
NeuralKart: A Real-Time Mario Kart 64 AI
https://github.com/rameshvarun/NeuralKart

Harrison Ho
Stanford University
h2o@stanford.edu

Varun Ramesh
stanford University

vramesh2@stanford.edu

Eduardo Torres Montaño
Stanford University

torresm9@stanford.edu

Abstract

We developed a real-time Mario Kart 64 autopilot
which trains and plays without human intervention. Our
model has two main components. First, an omniscient
search AI with complete control of the emulator simulates
different possible actions and generates a training set
associating screenshots with a steering angle. Second, a
convolutional neural network (CNN) trains on the resulting
dataset. Finally, to increase our ability to recover from
errors, we randomly sample states from the CNN during
real-time play and run the search AI from those states
to augment the dataset. The resulting autopilot bot is
independently able to recognize road features and correct
over- and under-steering while playing Mario Kart 64.
Videos of the autopilot playing in real-time are available at
https://www.youtube.com/playlist?list=
PLSHD7WB3aI6Ks04Z7kS_UskyG_uY02EzY .

1. Introduction

The popular kart racing game Mario Kart 64 presents
an opportunity to develop real-time autopilot controllers in
a simplified scenario that resembles real autonomous driv-
ing. As an Nintendo 64 video game, tools exist to examine
and manipulate machine state, which allows us to generate
large datasets rapidly. At the same time, Mario Kart intro-
duces unique challenges – racers must navigate hazards and
jumps, as well as use items effectively. We wanted to de-
velop an real-time autopilot that could complete races and
avoid hazards, while only looking at an image of the screen.

To simplify the problem, we constrain the autopilot to
constantly hold accelerate, as Mario Kart races can be eas-
ily completed without braking. We also ignore the ability
to drift as well as use items. With these constraints, the au-
topilot simply needs to return a steering value for a given
screenshot of the game.

Because we only take the screen as input, we need to
extract features that can tell us about the terrain and haz-

ards in front of the kart. However, there is a wide variety
of terrain textures across the different tracks in Mario Kart,
and trying to hard-code feature extractors is infeasible. By
using deep learning, specifically CNNs, we can automati-
cally learn feature extraction while training our model end-
to-end.

Our problem lies at the intersection between three
fields of research: real-time deep learning controllers, au-
tonomous driving, and game-playing. Thus we combine the
research in each of these fields to develop an approach that
yields competitive performance on Mario Kart tracks.

2. Background / Related Work

2.1. Imitation Learning

Real-time deep learning controllers are often trained us-
ing imitation learning. In imitation learning, an expert is
recorded performing the task, and observations and result-
ing actions are recorded at each time-step. A neural net-
work is then trained using these recordings as a dataset,
thus learning to “imitate” the expert. The potential for imi-
tation learning and neural networks in applications such as
robotics has been noted since the late 1990s [17].

However, imitation learning controllers suffer from a
fundamental distribution mismatch problem. In practical
terms, experts are often too good, and rarely find them-
selves in error states from which they must recover. Thus,
the controller never learns to correct itself or recover, and
small errors in prediction accumulate over time. Ross, et.
al introduce the DAGGER (dataset aggregation) algorithm
which resolves this issue [16]. After initially training a
weak model from human input, they run the controller and
sample observations from the resulting trajectories. Then,
a human manually labels the sampled observations. The
dataset is then augmented with the new human-labeled data
and the model is retrained. The resulting model performs
well on games such as Super Mario Bros. and Super Tux
Kart, a 3D racing game similar to Mario Kart.

1

https://github.com/rameshvarun/NeuralKart
https://www.youtube.com/playlist?list=PLSHD7WB3aI6Ks04Z7kS_UskyG_uY02EzY
https://www.youtube.com/playlist?list=PLSHD7WB3aI6Ks04Z7kS_UskyG_uY02EzY


2.2. Reinforcement Learning

Deep learning controllers can also be trained using re-
inforcement learning. Unlike imitation learning, reinforce-
ment learning requires no human input at all. Instead, the
AI repeatedly tries to execute runs, some of which will be
more successful than others. The AI then modifies the net-
work to make successful runs more likely.

Much of the deep reinforcement learning literature has
been evaluated in the Arcade Learning Environment (ALE),
which provides emulated versions of many Atari games [6].
The ALE also provides reward functions for the games,
which is a requirement for deep learning.

Several deep reinforcement learning algorithms have
been introduced. Deep Q Networks (DQN) were developed
to play in the ALE [14], resulting in human-level perfor-
mance. DQNs are regressions which learn to map an obser-
vation to expected rewards for each available action. The
controller runs the DQN and selects the actions with the
highest expected value. Newer techniques include deep de-
terministic policy gradients, which learn to map an obser-
vation directly to an action, and can thus operate over con-
tinuous action spaces [13].

By contrast to imitation learning, which is a form of su-
pervised learning, reinforcement learning methods are more
complicated and take longer to converge. However, they
sidestep the distribution mismatch problem, as the AI only
ever trains on data that was generated by the AI itself.

2.3. Game Playing

As mentioned above, Mnih et. al first applied deep learn-
ing to play Atari games in real-time [14]. Guo et. al sig-
nificantly improve upon the DQN results, developing the
best real-time Atari game player to date [11]. They first
create a planning-based agent that can read memory and
simulate many possibilities. This agent receives far higher
scores than the DQN agent, although it cannot run in real-
time. They then train a CNN model to imitate the actions
proposed by the search-based agent. The new CNN model
performs worse than the planning agent, but better than the
DQN agent. Our approach is fundamentally based off of the
strategy used in this paper, where we train a CNN to imitate
our own offline search agent. Guo et. al also use a form of
DAGGER to resolve issues with imitation learning. Finally,
CNNs and imitation learning have been applied to other in-
teractive video games such as Super Smash Bros [8].

2.4. Autonomous Vehicles

The earliest application of neural networks to au-
tonomous vehicles, from 1989, is ALVINN, where a three-
layer fully connected network was trained to map road im-
ages to recorded steering data [15]. Since then, companies
and universities, such as Google and Stanford, have pursued
autonomous driving systems [4] [12]. These systems often

aggregate over a multitude of features to predict optimal tra-
jectories.

In 2016, Researchers at NVIDIA designed an modern
end-to-end system for training self-driving cars using CNNs
[7]. For the training set, they collected 72 hours of driving
data in different weather conditions, associating images col-
lected from a front-facing camera with the steering angle. In
addition, they augment the dataset with shifts and rotations
to inform the network how to recover from poor positions or
orientations, and train a CNN on the resulting dataset. Their
model performs well and is able to drive autonomously ap-
proximately 98% of the time on a normal drive. The CNN
architecture used in our autopilot is a slightly modified ver-
sion of the architecture first introduced in this paper.

2.5. Mario Kart 64

The NEAT algorithm (Neural Evolution of Augmenting
Topologies) has previously been applied to Mario Kart 64
[2], and the resulting model is able to use advanced tech-
niques such as drifting and using items at opportune times.
However, it ”cheats” by reading game registers during real-
time play, information not directly accessible by human
players. Our model differs by only relying on the game
screen during real-time play, but can read game registers
during training. In general, NEAT has only been applied to
shallow networks, and thus is suitable for tasks where fea-
tures have already been extracted [18]. It remains to be seen
if NEAT can be used to evolve CNN architectures, though
some work does exist in that area [9].

Previous work has been done to apply CNNs to Mario
Kart 64. TensorKart learns to map screenshots to human
inputs, and is also able to generalize training data over dif-
ferent track scenarios [3]. It uses the model developed by
the NVIDIA autopilot paper. However, as a pure imitation-
learning system, it cannot recover well from error condi-
tions. In addition, it requires unnatural human play; turns
must be performed gradually for TensorKart’s CNN to learn
properly, and turns which fluctuate in steering angles con-
fuse the AI. Despite these shortcomings, we used the Ten-
sorKart model and training code as a starting point, ulti-
mately eliminating the need for human game-play entirely.

3. Method

3.1. Bizhawk

In order to play Mario Kart races in an automated way,
we take advantage of the Bizhawk emulator. Bizhawk pro-
vides an interface to run Lua scripts while playing Mario
Kart, which allows us to save/load states, play for any num-
ber of frames, access in-game memory locations, and save
screenshots. In addition, we can programmatically deter-
mine which buttons are pressed at any given time.

2



Figure 1. A demonstration of the search process. The search AI
simulates the outcomes of 11 different angles, chooses the angle
yielding the greatest progress, and stores the search root image and
steering angle as a single datapoint.

Figure 2. The bottom graph displays the steering values that the
search AI has chosen up to the current point in time.

3.2. Search AI

The first component of our approach is a search based
AI, which can determine the best steering action to take
from a given game state. The search AI runs offline, using
the Bizhawk emulator to simulate different actions. During
a search, the AI saves its current position as the root state.
It then tries 11 different steering values from this root state
and simulates the results of the gameplay for 30 frames. The
search AI chooses the angle associated with the greatest re-
ward, which simply consists of a weighted sum of the cur-
rent progress (a float between 0 and 3 indicating how much
of a race has been completed) and the current kart speed.
Both of these values can be read using in-game memory ad-
dresses. Finally, the search AI proceeds, using the selected
angle, for 30 frames, and repeats the process using the new
state as the next root state. Figure 1 demonstrates the search
process visually.

To collect data, we save the root state game screen and
the corresponding angle chosen by the search AI. This cre-
ates recordings, as shown in Figure 2. In total, we have
collected 18658 training examples across four tracks, with
a 10% randomly chosen validation split.

3.3. Real-time CNN

The second component of our model is a convolu-
tional neural network. Our network incorporates 5 batch
normalization-2D convolution-ReLU layers, followed by 5
dense layers that end in a regression. It uses an input shape
of 200x66, which means that the input images are resized
before being processed.

Our model is based off of TensorKart’s CNN architec-
ture, which is itself a Keras implementation of NVIDIA’s
autopilot model [7]. Our model modifies the prior CNNs
by including several batch normalization layers, which
we found helped with reducing over-fitting and smoothing
turns taken by the CNN. We train the CNN on the dataset
generated by the search AI, using a euclidean loss. Training
is performed in Keras, using the Tensorflow backend [10]
[5]. The network is trained with an Adam optimizer. At
each epoch, we only save our weights if the validation loss
has decreased.

Each track’s recordings are treated as a separate dataset.
We train the model separately on each track, saving a sepa-
rate weights file. See Section 5.3 for results when we train
on all tracks together.

3.4. DAGGER Algorithm

Because the search AI can see future consequences for
any action, it rarely enters error states, such as when a driver
is slowly drifting off the road and needs to correct course.
As a result, training the CNN on the search AI alone can
yield poor performance; errors in the outputs of the CNN
will compound, and the CNN simply doesn’t know how to
recover.

To resolve this, we use the DAGGER algorithm. We first
run the search AI by itself on the track; the resulting data
is used to initialize the weights of the CNN. Next, we al-
low the CNN to play using its predicted steering angles. We
then randomly pause the CNN and run the search AI from
the current point. We run the search AI for 120 frames and
save image-steering angle pairs; the resulting pairs are used
to augment the dataset with which we retrain the CNN. Ev-
ery time we train, we use the previous weights as an initial-
ization. The interaction between the CNN and search AIs is
demonstrated in figure 3.

The constants we chose for alternating between running
the search AI and the CNN could potentially be tuned fur-
ther. In practice, we found that the search AI was able to
recover from error states within 120 frames (2 seconds),
which gave good examples for escaping such conditions.

3.5. Playing in Real-time

In order to play a game with the CNN AI, we start a TCP
Python server that loads the Keras model. The server has
a simple line-oriented protocol where clients can send re-
quests for predictions and receive floating points in return.

3



Figure 3. The paths that the kart takes using the DAGGER ap-
proach. The blue line shows the path of the CNN AI playing in
real-time. The green lines show the trajectories chosen by the
search AI when started at states randomly sampled from the CNN
AI’s play-through.

Figure 4. Examples of real-time play, with a slider depicting the
output of the network.

Next, a Lua script running in Bizhawk connects to the server
using the LuaSocket library. As fast as it can, the Lua script
takes a screenshot, sends a request to the server, receives the
prediction, and sets the joystick value. For debugging pur-
poses, we draw a slider on the game screen which represents
the chosen steering as output by the network.

All of the networking is done asynchronously, meaning
that the game doesn’t halt while we wait for predictions.
Although the CNN is deterministic, the random variations
in network timing mean that the trajectory taken by the au-
topilot is different every single time.

3.6. Input Remapping

N64 joysticks return signed bytes, which range from
−128 to 127. When originally developing the search AI, we
linearly interpolated our potential angles from this range.
Unfortunately, most of this space is a dead-zone, so many
of the steering choices resulted in identical trajectories. Fur-
thermore, the horizontal displacement of a turn is not linear
w.r.t. the joystick value. This resulted in some trajectories
that were too similar and others that had noticeable gaps in
between. This is undesirable, as the search AI should have
a set of distinct trajectories that uniformly cover the track
in front of the kart. To solve these issues, we came up with
a mapping function J(s) that maps a “steer” input domain
s ∈ [−1, 1] to joystick values, such that gaps between tra-

Figure 5. The horizontal displacement of the player with respect to
the input trajectory is non-linear, and most of the values are taken
up by dead zones. Our input remapping removes the dead-zones
and makes the displacement linear with respect to the input value.

jectories are evenly spaced and there are no repeated trajec-
tories. Figure 5 shows that our input remapping scheme has
a nearly linear relationship with horizontal displacement.

α(s) = (sgn(s)×
√
0.24× |s|+ 0.01 + 1)/2

J(s) = b−128(1− α(s)) + 127α(s)c

During search, we apply J(s) before taking any action in
the emulator; the value that we save in our recording is the
value of s. We train on values of s, and predict values of s,
which changes how our loss function responds to steering
error. While playing the game, we calculate J(s) before we
send any predictions to the emulator.

4. Results
4.1. Quantitative Evaluation

We evaluated our autopilot based on its achieved time in
the single-player time trial mode. For each track, we run
10 races in real-time and calculate the mean race time as
reported by the in-game timer.

We ran our model on four different courses in Mario Kart
64: Luigi’s Raceway, Moo Moo Farm, Choco Mountain,
and Rainbow Road. We chose these courses for two rea-
sons. First, these courses have walls throughout the track;
on some courses without well-defined walls, the model
would drive off road or fall off, slowing training progress.
Second, some courses do not have well-defined progress
waypoints. The search AI relies on game-defined waypoints
to determine progress through the courses. Some waypoints
either do not reflect a track accurately or are placed around
the border of certain tracks, causing the search AI to drive
on a suboptimal trajectory.

For comparison, we had a human test-drive each track
twice: the first time to familiarize with the track, and the

4



Figure 6. Recordings of our AI racing on various tracks are avail-
able at https://www.youtube.com/playlist?list=
PLSHD7WB3aI6Ks04Z7kS_UskyG_uY02EzY.

second time to record their time. The human follows the
same limitations as the AI, and cannot brake, drift, or use
items. The resulting times are displayed in table 1.

Track Autopilot Time (s) Human Time (s)
Moo Moo Farm 97.46 94.07
Luigi’s Raceway 129.09, 1 DNF* 125.30
Choco Mountain 138.37, 2 DNF* 129.50
Rainbow Road 389.18 365.60

Table 1. Achieved track times for the autopilot bot and the human;
the autopilot times have been averaged over 10 runs. *DNF sig-
nifies that the autopilot got stuck and was unable to finish some
number of races.

As seen in the times, the autopilot performs slightly
worse than human players, but still yields competitive per-
formance. The autopilot performs best on Moo Moo Farm
and Luigi’s Raceway, both of which have gentle turns. In
contrast, Choco Mountain and Rainbow Road have sharper
turns, a thinner raceway, and closer walls; navigating these
tracks without accidentally bumping into walls and losing
speed is a challenge for the autopilot.

4.2. Qualitative Evaluation

After inspecting our performance, we found that our AI
on Luigi’s Raceway and Moo Moo Farm was actually sta-
ble to perturbations by an external force. This is shown in
Figure 7, and demonstrates how effectual the DAGGER it-
eration process is.

We also found that the autopilot is capable of making
short, quick adjustments, as opposed to choosing a stable
steering angle for an entire turn. This occurs even though
the CNN uses a regression over the different steering angles,
instead of classification. The steering behavior resembles
how a human would play Mario Kart; instead of choosing
a single continuous angle for an entire turn, human players
often use short quick adjustments. The prior work, Ten-
sorKart, did not observe this behavior.

Figure 7. On Luigi’s Raceway, our AI is stable to perturbations.
Here, an actual joystick is overriding our AI, pushing it to the right.
However, the AI correctly sees that the proper response is to turn
to the left. We don’t observe the same level of stability on every
track.

Figure 8. Our AI is trained in Time-Trial mode, but can still race
in Grand Prix mode. Grand Prix introduces new UI elements, item
boxes, opponents, and hazards like bananas.

Although all of our training was done in Time-Trial
mode, we found that our AI could race quite well on Luigi’s
Raceway and Moo Moo Farm in Grand Prix mode (shown
in Figure 8). This means that the AI is able to ignore the in-
formation added by new elements that appear only in Grand
Prix mode, despite never having seen those elements before.

We examined situations where the autopilot would slow
down. In many cases, the autopilot would slide against
walls or drive on the edge of the road next to sand or grass,
both of which slow down the kart. An example of the latter
is demonstrated in figure 9. We believe this is a result of the
search AI (which is deterministic) not understanding risky
situations that are likely to lead into error states during real-
time play. The CNN then inherits this risky behavior, but is
unable to execute it exactly, thus sliding off the road or into
a wall.

On Choco Mountain, we observe that the AI bumps into
the wall quite frequently while turning, which is the pri-

5

https://www.youtube.com/playlist?list=PLSHD7WB3aI6Ks04Z7kS_UskyG_uY02EzY
https://www.youtube.com/playlist?list=PLSHD7WB3aI6Ks04Z7kS_UskyG_uY02EzY


Figure 9. The autopilot drives halfway on the road and halfway
on the grass. The autopilot often behaves sub-optimally in risky
situations.

Figure 10. On Rainbow Road, the autopilot takes the sharper turns
better than the wide turns.

Figure 11. If the AI finds itself staring at a wall, its not obvious
whether it should turn right or left. The images in the first col-
umn should correspond to a left turn, and the images on the right
column should correspond to a right turn.

mary cause of slowdown on that track. This may be due to
sharp turns on the track, which the model is not equipped to
handle. On Rainbow Road, we observe similar behavior at
several turns. However, we found that the AI actually takes
the sharpest turns on Rainbow Road quite well. In fact, it
tends to bump into the wall only for the wider turns, as seen
in Figure 10. This may be due the sharper turns simply be-
ing more evident in the down-sampled image fed into the
network.

The primary cause of unfinished runs is due to situations

Figure 12. A visualization of the first layer activation functions for
a single input image. Certain features are distinctly emphasized,
such as the sand and the road.

such as those in Figure 11, where the AI finds itself staring
head-on into a wall. Because walls on the left and right-
hand sides of the track often have the same texture, the AI
does not understand its orientation. It often simply outputs
0, thus getting stuck, or picks the wrong direction and starts
to go in reverse (which is detected as an unfinished run).

Our AI is unable to handle situations where it may have
to turn around or drive backwards to recover. When the AI
is turned around, it typically begins to drive the course in
reverse, oblivious that it is making negative progress.

4.3. Network Visualizations

To see what kinds of image features the network was
looking for, we generated activation maps for a selection
of filters from the first convolutional layer, shown in Figure
12. The activation maps suggest that the network is able
to correctly isolate pixels corresponding to the road, walls,
and sand.

We also generated saliency maps and class activation
maps using the Python package keras-vis [1]. Our us-
age is somewhat unusual, as these visualizations are de-
signed to debug classification models, but our model is a

6



Figure 13. Our saliency map suggests that we successfully ignore
the UI and minimap, concentrating attention instead on pixels in
the center. The class activation map is harder to interpret.

regression. Thus, we only visualize images corresponding
to a right turn (positive steer). The saliency and class acti-
vation maps will then reveal the portions of the image that
correspond with an increased output value, thus contribut-
ing to a positive steer. Unfortunately, both visualizations,
shown in Figure 13 are hard to interpret.

The saliency map suggests that a set of pixels clustered
near the center of the image are responsible for the decision
to turn right. This at least implies that the CNN ignores the
UI elements as well as the minimap. The class activation
map is even harder to interpret. The map is split into verti-
cal bands due to the last convolutional layer of our network
outputting 1 × 18 filter activations. Thus, vertical infor-
mation is lost, and our fully-connected layer only operates
across horizontal activations.

5. Experiments
5.1. Image Reflection

In order to generate more training samples and improve
generalization, we attempted to reflect our training im-
ages horizontally, along with the associated steering direc-
tion. We concatenated the normal dataset and the reflected
dataset together and re-trained. We found that our model
stopped taking all turns and continuously outputted steer-
ing values near 0. This suggests that our model may not be
looking at the curvature of the road in order to determine
steering, and may actually be looking at the textures of var-
ious walls and terrains for decision making.

5.2. Classification-based Model

We tested a discrete model where, instead of outputting a
steering value through regression, the CNN would classify
an image into 11 different categories. Each category repre-
sents the 11 possible steering angles that the search AI can
take. We used the same base model, with the only change

being an output of 11 softmax probabilities and a cross en-
tropy loss function.

The resulting model performed worse than the regression
model, and was unable to consistently clear Luigi’s Race-
way. The model was only able to clear 1 out of 10 runs,
with a run time of 310.50 seconds - considerably worse
than the regression model’s average run time of 129.09 sec-
onds. We observed that the AI would make odd, jerky turns
due to the discretized steering angle, and was unable to re-
cover from error states. This may be because misclassifi-
cations are treated equally in the cross-entropy loss, when
some misclasssifications are objectively worse than others
for steering. For example, given that the ground truth steer-
ing angle for a state is −0.4, a prediction of −0.6 is better
than a prediction of 1.0. The regression model better cap-
tures this property.

5.3. Training on All Tracks Together

For the results presented in Table 1, each track has a sep-
arate set of training data and generates a separate weights
file. We concatenated all of our training data into one
dataset and generated a unified weights file for all of the
tracks. The race times of the unified weights are shown in
Table 2.

Track Individual Data (s) All Data (s)
Moo Moo Farm 97.46 97.63
Luigi’s Raceway 129.09, 1 DNF 129.03
Choco Mountain 138.37, 2 DNF 131.93, 3 DNF
Rainbow Road 389.18 396.74, 1 DNF

Table 2. The performance of our model when trained on all of the
data at once, versus keeping a separate dataset and weights file for
each track. DNF signifies that some runs did not finish.

The autopilot performs approximately the same on Moo
Moo Farm and Luigi’s Raceway, performs slightly better on
Choco Mountain, and performs slightly worse on Rainbow
Road. This suggests that we may be overfitting to Choco
Mountain, and that data from other tracks is helping us gen-
eralize. It also suggests that Rainbow Road is not benefiting
from data from other tracks, potentially due to the unusual
setting and textures present on the track.

5.4. Beam Search

Our search AI uses a single depth level, which for sev-
eral tracks is enough to play with human-like performance.
Unfortunately, the search AI cannot complete some tracks
due to difficult turns or misplaced waypoints, which elimi-
nates our ability to train the CNN on that track. To resolve
this, we implemented a beam search, which stores the top k
results for some positive integer k at each time step. This
enabled the search AI to explore multiple time steps in the
future without the full cost of an exhaustive search.

7



Figure 14. From saliency maps, we know that the minimap is
largely ignored by the CNN. However, it contains a rough esti-
mate of position and orientation, and could be used to improve
performance.

By using beam search with DAGGER iteration, we were
able to train our CNN on Mario Raceway, a more difficult
track with sharp turns and few walls. Preliminary evaluation
of the model gave a mean finishing time of 205.38 seconds,
with 6 out of 10 runs finishing. In comparison, a human
player achieved a finishing time of 103.76 seconds. As seen
here, the model required almost twice as much time to finish
the race; more training iterations and tuning of the beam
search is needed to achieve better results.

6. Conclusion
Our results demonstrate that end to end neural sys-

tems can yield good performance as real-time controllers
in games like Mario Kart 64. Imitation learning, which
is easier to implement and converges faster than reinforce-
ment learning, can be adapted to be completely autonomous
through the use of an offline planning agent. DAGGER it-
eration can be done automatically in order to develop con-
troller stability.

7. Future Ideas
As shown in Figure 11, in situations where the AI gets

stuck on walls, the AI often doesn’t know which direction
to turn to get back on course. To fix this, we could use tra-
ditional computer vision techniques to extract the position
and direction of the player’s icon on the minimap, shown
in Figure 14. These values could then be added as inputs to
the dense layers of our network. With the minimap position,
the network may be able to tell the difference between two
areas of a track that are otherwise indistinguishable.

Our CNN only takes a single screenshot at each evalu-
ation step. We could improve this by adding prior frames
to each input, giving our CNN the ability to track features
over time. For example, the model may wish to swerve
more harshly if obstacles are rapidly approaching, or turn
more gently otherwise. This is especially vital in Grand
Prix mode, where items can cause the player to slow down
or speed up in unpredictable ways.

We may also explore button inputs other than simply
steering. In particular, the jump / drift button can yield
large differences in track times, and is vital to high-level
Mario Kart play. However, this would effectively double
our search space.

Reinforcement learning, such as with Deep Q Learning
or Policy Gradients, can reward good performance and pun-
ish error conditions for our model. This may resolve the
behavior described in section 4.2, where the autopilot will
drive near sand, walls, or other hazards. These risky situ-
ations are likely to lead to error conditions; reinforcement
learning can push us towards safer states.

References
[1] Keras visualization toolkit. https://raghakot.

github.io/keras-vis/. Accessed: 2017-06-12.
[2] Mario kart 64 with neural evolution of augmenting topolo-

gies (neat). https://www.youtube.com/watch?v=
tmltm0ZHkHw. Accessed: 2017-05-15.

[3] Tensorkart: self-driving mariokart with tensorflow.
http://kevinhughes.ca/blog/tensor-kart.
Accessed: 2017-05-01.

[4] What we’re driving at. https://
googleblog.blogspot.com/2010/10/
what-were-driving-at.html. Accessed: 2017-06-
12.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling.
The arcade learning environment: An evaluation platform for
general agents. Journal of Artificial Intelligence Research,
47:253–279, 06 2013.

[7] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, et al. End to end learning for self-driving cars.
arXiv preprint arXiv:1604.07316, 2016.

[8] Z. Chen and D. Yi. The game imitation: Deep supervised
convolutional networks for quick video game AI. CoRR,
abs/1702.05663, 2017.

[9] B. Cheung and C. Sable. Hybrid evolution of convolutional
networks. In 2011 10th International Conference on Ma-
chine Learning and Applications and Workshops, volume 1,
pages 293–297, Dec 2011.

[10] F. Chollet et al. Keras. https://github.com/
fchollet/keras, 2015.

[11] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep
learning for real-time atari game play using offline monte-
carlo tree search planning. In Z. Ghahramani, M. Welling,

8

https://raghakot.github.io/keras-vis/
https://raghakot.github.io/keras-vis/
https://www.youtube.com/watch?v=tmltm0ZHkHw
https://www.youtube.com/watch?v=tmltm0ZHkHw
http://kevinhughes.ca/blog/tensor-kart
https://googleblog.blogspot.com/2010/10/what-were-driving-at.html
https://googleblog.blogspot.com/2010/10/what-were-driving-at.html
https://googleblog.blogspot.com/2010/10/what-were-driving-at.html
https://github.com/fchollet/keras
https://github.com/fchollet/keras


C. Cortes, N. D. Lawrence, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems 27,
pages 3338–3346. Curran Associates, Inc., 2014.

[12] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held,
S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt,
M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Wer-
ling, and S. Thrun. Towards fully autonomous driving: sys-
tems and algorithms. In Intelligent Vehicles Symposium (IV),
2011 IEEE, 2011.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra. Continuous control with
deep reinforcement learning. CoRR, abs/1509.02971, 2015.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[15] D. A. Pomerleau. Alvinn, an autonomous land vehicle in a
neural network. Technical report, Carnegie Mellon Univer-
sity, Computer Science Department, 1989.

[16] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imi-
tation learning and structured prediction to no-regret online
learning. In AISTATS, volume 1, page 6, 2011.

[17] S. Schaal. Is imitation learning the route to humanoid robots?
Trends in cognitive sciences, 3(6):233–242, 1999.

[18] K. O. Stanley and R. Miikkulainen. Evolving neural net-
works through augmenting topologies. Evolutionary compu-
tation, 10(2):99–127, 2002.

9


