because at longer dis-
tance, the features of images can be very different. Second,
the successful path length is much larger than shortest path
length, which suggests that for new targets, the robot do
much more exploration than that for trained targets. Third,
the performance with DAGGER is worse than that of basic
imitation learning(Fig. 7), which is possibly caused by ex-
cessive training on the trained targets. In DAGGER, much
more data points are collected for training, so the model is
trained specifically and extensively for the chosen targets.
Therefore, it is harder to generalize to new targets.

5. Conclusion
In this report, we investigate indoor target-driven naviga-

tion with imitation learning. We also implement the DAG-
GER and safeDAGGER model. We evaluate our model on
both trained targets and new targets. On trained targets, our
models achieve great performance in terms of success rate,
which is the ratio of successful tasks to total navigation
tasks. We also show that both DAGGER and safeDAG-
GER model, by collecting new data points and fine tun-
ing the model, achieve better results than the base model,
in the sense that the predicted path is closer to the ground
truth shortest path. On the other hand, for new targets that
are close to trained targets, we observe that the DAGGER
model generalizes worse than the base imitation learning
model. We also show that the performance of our model de-
grades as the new targets are further from the nearest trained
targets.

For future work, we plan to tackle the problem that DAG-
GER model does not generalize well to new targets. We can
also investigate other model structures such as deep rein-
forcement learning or generalize value iteration network to
high dimensional inputs.

Acknowledgement
We sincerely thank Yuke Zhu for helpful advice and

providing the data framework for this project. We
also refer to Yuke’s code on the network and envi-
ronment setup on https://github.com/yukezhu?
tab=repositories.

References
[1] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Ab-

hinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven vi-
sual navigation in indoor scenes using deep reinforcement
learning. arXiv preprint arXiv:1609.05143, 2016.

[2] Brenna D Argall, Sonia Chernova, Manuela Veloso, and
Brett Browning. A survey of robot learning from demon-
stration. Robotics and autonomous systems, 57(5):469–483,
2009.

[3] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
page 1. ACM, 2004.

[4] Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction to
no-regret online learning. In AISTATS, volume 1, page 6,
2011.

[5] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation
learning for end-to-end simulated driving. 2017.

[6] Kurt Konolige, James Bowman, JD Chen, Patrick Mihelich,
Michael Calonder, Vincent Lepetit, and Pascal Fua. View-
based maps. The International Journal of Robotics Research,
29(8):941–957, 2010.

6

https://github.com/yukezhu?tab=repositories
https://github.com/yukezhu?tab=repositories

[7] Feras Dayoub, Timothy Morris, Ben Upcroft, and Peter
Corke. Vision-only autonomous navigation using topomet-
ric maps. In Intelligent robots and systems (IROS), 2013
IEEE/RSJ international conference on, pages 1923–1929.
IEEE, 2013.

[8] Robert Sim and James J Little. Autonomous vision-
based exploration and mapping using hybrid maps and rao-
blackwellised particle filters. In Intelligent Robots and Sys-
tems, 2006 IEEE/RSJ International Conference on, pages
2082–2089. IEEE, 2006.

[9] David Wooden. A guide to vision-based map building. IEEE
Robotics & Automation Magazine, 13(2):94–98, 2006.

[10] Andrew J Davison. Real-time simultaneous localisation and
mapping with a single camera. In ICCV, volume 3, pages
1403–1410, 2003.

[11] Masahiro Tomono. 3-d object map building using dense ob-
ject models with sift-based recognition features. In Intelli-
gent Robots and Systems, 2006 IEEE/RSJ International Con-
ference on, pages 1885–1890. IEEE, 2006.

[12] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-
thankar, and Jitendra Malik. Cognitive mapping and plan-
ning for visual navigation. arXiv preprint arXiv:1702.03920,
2017.

[13] Aviv Tamar, Sergey Levine, Pieter Abbeel, Yi Wu, and Gar-
rett Thomas. Value iteration networks. In Advances in Neural
Information Processing Systems, pages 2146–2154, 2016.

[14] H Haddad, Maher Khatib, Simon Lacroix, and Raja Chatila.
Reactive navigation in outdoor environments using potential
fields. In Robotics and Automation, 1998. Proceedings. 1998
IEEE International Conference on, volume 2, pages 1232–
1237. IEEE, 1998.

[15] Anthony Remazeilles, François Chaumette, and Patrick
Gros. Robot motion control from a visual memory. In
Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, volume 5, pages
4695–4700. IEEE, 2004.

[16] Avik De, Karl S Bayer, and Daniel E Koditschek. Active
sensing for dynamic, non-holonomic, robust visual servo-
ing. In Robotics and Automation (ICRA), 2014 IEEE Inter-
national Conference on, pages 6192–6198. IEEE, 2014.

[17] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International Conference on Ma-
chine Learning, pages 1928–1937, 2016.

[18] Fei-Fei Li, Justin Johnson, and Serena Yeung. Cs231n. Stan-
ford University, 2017.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[20] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467, 2016.

7

