

 ​Abstract
Self-driving vehicle control system would have to

determine steering wheel angle, brakes, and acceleration
in any driving environment. Convolutional Neural
Networks (CNN) have been recently proposed as an
effective solution for predicting steering wheel angles for
self-driving cars. In this project, we have formulated
steering angle prediction as a regression problem and
have used open-source driving data sets released by
Udacity to evaluate various CNN architectures. We have
devised a novel technique of using image sharing between
vehicles via Vehicle-to-Vehicle (V2V) communications.
Our results show that by employing novel image sharing
technique, we are able to reduce the validation loss by
almost five times as compared to the baseline and achieve
performance with mean error of 3.5 degrees in the
steering wheel angle prediction.

1. Introduction

Self-Driving cars can have a huge impact on the society.
The traditional robotics approach for designing
self-driving software has four main components:
Localization, Mapping, Perception and Path-Planning.
Data from various on-board sensors (cameras, radars,
Lidars, GPS, HD maps etc.) is used for realizing such a
solution. This approach has severe challenges in many
scenarios such as: bad-weather conditions, non
line-of-sight view (driving around intersections), long
range sensing etc. There has been a recent push to use
deep learning for designing end-to-end self-driving
systems. This approach could learn from the data collected
by human driving and effectively try to emulate human
driving behavior.

In this project, we use a convolutional architecture
based deep learning solution for designing self-driving
software. Specifically, we use camera data from vehicles
to train on the steering wheel angle. We have considered
this as a regression problem for steering angle prediction.
We use an open-sourced driving dataset released by
Udacity [2]. We have cropped images in the driving
dataset to focus on the section of the image most relevant
to steering wheel angle learning. We have used techniques

to augment the data collected from additional cameras on
the car. We have used image flipping to further augment
our dataset. Our baseline results show that Convolutional
Neural Networks (CNN)-based deep learning solutions
can be designed to effectively predict steering wheel
angle.

We have also proposed a novel approach of using future
image as input to the CNN by sensor data sharing between
vehicles using vehicle-to-vehicle (V2V) communications.
Automotive industry have been working on V2V
communication technologies for many years and
deployments have already started in US (GM’s Cadillac
CTS), Japan (Toyota Lexus, Prius and other models), and
Europe (recent announcement from VW) [10], [11] and
[12]. These deployments allow vehicles to share 300-400
bytes of messages, at a periodic 10 Hz rate with a
transmission range of 300-500m. Additionally, Cellular
industry is getting ready for deploying 5G technologies
with automotive as one of the main use cases. 5G-based
V2V communications will enable vehicles to share huge
amounts of data (Gbps and higher), with ultra-low latency
(10 msec and below) and high reliability (Packet Error
Ratio of 5% and below) [6], [13], and [14]. This would
allow vehicles to share raw camera images which could be
used for deep learning applications. Specifically, in this
project we have created a virtual vehicle that is moving
two-seconds ahead of the ego vehicle (Note, ego vehicle in
this report refers to self-driving vehicle for which we are
predicting steering wheel angle) and sharing raw camera
images. We show that by using these future images from
the vehicle ahead, we are able to reduce the validation loss
by almost five times. To the best of our knowledge, this is
the first time when raw image sharing between vehicles is
used for deep learning based self-driving car systems.

The rest of the report is organized as follows. In Section
2, we provide details on related work. We present our data
processing, augmentation and proposal for using future
image data in Section 3. Deep learning network
architecture is presented in Section 4. Evaluation and
visualization of both baseline and network using future
images is provided in Section 5. Finally, the conclusions
and discussion on future work is presented in Section 6.

2. Related Work
Bojarski et al. [1] (NVIDIA team) have used CNNs to

train input camera images to predict the steering wheel
angle. They have formulated the steering wheel prediction
as a regression problem and have used three cameras
(center, left and right) to augment the data set during
training, and thus generalize learning. The center camera
sees the middle of the road, left and right cameras are
tilted sideways. Correction factor is added to the steering
angles corresponding to images collected from left and
right cameras. Data augmentation techniques such as
adding random rotations to the steering angle have also
been applied. Deep network architecture uses five
convolutional layers followed by five fully-connected
layers.

Udacity launched a similar self-driving car challenge [3]
for using camera data to predict steering wheel angle.
Udacity has open-sourced driving dataset collected for this
challenge. Data-sets has images from 3 cameras (as in [1])
and steering wheel, torque and brake data. Many solutions
by teams participating in this challenge used CNN
architectures similar to the one used by Bojarski et al. [1].
They report that deeper architectures (such as ResNet,
VGGNet) perform worse for this regression problem than
relatively shallower CNN architecture in [1]. The final
leaderboard and achieved validation accuracies are
available at [9]. The winning team [8] used a combination
of 3D CNNs and LSTMs to achieve mean error of 2.6
degrees error. While this approach is accurate, it is
computationally quite expensive. The second position
team [7] used a relatively simpler approach while
achieving impressive performance of 3.3 degrees. They
propose using CNNs similar to the ones used by Bojarski
et al. [1] but instead of using raw images as input, they
pass in the delta between consecutive images in the
dataset. This is based on the intuition that the displacement
of image features is more valuable than the image itself.
But they strictly use past images in the dataset. Our sensor
data sharing is inspired from this approach, but we take the
delta between images in the future rather than the past.

Currently around 100 people die every day in car
accidents in US. Automotive industry believes that V2V
communications, which allows vehicles to share data
among each other can prevent more than 80% of vehicle
related crashes. In this regard, V2V deployments are
already undergoing in US and Japan [10], [11], and [12].
Research in 5G technologies, holds great promise for
enabling high data rate and ultra low latency for V2V
communications. Recently, many 5G demonstrations have
been conducted by Nokia, Ericsson, Intel [13] etc.
Self-Driving cars are frequently mentioned as one of the

prominent use cases for 5G [14].

3. Dataset and Features
Udacity has released data sets from 5 trips with a total

drive time of 1694 seconds (28.23 minutes) [2]. Test
vehicle has 3 cameras mounted as in [1]. Camera images
are collected at a rate of around 20 Hz. Steering wheel
angle, brake, acceleration, GPS data was also recorded in
the experiments. The image size is 480 X 640 X 3 pixels
and total data set is 3.63 GBytes.

Figure 1 plots the time series of recorded steering
angles across the 5 trips. The trips were taken at different
locations with the following attributes:
Trip#1: ​Direct sunlight, moderate turns in the beginning.
Trip#2: ​Shadows, tight turns, curvy roads.
Trip#3: ​Moderate turns, shadows.
Trip#4: ​Tight turns, elevation.
Trip#5: ​Traffic, fairly straight road, multiple lanes.

Figure 1: ​Time Series of Steering Angles across 5 trips.

It should be noted that although the training set has 33.8k
images, there are only few images in the dataset with very
steep turns. This will be a challenge during training
because most examples have low to moderate steering
angles, making it hard to learn and predict steep left and
right turns.

The dataset is a series of images and there is high
correlation between adjacent samples, thus it is important
during training to shuffle the training images. Moreover
the validation strategy has to be chosen carefully. For e.g.
if we choose the last part of the dataset as validation (Trip
5), the images are from a fairly straight road and does not
have any steep turns. If we randomize the whole dataset
and choose a validation set, we might get very similar
images in the validation and training sets. Thus it will get
harder to detect if the network starts overfitting. Thus we
choose the last 20% of each trip for cross validation. This

allows us to check how well the model generalizes to
unseen images and also helps us capture some steep turns
from Trip 2 and Trip 4.

3.1 Data Processing and Normalization

We normalized and zero-centered image data (x /
255.0-0.5). We carefully analyzed the image dataset and
cropped top 1/2 (240 pixels) of the images as it does not
have the information on the road (mostly consists of trees,
sky etc.). Figure 2 shows two example images from the
dataset (top portion above blue line has been cropped).

Figure 2: ​Cropped Images in the original datasets

We also removed images with steering angle values

below a certain threshold (.05 radians). This removes
noise in the data collection process and helps balance the
dataset better because a large part of the data involves
straight driving. Figure 3 shows the original distribution
(using images from center camera) of steering wheel
angles. The distribution is not normal and hence we would
not expect mean squared error (MSE) loss to work well in
this situation. In Figure 4, we removed images with
corresponding steering angle value below 0.05 radians and
it shows a much balanced distribution.

Figure 3: Distribution of Steering Angles in the original
data-set

3.2 Data Augmentation
We have used data from left and right cameras to

augment the data collected by center camera. We adjust
the steering angle by a fixed threshold to account for the
positioning difference between these cameras. These
off-center cameras enable training for recovery paths for
situations when car might weave from center of the road.
Specifically, we adjust the steering angles for images
from left and right cameras as:
steering_left = steering_center + STEER_CORRECTION
steering_right = steering_left - STEER_CORRECTION

Figure 4: Distribution of Steering Angles after removing
images corresponding to low steering angles

We do not have the ground truth for this correction
factor and have treated it as a hyperparameter. For the
baseline network we set STEER_CORRECTION to a
value of 0.1 radians after cross validation.

Figure 5: Distribution of Steering Angles using images
from all three cameras and after applying
STEER_CORRECTION for Left and Right Cameras.

 ​3.3 Future Images
In this project, we use a novel idea of sensor data sharing
between vehicles. There has been lot of progress in new
5G standardization by the cellular industry [6].
Specifically, wireless technologies have been designed
that can enable sharing Gbps data between vehicles at very
low latency (10 msec and below). These developments
enable the use of raw images from lead vehicle for end to
end self-driving applications.

Note, we do not propose using steering wheel angle from
vehicle ahead for end-to-end self driving applications.
Lead vehicle can easily share steering angle data (requires
very low bandwidth) and theoretically same steering angle
can be used by ego vehicle when it arrives at the exact
same location. However, state-of-art GPS receivers have
significant errors in localization. Thus precise location of
the lead and the ego vehicle is unknown. Recently,
LiDARs are used for precise localization, however LiDAR
can be an expensive sensor and not able to provide
localization in bad weather (rain, snow etc.) conditions.
Hence in this work we focus on image sharing, which can
be used by CNN architecture without the knowledge of
exact location of the lead and the ego vehicle.

For this work we did not have access to data-sets where
two vehicles were driving on the road at the same time.
We created a virtual vehicle trace by shifting the data set
of the original vehicle in time. We followed the
Two-Second driving principle used by various states in
US, which recommends drivers to maintain two second
gap between vehicles for safe driving [16]. The camera
data in Udacity data-sets was recorded at roughly 20 Hz.
Hence, we created a new virtual vehicle by shifting the
original vehicle 2 seconds ahead in time.

By using this technique, at any time t, ego vehicle can
receive Image(t+40) from the virtual vehicle. Note, that
ego vehicle can store images received from the virtual
vehicle and use them at a later time. We are assuming that
only images from center camera are being shared. We did
not use flipped images data augmentation for images
received from the virtual vehicle.

Figure 6 and 7 below shows two images at time t as seen
by the host vehicle and virtual vehicle (2-second ahead)
respectively. As we can see from these figures, by
obtaining future image from the virtual vehicle, the ego
vehicle can know about the upcoming turn earlier. Future
images can be given as input to CNN and enable improved
steering angle prediction.

Figure 6:​ Center Image seen by ego vehicle at time t

Figure 7: Center Image seen by virtual vehicle
(Two-second ahead) at time t.

4. Methods

We currently use the CNN architecture as in [1], while
formulating steering angle prediction as a regression
problem. Network has ten layers, and we have extensively
used Batch Normalization and Dropout (which was not
used in [1]). The 10-layer network architecture is:

Layer Type Size

1 Conv 5 x 5, 24

2 Conv 5 x 5, 36

3 Conv 5 x 5, 48

4 Conv 3 x 3, 64

5 Conv 3 x 3, 64

6 FC 1164

7 FC 100

8 FC 50

9 FC 10

10 FC 1

Table 1: CNN architecture used for steering angle
prediction

The CNN architecture is also illustrated in the figure
below:

Figure 8:​ CNN architecture used for steering angle

prediction

We are using Batch Normalization after all the 5 Conv
Layers and Dropout after first four fully connected layers.
We identify setting Dropout layer Keep_probability
parameter to 0.2 provides the best performance for our
model. We have used ReLu nonlinearity after all the layers
(except the last one). We uses a mean squared error
(MSE) loss without any regularization. All these design
choices were derived using extensive experimentation
with a cross validation set consisting of 20% of the data.
As few examples, we have tried placing Batch
Normalization layer before the ReLU activations, but the
configuration performs significantly worse. Hence, we
decided to use Batch Normalization after the ReLU
activations. Dropout with probability 0.5 also performs
worse than probability of 0.2. We also experimented with
different number of convolutional and fully-connected
layers. Our results show that best performance is achieved
by using 5-Conv and 5-FC layer architecture.

For baseline we provide the current image as input to the
network. For the case with future images, we provide the
differential input at time t: Image(t) - Image (t+x). Here,
Image (t+x) is coming from a virtual vehicle two seconds
ahead of the ego vehicle. Images from the vehicle ahead
can be stored and x can have any value between 1 and 40
(40 is calculated using 20 Hz camera rate).

5​. Evaluation

In this section, we first present evaluation and
visualization for our baseline network. We will then

present evaluation while using future image data as input
to the network.

5.1 Baseline Network

We simulated the baseline network described in Section
4. We use Keras [4] for all our experiments with a Tensor
Flow backend. The network is trained using the MSE Loss
function. We used the Adam Optimizer with a learning
rate of 1e-3 and no decay rate. Our minibatch size is 64.

We train the network for 20 epochs and used early
stopping to choose the model at 18th epoch. We achieved
a validation loss of 0.0179, which is equivalent to 7.6
degrees mean error in the steering angle prediction. We
have plotted the validation and training loss for baseline
network in Figure 9. It should be noted that the training
loss is higher than the validation loss. The reason for this
is that the training data has a lot more steep turns and we
do not predict well for such steep turns. Thus the training
loss is skewed by these turns. Validation loss has
relatively fewer steep turns.

Figure 9:​ Loss function for the baseline network

5.2 Visualization

We plot the learned weights of 24 filters in the first
convolutional layer of the baseline network in Figure 10.
We can see that each filter is learning to detect a different
pattern in the input image.

 ​Figure 10:​ Visualizations of the First Layer Weights

We plot the activations at the first convolutional layer for
each of the 24 filters in Figure 11. We plot two images,
one with the road turning (left image) and one with a
straight road (right image). We can see that for both the
images, different filters get activated which is in-line with
the expectation from a network learning to predict steering
angle from driving data. We also found that some of the
filters were not detecting an obvious pattern, we did not
have the time to evaluate this and leave it as future work.
It is also interesting that the network learns to detect the
lane markers. This is because most of the dataset has clear
lane markings. This means that in areas without well
defined lanes the predictions may be quite off.

Figure 11:​ Activation Maps For 1st Convolutional Layer

In Figure 12, we plot the predicted and measured (as used

by the human driver) steering angle across the whole
dataset (training and validation). We can see that the
baseline network tracks the measured steering angle quite
well for moderate turns, but for steep turns it is not able to
predict the huge turn (i.e. large steering angle). Trip 2 and
Trip 4 specifically have some very tight turns and the
highest errors in the prediction come from these trips.

Figure 12​: Measured and predicted angles across the

whole dataset.
We show various example images from the validation set

with values of true and predicted steering angle (in red text
in the top left corner of images) in Figure 13. It can be
seen from these various scenarios that our baseline
network is able to learn from the dataset and able to
predict steering angles close to the true angle used by
human driver. Figure 14 shows challenging scenarios with
images having very steep turns. As we can see the
predictions with baseline network are not very accurate for
these turns.

Figure 13:​ Example images from the validation set

Figure 14:​ Examples images of sharp turns.

5.3 Future Images

​In this section, we used the images coming from the
vehicle ahead using V2V communications. As described
in Section 4, at time t ego vehicle will have access to
images from t+1 to t+40 which were received from virtual
vehicle in previous two seconds of driving. We did a
cross-validation and found x = 20 (i.e., the location when
lead vehicle was 1 second ahead) to give the best
performance. In Figure 15, we plot the training and
validation loss for the case with future images. At end of
epoch 7, we are able to obtain a validation loss of .0038
(corresponds to mean steering angle error of 3.5 degrees).

Figure 15:​ Loss function for the network using future
images
 We have provided the predicted steering angles with the
future image technique in Figure 16 for the same example
images with sharp turns as in Figure 14. We can see that
the prediction of steering angles in sharp turns is
significantly improved by using future image technique.

Figure 16:​ Visualization of sharp turn scenarios

6. Conclusions and Future Work

In this project, we have used CNN-based 10 layer
architecture to train camera data for predicting steering
wheel angle for self-driving car applications. We have
used various techniques for data-processing (image
cropping, removing of low steering angles) and data
augmentation (flipping images, using data from left and
right cameras). We have extensively used Batch
Normalization and Dropout layers in the CNN
architecture. Our baseline network is able to train well and
achieves a validation loss of .0179 (7.6 degree of mean
error in steering angle). We have provided various
visualization plots showing the performance and insights
of our baseline network.

We have proposed a novel technique of using future
images by using recent advances in 5G V2V
communications. To the best of our knowledge, this is the
first time V2V data has been used in deep learning
architecture for self-driving cars. Using future images, we
are able to obtain a validation loss of .0038 (3.5 degree of
mean error in steering angle). Even though this accuracy is
quite far from accuracies that would be required from
deployment self-driving systems. However, we think that
given the driving data-set is only of 28.33 minutes, our
proposed technique of using future images with deep
learning architecture shows potential of being used in
practice.
Our main focus in the project has been to run the baseline

network and conduct first experiments with future images.
We realize that both the baseline network and future image
input can be significantly optimized, and performance can
be further improved. Optical flow has been used in the
Udacity challenges to input previous images to the
network [5]. Optical flow while using future images could
be an interesting area of research. In Udacity challenges,
CNN-LSTM network seem to improve performance over
the CNN-based network used in this project. Future
images with CNN-LSTM architecture could also be a
good avenue for research.

Finally, we opensource all our scripts used in this project
[15]. The dataset are not part of this repository and we
refer the reader to [2] for the datasets.

References
[1] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B.

Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J.
Zhang, X. Zhang, J. Zhao, and K. Zieba “End to end
Learning for Self-Driving Cars”, CoRR, vol.
arXiv:1604.07316, 2016.

[2] Udacity Open-source Data sets:
https://github.com/udacity/self-driving-car

[3] Udacity Self-Driving Car Challenge#2:

https://github.com/udacity/self-driving-car

https://medium.com/udacity/challenge-2-using-deep-learnin
g-to-predict-steering-angles-f42004a36ff3

[4] Keras Documentation: ​https://keras.io/
[5] ​P. Weinzaepfel, J. Revaud, Z. Harchaoui, C. Schmid,

“DeepFlow: Large Displacement Optical Flow with Deep
Matching”, 2013 IEEE International Conference on
Computer Vision (ICCV '13).

[6] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A.
Soong, J. Zhang, “What will 5G be?”, IEEE Journal on
Selected Areas in Communications, Vol. 32, Issue 6, June
2014.

[7] 2nd Rank in Udacity Challenge, Team rambo.
https://github.com/udacity/self-driving-car/tree/master/steeri
ng-models/community-models/rambo

[8] 1st Rank in Udacity Challenge, Team komanda.
https://github.com/udacity/self-driving-car/tree/master/steeri
ng-models/community-models/komanda

[9] Udacity Challenge Final Ranking and Leaderboard
https://github.com/udacity/self-driving-car/tree/master/chall
enges/challenge-2

[10] V2V Safety Technology Now Standard on Cadillac CTS
Sedans
http://media.cadillac.com/media/us/en/cadillac/news.detail.h
tml/content/Pages/news/us/en/2017/mar/0309-v2v.html

[11] In Japan, Priuses can talk to other Priuses
https://techcrunch.com/2016/08/16/in-japan-priuses-can-talk
-to-other-priuses/

[12] First Toyota cars to include V2V and V2I communication
by the end of 2015
http://sites.ieee.org/connected-vehicles/2015/09/30/first-toy
ota-cars-to-include-v2v-and-v2i-communication-by-the-end
-of-2015/

[13] Intel showed how 5G networking will power VR and
self-driving cars
http://www.pcworld.com/article/3175745/internet-of-things/
intel-showed-how-5g-networking-will-power-vr-and-self-dr
iving-cars.html

[14] BMW: 5G is key to self-driving car deployment
http://www.computerworlduk.com/it-vendors/bmw-5g-coul
d-be-key-self-driving-car-deployment-3501253/

[15] ​https://github.com/choudharydhruv/cs231n_project
[16] ​https://en.wikipedia.org/wiki/Two-second_rule

https://techcrunch.com/2016/08/16/in-japan-priuses-can-talk-to-other-priuses/
https://techcrunch.com/2016/08/16/in-japan-priuses-can-talk-to-other-priuses/
https://medium.com/udacity/challenge-2-using-deep-learning-to-predict-steering-angles-f42004a36ff3
https://github.com/choudharydhruv/cs231n_project
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
http://media.cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/mar/0309-v2v.html
http://www.pcworld.com/article/3175745/internet-of-things/intel-showed-how-5g-networking-will-power-vr-and-self-driving-cars.html
https://en.wikipedia.org/wiki/Two-second_rule
http://sites.ieee.org/connected-vehicles/2015/09/30/first-toyota-cars-to-include-v2v-and-v2i-communication-by-the-end-of-2015/
http://media.cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/mar/0309-v2v.html
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://keras.io/
http://www.pcworld.com/article/3175745/internet-of-things/intel-showed-how-5g-networking-will-power-vr-and-self-driving-cars.html
http://www.computerworlduk.com/it-vendors/bmw-5g-could-be-key-self-driving-car-deployment-3501253/
https://medium.com/udacity/challenge-2-using-deep-learning-to-predict-steering-angles-f42004a36ff3
http://www.computerworlduk.com/it-vendors/bmw-5g-could-be-key-self-driving-car-deployment-3501253/
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo
http://sites.ieee.org/connected-vehicles/2015/09/30/first-toyota-cars-to-include-v2v-and-v2i-communication-by-the-end-of-2015/
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo
http://www.pcworld.com/article/3175745/internet-of-things/intel-showed-how-5g-networking-will-power-vr-and-self-driving-cars.html
http://sites.ieee.org/connected-vehicles/2015/09/30/first-toyota-cars-to-include-v2v-and-v2i-communication-by-the-end-of-2015/

