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Abstract

Object detection is a very important task for different
applications including autonomous driving, face detection,
video surveillance, etc. CNN based algorithm could be a
great solution for object detection with high accuracy. Be-
sides, most current deep learning applications are running
on servers or desktop computers. Considering there are a
lot of mobile computing devices available, we implemented
the CNN based object detection algorithm on Android de-
vices. The model architecture is based on SqueezeNet to get
image feature maps and a convolutional layer to find bound-
ing boxes for recognized objects. The total model size is
around 8 MB while most other object detection model takes
more than 100 MB’s storage. The model architecture makes
the calculation more efficient, which enables its implemen-
tation on mobile devices.

1. Introduction

Deep learning based object detection has been very suc-
cessful in recent years. Especially the CNN (convolu-
tional neural network) model has significantly improved the
recognition accuracy on large data-sets. For the ImageNet
benchmark data set, the CNN based model has been domi-
nating the leader-board since it’s introduced by Krizhevsky
in 2012 for the first time.

While CNN based model can achieve higher accuracy,
they have following disadvantages:

• High computation cost. The CNN based model are
usually very deep with tens or hundreds of layers and
each layer takes a lot of computation.

• Large memory demand. The CNN based model
has a lot of parameters that usually take hundreds of
Megabytes of memory space.

• Low efficiency. Most CNN based model are designed
without efficiency improvement.

As mobile computing devices are very popular and com-
paratively powerful, people want to embrace the benefits of
CNN with their mobile devices. However, to enable their
mobile application, new CNN architectures need to be de-
veloped to overcome the above issues.

Also, most deep learning frameworks have provided in-
terface for mobile platforms, including iOS and Android.
In this paper, we developed a CNN based model and then
implemented it with Tensorflow and Android.

Our model is trained with KITTI benchmark. The KITTI
data-set has over 10 Gigabytes of well-labeled data for ob-
ject detection purpose. After training, our model is able to
detect objects in view of camera on the Android device.

The input to the model is a 1242-pixel width, 375-pixel
height image from KITTI data-set containing labeled cars,
pedestrians, cyclists as targets to be detected and other
objects that we don’t care. We use a SqueezeDet layer
and then a ConvDet layer to generate tens of thousands
of bounding box coordinates (for localization), confidence
score (for detection) and class scores (for classification). All
these information are sent into a Non-Maximum Suppres-
sion (NMS) filter to predict the final detection results.

Similarly, the input to our app is a camera stream, then
we use inference interface to help us call the model pre-
trained and installed on our android device to produce the
same type information (bounding box coordinates, confi-
dence score and class scores). As above, a NMS filter im-
plemented in the app facilities the final prediction.

The rest of this paper is organized in the following or-
der. Section 2 lists the related work of CNN architectures
as well as CNN for object detection, discusses the state-of-
the-art progress in CNN model compression. In Section 3,
our model based on SqueezeDet is represented and elabo-
rated. Section 4 introduces details of the KITTI data-set
and the features to be used for our model. In Section 5, we
conduct experiments with our proposed model and analyze
the results from the experiments. Section 6 concludes our
work and our future work is stated in Section 7.
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2. Related Work

In this section, we talk about CNN related work in object
detection and the trend towards smaller CNN models.

2.1. CNN Architectures

Convolutional Neural Network (CNN) usually stands for
the neural network which contains one or more convolu-
tional neural layers. Each neural layer can be regarded as a
combination of several spatial filters. These filters are used
for extracting features from pictures. Some well-known fil-
ters are Histogram of Oriented Gradients (HOG) and color
histograms, etc. A typical input for an convolutional layer
is a 3-dimensional grid. They are height (H), width (W) and
channels (C). Here each channel represents a filter in the
convolutional layer. The input of first layer usually has a
shape of (H, W, 3), where 3 stands for the RGB channels
for the raw pictures.

CNN became popular in visual recognition field when
it is introduced by LeCun et al. for handwritten zip code
recognition [11] in the late 90s. In their work, they used
(5, 5, C)-size filters. Later work proved that smaller fil-
ters have multiple advantages, such as less parameters and
reducing the size of network activations. In a VGG net-
work [16] proposed by Karen Simonyan et al., (3, 3, C)-
size filters are extensively used, while the networks such as
Network-in-Networ [13] and GoogLeNet [18] widely adopt
(1, 1, C)-size filters, the possibly smallest filters and used
for compressing volume of the networks.

With the networks go deep, the filter size design gradu-
ally become a problem that almost all the CNN practitioners
have to face. Hence, several schemes for network modular-
ization are proposed. Such modules usually include multi-
ple convolutional layers with different filter sizes and these
layers are combined together by stack or concatenation. In a
GoogLeNet architecture, such as [18, 19], (1, 1, C)-size, (3,
3, C)-size and (5, 5, C)-size are usually combined together
to form an ”Inception” module and even with filter size of
(1, 3, C) or (3, 1, C).

In addition to modularizing the network, communication
and connections across multiple layers also improve the per-
formance of the network. This seems to be a similar idea
with Long Short Term Memory (LSTM) or Gated Recur-
rent Unit (GRU) architecture in Recurrent Neural Network
(RNN). Residual Network (ResNet) [8] and Highway Net-
work [17] adopted such ideas to allow connections to skip
multiple layers. These ”bypass” connections can effectively
send back the gradients through multiple layers without any
blocking in a backward propagation pass when necessary.

2.2. CNN for Object Detection

With the advancement of accuracy in image classifica-
tion, the research for object detection also developed in a

fast speed. Before 2013, feature extraction techniques such
as [1], which proposed an combined application of HoG
and SVM can achieve a high accuracy on the PASCAL
data-set [3]. In 2013, a fundamental revolution occurred in
this field, which was caused by the introduction of Region-
based Convolutional Neural Networks (R-CNN), proposed
by Girshick and Ross. R-CNN firstly proposes possible re-
gions for residing objects, then makes use of CNN to clas-
sify objects in these regions. However, these two inde-
pendent operations require high computation and make it
time-consuming. An modification of R-CNN is made by
Girshick and Ross, which is called fast R-CNN [5]. This
architecture integrate the two independent tasks into one
multi-task loss function, which accelerates the computation
of proposals and classification. Later, a more integrated ver-
sion of R-CNN, namely the faster R-CNN [15] was pro-
posed by Ren et al., which achieves more than 10x faster
than the original R-CNN. A recent proposal, R-FCN [12]
with a fully convolutional layer as the final parameterized
layer further shortens the computation time used for region
proposals.

R-CNN can be regarded as a cornerstone for the devel-
opment of CNN for object detection. A large amount of
work is based on this architecture and achieves great accu-
racy. However, a recent work shows that CNN based ob-
ject detection can be even faster. YOLO (You Only Look
Once) [14] is such an architecture integrating region propo-
sition and object classification into one single stage, which
significantly contributes to simplification of the pipeline of
object detection, as well as reduction of the total computa-
tion time.

2.3. Toward Smaller Models

With CNN goes deeper, more parameters need to be
stored, which makes the model larger and larger. Deeper
CNN and larger modules usually achieve a higher accuracy,
but people wonder whether a small model can reach a sim-
ilar accuracy as a large model. In this sub-section, we talk
about several popular model compression techniques aim-
ing to reduce the size of CNN models.

As we know, singular value decomposition (SVD) is
widely used to reduce matrix dimensionality. It is also in-
troduced to pre-trained CNN models [2] to reduce model
size. Another approach reported is Network Pruning [6],
proposed by Han et al., which prunes the parameters be-
low a certain threshold to construct a sparse CNN. Recently,
Han et al. have further improved their approach and pro-
posed a new approach, Deep Compression, together with
their hardware design to accelerate the computation of CNN
models. A recent research called SqueezeNet [9] even re-
veals that a complex CNN model as AlexNet [10] accuracy
can be compressed to smaller than 0.5 Mbytes.

Here are two examples of model compression. The fa-
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mous ImageNet winner VGG-19 model stores more than
500 Mbytes parameters, which achieves a top-5 accuracy
of about 87% on ImageNet, while the equally famous
ImageNet winner GoogLeNet-v1 only contains about 50
Mbytes parameters, achieving the same accuracy as VGG-
19. The well-known AlexNet [10] model with a size of
more than 200 Mbytes parameters, achieves about 80%
top-5 accuracy on ImageNet image classification challenge,
while the SqueezeNet [9] model with a much smaller size,
about 4.8 Mbytes parameters, can also achieve that ac-
curacy. We can anticipate that there is much room left
for compressing these CNN models, to better fit them to
portable devices.

3. Methods

In this section, the CNN model to detect objects and the
implementation of android app are elaborated in detail.

3.1. CNN Model

The model has the benefit of small model size, good en-
ergy efficiency and good accuracy due to the fact that it’s
fully convolutional and only contains a single forward pass.
The overview of this object detection model is as following
in Figure 1.

The CNN model we adopted is called SqueezeDet [21].
The SqueezeDet model is a fully convolutional neural net-
work for object detection. It’s based on SqueezeNet archi-
tecture that extracts feature maps from image with CNN.
Then another convolutional layer is used to find bound-
ing box coordinates, confidence score and class probabili-
ties [20]. Finally, a multi-target loss is applied to compute
final loss in training phase and a NMS filter is enforced to
reduce the number overlapping bounding boxes and gener-
ate final detection in evaluation phase.

3.1.1 SqueezeNet and ConvDet

The core of the SqueezeNet model is ”fire” module. It con-
tains two part. First, it squeeze the current state with 1x1
convolutional layer. And Later it expand the results with
1x1 and 3x3 convolutional layers. The main purpose of the
”fire” module is to use 1x1 convolutional layer to replace
3x3 convolutional layers as much as we can, as the 3x3 con-
volutional layer take 9 times more parameters. And if 3x3
has to be used for the sake of activation area, we want to
limit the input layer size as much as we can. With 9 lay-
ers’ fire modules, 2 layers of polling and 1 layer of dropout,
the feature map for each image can be obtained. After that,
a 1x1 convolutional layer is used to extract bounding box
coordinates, class scores and confidence score. For each ac-
tivation in feature map, it will generate K bounding boxes
with 4K bounding box coordinates (x1, y1, x2, y2). Each

Figure 1. SqueezeDet Architecture

bounding box corresponds to 3 class scores and 1 confi-
dence score. These information will be used for loss cal-
culation in training and for final detection in inference.

3.1.2 Multi-Target Loss and NMS Filter

In training phase, the loss as proposed in [21] is calculated
as a weighted sum of localization loss Lloc, detection loss
Ldet and classification lossLcls as shown in Equation 1. All
the 3 losses are normalized by their number of terms.

L = λ1Lloc + λ2Ldet + λ3Lcls (1)

The localization loss is defined as regression loss and calcu-
lated using the squared difference of bounding box coordi-
nates. In Equation 2, Iijk is the indicator. It equals 1 if the
ground truth bounding box is assigned to the predicted one
which has the highest Intersection Over Union (IOU) with
the ground truth, otherwise it equals 0. In this way, only the
”responsible” predicted bounding box will contribute to the
final loss. In the equation, N is the number of ground truth
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objects in that image. W is the width of the feature map.
H is the height of the feature map and K is the factor that
1 activation in the feature map corresponds to K predicted
bounding box.

Lloc =
1

N

W∑
i=1

H∑
j=1

K∑
k=1

Iijk[(x
1
ijk − xG1

ijk)
2 + (x2ijk

− xG2
ijk)

2 + (y1ijk − yG1
ijk)

2 + (y2ijk − yG2
ijk)

2]

(2)

The detection loss is defined as regression loss and cal-
culated using the squared difference of confidence score.
γijk is the predicted confidence score. γGijk is the ground
truth confidence score, computed as the IOU of ”respon-
sible” bounding box. For the bounding boxes which are
not ”responsible” for ground true, they are penalized by
(1 − Iijk)γijk2 in Equation 3. Since the confidence score
is ranged from 0 to 1, it should be suppressed by a sigmoid
function before the calculation of detection loss.

Ldet =

W∑
i=1

H∑
j=1

K∑
k=1

λ21
N
Iijk(γijk − γGijk)2

+
λ22

WHK −N
(1− Iijk)γijk2

(3)

The classification loss is defined as cross-entropy loss. pc is
the predicted probability for class c and it is obtained after
a softmax function, which normalize all C classes scores to
probabilities, ranged in [0, 1] and summed up to 1. lGc is the
label indicating the ground truth class. It equals 1 if pc is
the ground true, otherwise it equals 0 in Equation 4

Lcls =
1

N

W∑
i=1

H∑
j=1

H∑
k=1

C∑
c=1

Iijkl
G
c log(pc) (4)

In inference phase, a Non-Maximum Suppression
(NMS) filter is used to reduce the overlapping bounding
boxes and generate the final detections. To simply the
explanation , consider only 1 image which generates M
bounding boxes. Each bounding box bm corresponds to
4 coordinates x1m, x

2
m, y

1
m, y

2
m, 3 classification scores p1m

(car), p2m (pedestrian), p3m (cyclist) and 1 confidence score
γm. To implement NMS algorithm, the IOU threshold is
defined as T .

The aim of NMS algorithm is to reduce redundant
bounding boxes by selecting the most probable bounding
box with the highest confidence score each time and then re-
moving predicted bounding boxes with a high IOU (which
implies high overlapping) over the threshold. This algo-
rithm works for each class and is elaborated in Algorithm 1.

3.2. Android Implementation

For the implementation of CNN model in Android de-
vice, we used the interface provided by ”Tensorflow An-

Algorithm 1 Non-Maximum Suppression Algorithm
Require: x1m, x2m, y1m, y2m, p1m, p2m, p3m, γm, 1 ≤ m ≤M
Ensure: Index set S

1: Initialize S ← ∅, Sc ← ∅, 1 ≤ c ≤ 3.
2: For eachm, assignm to the class set Sc with the highest

classification score among p1m, p
2
m, p

3
m.

3: In each class Sc, su ← argmaxm γm. S = S ∪ {su}.
4: In each class Sc, calculate IOU φv between sl and
sv, v ∈ {1, 2, ...,M} according to x1v, x

2
v, y

1
v , y

2
v . For

each v satisfying φv > T in class c, Sc = Sc − {v}.
5: Repeat 2 to 4, until every Sc becomes an empty set.
6: Return S.

droid Camera Demo”[7]. First, the CNN model parame-
ters need to be trained and saved into a protobuffer file.
Basically, the way to save the CNN graph is to freeze all
variables into constants with well trained values and save
them by their names. Then with Android interface tool
(called ”InferenceInterface”), Android app can load tensor
with values, run the graph and read tensor output values.
However, current interface only support loading values and
reading outputs in the format of 1-D array. So, the input
node/output node in the graph should be designed to be
1D array to accommodate that. The app is designed with
a streaming video from the camera, and each image frame
is passed to the CNN model for object detection. And then
the detected results are marked with boxes in real time. To
accommodate the 8 fps of the default frame rate in Android
device, we need the total processing time to be less than 125
ms. The overall app architecture is as shown in Figure 2.

Figure 2. Android App Architecture

4. Data-set and Features
The data-set we use is The KITTI Vision Benchmark

Suite [4], which is made for academic use in the area of
autonomous driving. For our target, we use the object detec-
tion data-set, which contains 7481 training images and 7518
test images. Total 80256 objects are labeled for this data-set
and the 3 classes used for evaluation are cars, pedestrians
and cyclists. The distribution of object number in the train-
ing data-set is shown in Figure 3. 51865 objects are labeled,
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including 28742 cars, 4487 pedestrians and 1627 cyclists.
On average: 3.8 cars, 0.6 pedestrian and 0.2 cyclist per im-
age. The pictures in this data-set are fully color PNG files.
It’s clear that cars are more frequently shown in image than
pedestrians and cyclists, so the biased data may have some
impact on the accuracy on different classes.

Figure 3. Object Quantity Distribution in KITTI Training Set

Figure 4. Object Type Distribution in KITTI Training Set

Data augmentation is implemented in the model training
including image flipping, random cropping, batch normal-
ization. Figure 5 is a typical scenario image in the dataset.

Figure 5. Example of an Image in Data-set

5. Experiments
The squeezeDet model is trained with KITTI detection

dataset. The model is trained in Google Cloud Engine with
8v CPU, 30GB RAM and 1 GPU (NVIDIA TESLA K80).
The batch size is 20. It takes around 1.2 s for each batch.

After 35k steps of training, the overall recall can get 81%.
The detection precisions are as Table 1.

Detection accuracy car cyclist pedestrian
easy 90% 86% 80%
medium 85% 80% 74%
hard 75% 77% 67%

Table 1. Detection precision on KITTI object detection dataset

Stochastic Gradient Descent with momentum is used as
the optimizer for model training and the learning rate decay
is implemented to help the training process converge Fig-
ure 6, Figure 7, Figure 8 and Figure 9 .

Figure 6. Multi-Target Train Loss

Figure 7. Car Training Accuracy

To better understand why the model failed to recognize
some of the images, we went through the samples with
wrong classification or missed detections and found that
there are three major failure modes, including wrong labels,
partially blocked object and confusion between pedestrians
and cyclists. It’s understandable that there may be some hu-
man error during labeling work, so the model shouldn’t be
expected to reach 100% accuracy. Figure 10 showed some
examples of wrong labels. Another difficult task for the
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Figure 8. Pedestrian Training Accuracy

Figure 9. Cyclist Training Accuracy

models is to recognize partially blocked objects, especially
for objects with most of their surfaces blocked, as shown
in Figure 11. Between the class of pedestrian and cyclist,
there are a lot of confusion due to their natural similarity.
At some angle where the bicycle is hard to identify, the cy-
clist is easily to be recognized as pedestrian Figure 12. It
may be worth discussing that whether the cyclist class and
pedestrian class can be combined for autonomous driving’s
application.

Figure 10. Failure Mode: Wrong Label

The image quality may vary in the real life scenarios, for

Figure 11. Failure Mode: Partially Blocked Object

Figure 12. Failure Mode: Confusion Between Pedestrians and Cy-
clists

example, the image gets darker in a cloudy day and gets
blurry in a rainy or foggy day, etc. Considering that the
model is trained with preset conditions, we would like to
evaluate how accurate the model is under different image
variation types. So, we processed the image with varying
conditions including brightness, blurriness, contrast, color
degradation and image resolutions. Then we run the object
detection model on these processed images and found that
the accuracies do degrade quite a lot under conditions like
blur and low contrast, as shown in Figure 13.

Then we plot out the model’s performances under dif-
ferent image conditions to understand the accuracy’s sen-
sitivity to different variations, as shown in Figure 14. It
shows that the model’s accuracy is very sensitive to image
blurs. The average accuracy drops 48% with blurred image,
while it drops less than 10% for variations like brightness
and color variations.

6. Conclusion

In this project, we trained a CNN object detection model
at desktop platform and applied the trained model into a
mobile platform. As a baseline, we have a running Android
app that runs our CNN model trained by Tensorflow offline.
The model size is 8 MegaBytes and the achieved testing
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Figure 13. Object Detection Example with Image Variations

Figure 14. Object Detection Accuracy Sensitivity

accuracy is 76.7%.
The interface between Tensorflow and Android is still

not perfect as the latency caused by interface is longer than
the actual computation time in the graph. In addition, there
is no documentation for the interface. Google announced
that they plan to release the ”Tensorflow Lite” for mobile
platform, so we expect these issues to be significantly im-
proved.

7. Future Work
The Android application can be further improved on its

stability and functionality. Also, this app is based on old
and less efficient interface, which is called ”InferenceInter-
face”. The detection latency and stability can be improved
by switching the interface to ”Tensorflow Lite”, which is
yet to be released soon.

As we see in the experiments section, the robustness of
the model need to be improved to get good accuracy with
image variations of brightness/contrast/blur, etc. So, an-
other thing that can help is to manually add image variations
to input image set such that the model is less sensitive to the
image variations.

Iandola [9] proposed the idea of model compression with
sparsity and 6-bit quantization to reduce the squeezeNet
model size from 5MB to 0.47MB with equivalent accu-
racy. This deep compression method are not explored in
this project due to time constraint, but it worth looking into
in future development. Smaller model is not only beneficial
for storage capacity, it should also be beneficial for comput-
ing efficiency.
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