
Vehicle Motion Detection using CNN

Yaqi Zhang∗

yaqiz@stanford.edu

Billy Wan∗

xwan@stanford.edu

Wenshun Liu∗

wl88@stanford.edu

Abstract

This project describes a series of vehicle motion detec-
tion experiments for front camera video recordings of mov-
ing vehicles gathered from the KITTI dataset [7]. The ex-
periments differ from existing attempts with the leverage of
complex CNN architectures and the derivation and com-
bination of input channels that intend to capture different
aspects of the raw image including flow direction and ob-
ject masks. Both transfer learning and built-from-scratch
models are trained and evaluated. Input channel choice,
fine tuning techniques including down-sampling and hyper-
parameter sweep, and other optimizations and observations
are discussed. Three aspects of vehicle motion - forward ve-
locity, acceleration, and angular velocity - are optimized us-
ing mean-square error loss, with the prediction result con-
solidated and visualized on top of the video frames. Overall,
we achieved 3.536 validation MSE loss and 7.21 test MSE
loss.

1. Introduction

Despite the abundant information collected by cameras
surrounding us, little of it is processed and understood by
machines. This project takes use of real-world recordings
from vehicle front-camera in attempt to predict vehicle mo-
tion properties. Such motion detection tasks are very useful
in analyzing videos pre-recorded by devices like dash cams,
providing knowledge of at-the-time vehicle status, aiding
other downstream tasks such as driver intention inference
when combined with results of other computer vision tasks
like object detection, and can be easily extended to other
moving objects.
The input to our algorithm is different channels of infor-
mation obtained from raw video frames of multiple front-
camera recordings in different environment settings, includ-
ing optical flow retrieved using OpenCVs dense optical flow
library based on Gunnar Farnebacks algorithm [6], bound-
ing boxes of relevant objects (such as cars and pedestrians)
retrieved using Faster-RCNN [22], and the RGB channels

0All authors contributed equally to this work.

of the images themselves. These information are then ag-
gregated in different combinations and fed into a Convo-
lutional Neural Network (CNN) to output 3 most important
properties of vehicle motion for each frame - forward speed,
forward acceleration, and angular velocity that indicates the
direction the vehicle is moving towards.

2. Related Work

While various attempts have been made to detect vehicle
speed from images and videos, most are based on image
processing techniques and have their focus on still cameras
recordings. The relation between vehicle speed and motion
blur in a single image taken by a still camera has been
studied extensively [15, 16], but this method falls short in
terms of accuracy when the speed is low and motion blur
is minimal. The CVS method [20] is a similar approach,
where the combination of saturation and value method is
used for foreground extraction and vehicle speed detection
on images taken by a stationary camera mounted on a
freeway. Other vehicle speed estimation systems using
roadside traffic management cameras on traffic scenes
[5, 19, 23, 25], as well as those requiring reference points
[18] have also been developed, but they are all limited
to still camera images from a third perspective of traffic
scenes. Furthermore, none of the above methods involve
neural networks, which have immense potential due to its
expressiveness and the sheer amount of data available.

The input channels of our models are made possible
by the existence of various object and optical flow detection
techniques -

Object detection Region-based CNN (R-CNN) was a
breakthrough for object detection tasks, with over 30%
improvement in mean average precision (mAP) [9], making
the combination of region proposal generation for object
localization and deep CNN for classification the state-of-
the-art object detection method. Numerous improvements
have since been made to the original method for runtime
optimization, such as SPP-net [10] and Fast-RCNN [8].
Faster-RCNN [22] further improved region proposal
generation by leveraging the power of neural networks

1



with its introduction of Regional Proposal Network (RPN).
Recently, Ashraf et al [3] proposed different enhancements
with shallower networks and upsampled input images.
On the other end of the spectrum, You Only Look Once
(YOLO) [21] and SSD [17] methods aim to tackle object
detection by combining the tasks of generating region
proposals and classifying them into one network. They are
computationally much less expensive but also have lower
accuracies than the R-CNN family of methods, and are
thus more suitable for real-time applications on embedded
devices. For our purposes, accuracy is the most important
metric, so we will use the Faster-RCNN network.

Optical flow detection It has been used extensively
for autonomous driving tasks such as obstacle detection
[14]

3. Dataset and Features
We use the KITTI [7] raw data recordings as our dataset,

which consist of color stereo sequences in various environ-
ment settings (such as city or residential areas) recorded
at 10 Hz with a resolution of 1242 × 375. An exam-
ple image of a video frame is shown in Figure 1. A to-
tal of 3470 frames are obtained and used from 24 record-
ings sampled at the rate of 33%, where frames from the
largest recording (659 frames) is reserved for testing, and
the others are randomly assigned to either training or vali-
dation set with a rough 70%− 30% split. Each frame of the
dataset is labeled with the truth data of the interested motion
properties. Roughly speaking, we have forward speed ∈
[0, 20] m/s, forward acceleration ∈ [−π2 ,

π
2 ] m/s2, and

angular velocity ∈ [−1, 1] rad/s.
The decision to sample the dataset comes from the trade-

off between disk space constrain and estimated performance
gain from consecutive frames. The disk space constrain
comes from the fact that generated optical flow for each
frame is cached to speed up training and remove duplicated
work, and thus occupies considerable amount of disk space.
Consecutive images are expected to contribute little to the
training process as they are overly similar to each other in
terms of color distribution, optical flow movement, and sur-
rounding object presence, and adds additional overhead in
the computation time. As a result, we have decided to sam-
ple every three images as the raw input.

Dense optical flows, object bounding boxes, and image
RGB channels are then obtained from the raw input with
methods detailed in Section 4. The computed optical flows
are of the same dimension as the raw image and have two
channels representing the horizontal and vertical directions
of the flow vector. For the generated object bounding boxes,
a separate binary mask is created for each detected object
class with 1 for pixels locating inside the bounding boxes
and 0 otherwise. The addition of such masks for classes like

Figure 1. Sample KITTI image.

Figure 2. Averaged optical flow with 3 x 11 segments.

vehicle and pedestrian will likely improve prediction result
because their relative speed to the subject vehicle can vary.
For example, the relative speed of a moving car in front of
the camera should be much smaller compare to the ones
parked on the roadside. Lastly, RGB channels are created
to help the model identify regions of the image that share
similar colors (such as the ground).

Such channels of information have the potential issue of
being extremely noisy, as values are gathered at pixel level.
To cope with this issue, we experimented with downsam-
pling the input by slicing the channels multiple numbers of
segments, where for optical flow and RBG, values with each
segment are simply averaged, and for each of the binary ob-
ject masks, each segment is assigned to 1 if more pixels are
part of the bounding box, and 0 otherwise. Figure 2 shows
an example of the averaged optical flow (red arrows) from
the original noisy inputs (green arrows). Detailed analysis
on this downsample experiment is further discussed in Sec-
tion 5.

The channels of inputs are then combined to feed into
the CNN model of interest. As shown in Figure 3, 5 channel
combinations are experimented, with the result discussed in
Section 5. Optical flow is included in most modes of ex-
periment, as it is expected to be the most indicative when it
comes to motion detection. Different combinations of ob-
ject mask and RGB channel are overlayed on top to experi-
ment the effect of different supporting information. We also
experimented with the input of pure RGB channel.

4. Methods
Our optical flow computation leverages the OpenCV

[4] implementation of Gunnar Farnebäck’s two-frame mo-
tion estimation algorithm based on polynomial expansion

2



Figure 3. Input channel combination.

[6], where quadratic polynomials are used to approximate
neighborhoods of consecutive frames and estimate the dis-
placement fields between them. Dense optical flow vectors
of each pixel represent the direction and magnitude of the
pixel’s movement from one frame to the next, and are thus
expected to correlate tightly with the speed of the camera
mounted on the vehicle.

Our object detection process makes use of the Faster-
RCNN [22] algorithm implemented in Tensorflow [2],
which is composed of a deep fully convolutional RPN that
proposes regions of candidate objects, followed by a Fast-
RCNN [8] with VGG-16 [24] detector that performs image
classification on top and outputs class softmax probabilities
and per-class bounding box offsets. Attention mechanisms
are used to point the detector to the appropriate proposed
regions. Based on the object detection results, we construct
binary object masks for the class car.

Given our input data, we implement three different
CNN architectures to output the predicted forward speed,
acceleration, and angular velocity. Figure 4 shows the
baseline 2-layer CNN architecture, which consists of 2x
conv-relu-batch norm-max pooling layers, 2x affine-relu-
batch norm-dropout layers.

Figure 5 shows the architecture of AlexNet used for this
project. This is the same architecture as originally proposed
in [13] and later revised in [12]. The architecture is cho-
sen because it is deeper than but not radically different from
our baseline. We also experiment with transfer learning for
AlexNet, where we initialize the middle convolutional lay-
ers with pre-trained weights [1].

Figure 6 shows the architecture of 17-layer ResNet used
for this project. The core concept of ResNet is that deep
neural networks should at least achieve the same perfor-
mance as shallower networks, so adding the input of each
residual block to the output allows the network to fall back
on its shallower counterpart. Batch normalization is per-
formed between every pair of adjacent convolutional layers,
and down-sampling is performed at the first convolutional
layer of the last three residual blocks by a convolution op-
eration with stride 2.

A final affine layer with output size 3 is appended to all
three models to output the three motion predictions. Given

Figure 4. Architecture of 2-layer baseline CNN.

that this task is a regression problem instead of classifica-
tion, we use the standard mean-squared error (MSE) loss as
the metric to evaluate the model’s predictions. Intuitively,
the MSE loss measures on average how close the predic-
tions are to the ground truth labels. Given ground truths y
and predictions ŷ for a batch size of N , the MSE loss L can
be computed as

L =
1

N

N∑
1

(y − ŷ)2. (1)

By default, the losses of each predicted motion property are
added together as a total loss and optimized accordingly.
Considering that forward acceleration and angular velocity
are of smaller magnitude than forward speed, they may con-
tribute to the total loss unevenly and the model will thus pri-
oritize optimizing speed, we also experiment with keeping
separate losses for each property and optimize them indi-
vidually.

The Adam [11] optimizer is used for all 3 architectures
with an exponential learning rate decay schedule at a rate of
0.95 every 100 steps. In other words, the learning rate α at
any given step t is

α(t) = α0e
t

100 . (2)

In this project, we first compare the results of different
input preprocessing, including the five input channel com-
binations and the amount of vertical and horizontal segmen-
tations in calculating averaged flow. We then compare the
different CNN architectures - baseline, AlexNet, ResNet,
and AlexNet with transfer learning. The hyperparameters
of our model include the initial learning rate α0, dropout
rate for baseline CNN and AlexNet, and batch size, which
we fine tune in our experiments.

5. Experiment Results & Discussion
In this section, we present sets of experiments we per-

formed to improve and evaluate our model. In Section 5.1,
we present evaluation on preprocessing to our input data,
including effectiveness of down-sample data and using dif-
ferent combination of channel type as explained in Section
3. We also present our result on hyper-parameter tunning
in Section 5.3. Due to huge space of our hyper-parameters

3



Figure 5. Architecture of AlexNet CNN.

Figure 6. Architecture of ResNet-17 CNN.

and long duration to train a single epoch, we only used sim-
ple cross-validation with 16 videos for training, 7 videos
for validation,and 1 video for testing. Furthermore, we pre-
sented our study on impact of sampling approach of vali-
dation set on hyper-parameter tuning. Finally, we present
our best results among all models and hyper parameter and
evaluate our results both qualitatively and quantitatively.

5.1. Input Comparison

5.1.1 Input Down-sampling

In order to reduce noise in input optical flow, we introduce
down-sampling in our input as described Section 3. In in-
put down-sample, number of vertical and horizontal seg-
mentations are hyper-parameters, where the more slices are
taken in each direction, the more noisy the input will be.
For example, a 50 × 100 segmentation indicates the input
tensor is segmented into 50× 100 grids and each grids pro-
duces a averaged value for each channel of the input. The
most extreme case where every pixel is a grid is equivalent
to the original image. Figure 7 shows result MSE loss for
different input down-sample segmentations. For baseline,
the best validation result is achieved with segmentation at
100 × 300. As expected, when imaged is segmented into

very few blocks, the important information associated flow
vector is lost, and hence increase validation loss. There are
some variation in segmentation between 100 × 300 to the
image original size, which is lightly introduced by noise.
For ResNet, since the model contains much more parame-
ters than baseline, down-sample input helps alleviate over-
fitting and improve model runtime very significantly. Due
to memory, disk, and run-time constrain, we can only fit a
17 layer RedNet as supposed to the standard 50 or 100 layer.
As a result, the laster layer of convolution in ResNet is very
large and introduce lots of parameters in the first fully con-
nected layer. With input down-sampling, we are able to
fit ResNet with batch size equals to 32 in GPU memory,
while the original image can fits only batch size of 2, which
has really noisy updates in stochastic gradient descent. For
AlexNet since output of the last convolution layer is already
very small, input down-sample will cause negative dimen-
sion in max-pooling.

5.1.2 Input Channel Types

In this section we present evaluation of 5 combinations of
input channels types described in 3: [flow, flow+objmask,

4



Figure 7. MSE Loss vs. Input Down-sampling.

flow+rgb, flow+objmask+rgb, rgb](Figure 3). The final
training MSE of all modes are similar, but mode 0 (flow)
and 1 (flow+objmask) can achieve much lower validation
MSE, with mode 1 having the lower of the two. The results
validate our assumption that optical flow are closely related
to the speed of the camera. The relatively poor performance
of modes 2-4 can be explained by the fact that it is hard to
tell the speed of the camera solely from a single frame im-
age, and rather the three motion properties we are trying to
predict pertain much more closely to the difference between
two adjacent images.

5.2. Model Comparison

Figure 9 shows the results of using different models for
speed prediction. For certain models, we only performed
validation in last few iterations to speed up the training pro-
cess. Overall all, ResNet-17 is able of overfit the training
data the most as it has the most parameters. The next best
model for training set is AlexNet with partially transfered
weights. We only transfered the convolution layers except
the first layer because our input dimension does match the
original model. The next best model is AlexNet trained
from scratch followed by baseline is the worst model in

Figure 8. Input channel type comparison.

Figure 9. Comparison of different models.

training set. For validation however, our best result is given
by the baseline mode. This is major due to the baseline
model is much faster to train, and as a result we could
search the hyper-parameter space much more extensively.
AlexNet-pretrained and AlexNet are the second best and
ResNet performs less well on the validation set as they have
much larger hyper parameter space and takes much longer
to train.

5.3. Hyperparameter Tunning

5.3.1 Learning Rate

Figure 10 shows the results of initial learning rate tuning
on images downsampled to 100x300. As expected, both the
baseline CNN and ResNet-17 do not perform well when the
initial learning rate is too large, i.e. greater than 10−2. The
AlexNet and pre-trained AlexNet model (not shown) ex-
hibit similar behavior to the baseline CNN and ResNet-17,
respectively, so we choose 0.0001 for ResNet-17 and pre-
trained AlexNet, and 0.001 for the baseline and AlexNet
models, with the observation that the best learning rate for
ResNet is lower than that of the other models.

5



Figure 10. Initial learning rate tuning results.

Figure 11. Dropout rate tuning results.

5.3.2 Dropout

Figure 11 shows the results of dropout rate tuning on images
down-sampled to 100x300. Overall, dropout rate from 0.2
to 0.5 does not have as significant an effect on the train and
validation MSE’s as the learning rate. This can be explained
by the fact that all the input images are already averaged
and down-sampled, which essentially adds a regularization
effect on the model. A dropout value of 0.2, the value that
achieve the best validation MSE in this experiment, is cho-
sen for the remaining experiments with this model.

5.3.3 Batch Size

Figure 12 illustrates the results of batch size (b) turning and
the effect it has on train and validation results. For b = 16
and b = 32, the figure shows the consolidated result of a de-
cent number of experiments that have been conducted. For

Figure 12. Loss distribution with different batch size.

b = 4, only a single point is included, as it is the biggest
batch size that can fit under our GPU’s memory constraint
for running ResNet without any down-sampling of the data.
From this figure we can see that, the models do not per-
form well when batch size is too small (as in the case of
b = 4). This is because gradients computed from limited
frames of data could be overly noisy and unstable. We can
also observe that average performance is roughly the same
for b = 16 and b = 32, with sightly smaller mean training
MSE and slightly higher validation MSE for the latter (We
do see that results for b = 32 are more spread, which could
be due to the fact that more of our initial experiments were
performance on b = 32, where the hyper-parameter choice
in general is less optimal). Based on this result, we take
b = 16 as the batch size as result of its less memory require-
ment, faster computation time, and the observed similarity
in performance.

5.4. Optimization Method

All models described in Section 4 optimize on the sum-
mation of the individual losses, while the absolute differ-
ence in angular velocity in radius is in general much smaller
than the other two. As a result, the models could be subjec-
tive to a skewed update as the loss of angular velocity is not
visible (a consequence of this behavior is described in Sec-
tion 5.7). One approach is to normalize three losses before
summing them up. However, that would require making as-
sumption on the maximum value of three losses, which can-
not be generalize to arbitrary video. In attempt to rectify this
issue, an experiment is made to update gradient of weights
with respect to three losses in three individual steps, hop-
ing that in this way equal attention will be given to each of
the properties of interest. The result of this experiment was
very unsatisfying, with blown-up MSE for both training and
testing. We believe this is due to over-stepping when three

6



Figure 13. Validation Loss vs train loss with different validation
sampling approach.

updates are made for each batch of data. Although the three
losses are highly correlated, their loss space might be very
noisy and three individual updates might not necessary step
correct direction of gradient descent. Other potential meth-
ods worth exploring are discussed in Section 6.

5.5. Validation Sample Scheme

An interesting experiment we run is on the different sam-
pling schemes of the training and validation datasets. Af-
ter consolidating all video frames, one approach is to shuf-
fle the entire dataset randomly, and then split according to
the preset ratios. Another approach is to directly split the
dataset without shuffling. Figure 13 shows a comparison of
the train and validation MSE’s of these two approaches. The
majority of red dots are below the y = x line, indicating that
training loss is overwhelmingly larger than validation loss,
while the inverse case is true for the green dots. The results
can be explained by the higher chance of validation data
coming from the same video as the training data and thus
being more similar if the dataset is shuffled before splitting.
This is thus an incorrect sampling approach, and we choose
the second approach instead for all of our experiments.

5.6. Quantitative Evaluation

Table 1 shows the train, validation, and test MSE of our
best model, with the baseline architecture trained on images
averaged and downsampled to 100x300 and optical flow and
object detection masks as input. It is expected that the test
MSE is higher but similar to the train and validation MSE’s
due to their innate differences. Table 2 further breaks down
the test MSE into the MSE of each motion property. A test
MSE of 6.832 for forward speed translates to an average
difference of 2.61 m/s, or a roughly 13% error.

Table 1. Best overall train, validation & test MSE
Train Validation Test
4.596 3.536 7.21

Table 2. Test MSE for each motion property
Forward
Speed

Forward
Acceleration

Angular
Velocity

6.832 0.366 0.012

5.7. Qualitative Evaluation

Based on the predicted values, a final state is computed
that consolidates the vehicle’s motion in four categories:
Still, Forward, Turning Left, and Turning Right. Forward
velocity fv determines the vehicle’s ”stillness”, where ve-
hicle is predicted as moving ”Forward” when fv > 2m/s.
For any moving vehicle, its steeling angle is further cat-
egorized based on angular velocity av, where vehicle is
predicted as ”Turning Left” when av > 2◦, and ”Turning
Right” when av < −2◦.

Choosing the appropriate thresholds for the consolidated
results is a rather subjective process. The KITTI dataset [7]
does not provide such kinds of truth data, and as a result, we
visualize the predicted values on the video frames for intu-
itive understanding of the results, and pick the thresholds
based on observations on the validation set.

The visualized results roughly match the loss we see
from the quantitative results. Figure 14 and 15 show two
example visualizations on the testing frames, where the
red boxes represent the input object mask and textbox
underneath the frames show side-by-side comparison of
the properties of interest, as well as the final consolidated
status. Several observations are made from these visualiza-
tions:

Uneven Error Distribution Among all three predictions,
angular velocity appear to be much more error-prone com-
pare to the others. This observation could be caused by the
fact that we currently train a single model to predict all in-
terested properties and angular velocity’s contribution to the
overall loss is comparatively small due to the small magni-
tude in radius.
Skewed Status Prediction Figure 15 is an example of the
model falsely believing that the vehicle is making a left turn.
In fact, we have observed the model is in general skewed to-
wards believing that the vehicle is making a left turn. This
observation could be due to the fact that all video recordings
in the dataset are from right-hand roads, where pixels on the
right are expected to have higher optical flows, and they are
closer to the vehicle and move faster. Coincidentally, this
behavior is similar to that of a left-turning vehicle, where
objects on the right-hand side are expected to have more
dramatic optical flow change. In fact, we do observe bet-

7



Figure 14. Visualized prediction result 1

Figure 15. Visualized prediction result 2

ter results when the object masks are included in the input
channels, and expect to see more apparent differences with
expanded dataset and more occurrences of turning.

6. Conclusion & Future Work
In this project, we propose a framework to predict vehi-

cle motion status using videos recorded by vehicle-mounted
front cameras. We extract multiple types of information
from each image, apply preprocessing on the images, and
perform experiments on different combinations of input
types and CNN architectures. After hyperparameter tuning,
our model is able to achieve great performance on all three
motion properties, and make reasonable inferences about
the status of the vehicle. The video visualization further
confirms and complements our quantitative results.

Given more time and resources, we can still improve
some aspects of our project. The entire dataset contain only
24 videos, which is not enough for our methods to gener-
alize well to mass application. It may also prove better to
train a separate model for each motion property instead of
adding losses together or training the same model with three
objectives, a plan not executed due to time constraints. Fi-
nally, combined with other computer vision tasks such as

sign and road detection, more meaningful inferences about
vehicle status and driver intention can also be made.

References
[1] Alexnet implementation + weights in tensorflow.

http://www.cs.toronto.edu/˜guerzhoy/
tf_alexnet/. Accessed: 2017-06-11.

[2] Faster-rcnn tf. https://github.com/smallcorgi/
Faster-RCNN_TF. Accessed: 2017-06-11.

[3] K. Ashraf, B. Wu, F. N. Iandola, M. W. Moskewicz, and
K. Keutzer. Shallow networks for high-accuracy road object-
detection. CoRR, abs/1606.01561, 2016.

[4] G. Bradski. Dr. Dobb’s Journal of Software Tools.
[5] D. J. Dailey, F. W. Cathey, and S. Pumrin. An algorithm to es-

timate mean traffic speed using uncalibrated cameras. IEEE
Transactions on Intelligent Transportation Systems, 1(2):98–
107, 2000.

[6] G. Farnebäck. Two-frame motion estimation based on poly-
nomial expansion. In Proceedings of the 13th Scandinavian
Conference on Image Analysis, SCIA’03, pages 363–370,
Berlin, Heidelberg, 2003. Springer-Verlag.

[7] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. International Journal of Robotics
Research (IJRR), 2013.

[8] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.
[9] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic
segmentation. CoRR, abs/1311.2524, 2013.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pool-
ing in deep convolutional networks for visual recognition.
CoRR, abs/1406.4729, 2014.

[11] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[12] A. Krizhevsky. One weird trick for parallelizing convolu-
tional neural networks. CoRR, abs/1404.5997, 2014.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. Com-
mun. ACM, 60(6):84–90, May 2017.

[14] W. Kruger, W. Enkelmann, and S. Rossle. Real-time estima-
tion and tracking of optical flow vectors for obstacle detec-
tion. In Intelligent Vehicles’ 95 Symposium., Proceedings of
the, pages 304–309. IEEE, 1995.

[15] H. Lin. Vehicle speed detection and identification from a
single motion blurred image. In 7th IEEE Workshop on Ap-
plications of Computer Vision / IEEE Workshop on Motion
and Video Computing (WACV/MOTION 2005), 5-7 January
2005, Breckenridge, CO, USA, pages 461–467, 2005.

[16] H. Lin, K. Li, and C. Chang. Vehicle speed detection
from a single motion blurred image. Image Vision Comput.,
26(10):1327–1337, 2008.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,
C. Fu, and A. C. Berg. SSD: single shot multibox detec-
tor. In Computer Vision - ECCV 2016 - 14th European Con-
ference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part I, pages 21–37, 2016.

8

http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/
http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/
https://github.com/smallcorgi/Faster-RCNN_TF
https://github.com/smallcorgi/Faster-RCNN_TF


[18] C. Pornpanomchai and K. Kongkittisan. Vehicle speed detec-
tion system. In Signal and Image Processing Applications
(ICSIPA), 2009 IEEE International Conference on, pages
135–139. IEEE, 2009.

[19] S. Pumrin and D. Dailey. Roadside camera motion detection
for automated speed measurement. In Intelligent Transporta-
tion Systems, 2002. Proceedings. The IEEE 5th International
Conference on, pages 147–151. IEEE, 2002.

[20] A. G. Rad, A. Dehghani, and M. R. Karim. Vehicle speed
detection in video image sequences using cvs method. In-
ternational Journal of Physical Sciences, 5(17):2555–2563,
2010.

[21] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.
You only look once: Unified, real-time object detection.
CoRR, abs/1506.02640, 2015.

[22] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:
towards real-time object detection with region proposal net-
works. CoRR, abs/1506.01497, 2015.

[23] T. N. Schoepflin and D. J. Dailey. Dynamic camera cali-
bration of roadside traffic management cameras for vehicle
speed estimation. IEEE Transactions on Intelligent Trans-
portation Systems, 4(2):90–98, 2003.

[24] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[25] A. R. YG, S. Kumar, H. Amaresh, and H. Chirag. Real-
time speed estimation of vehicles from uncalibrated view-
independent traffic cameras. In TENCON 2015-2015 IEEE
Region 10 Conference, pages 1–6. IEEE, 2015.

9


