
 

 ​Abstract 
Self-driving vehicle control system would have to        

determine steering wheel angle, brakes, and acceleration       
in any driving environment. Convolutional Neural      
Networks (CNN) have been recently proposed as an        
effective solution for predicting steering wheel angles for        
self-driving cars. In this project, we have formulated        
steering angle prediction as a regression problem and        
have used open-source driving data sets released by        
Udacity to evaluate various CNN architectures. We have        
devised a novel technique of using image sharing between         
vehicles via Vehicle-to-Vehicle (V2V) communications.     
Our results show that by employing novel image sharing         
technique, we are able to reduce the validation loss by          
almost five times as compared to the baseline and achieve          
performance with mean error of 3.5 degrees in the         
steering wheel angle prediction.  
 
1. Introduction 

Self-Driving cars can have a huge impact on the society.          
The traditional robotics approach for designing      
self-driving software has four main components:      
Localization, Mapping, Perception and Path-Planning.     
Data from various on-board sensors (cameras, radars,       
Lidars, GPS, HD maps etc.) is used for realizing such a           
solution. This approach has severe challenges in many        
scenarios such as: bad-weather conditions, non      
line-of-sight view (driving around intersections), long      
range sensing etc. There has been a recent push to use           
deep learning for designing end-to-end self-driving      
systems. This approach could learn from the data collected         
by human driving and effectively try to emulate human         
driving behavior. 

In this project, we use a convolutional architecture        
based deep learning solution for designing self-driving       
software. Specifically, we use camera data from vehicles        
to train on the steering wheel angle. We have considered          
this as a regression problem for steering angle prediction.         
We use an open-sourced driving dataset released by        
Udacity [2]. We have cropped images in the driving         
dataset to focus on the section of the image most relevant           
to steering wheel angle learning. We have used techniques         

to augment the data collected from additional cameras on         
the car. We have used image flipping to further augment          
our dataset. Our baseline results show that Convolutional        
Neural Networks (CNN)-based deep learning solutions      
can be designed to effectively predict steering wheel        
angle. 

We have also proposed a novel approach of using future          
image as input to the CNN by sensor data sharing between           
vehicles using vehicle-to-vehicle (V2V) communications.     
Automotive industry have been working on V2V       
communication technologies for many years and      
deployments have already started in US (GM’s Cadillac        
CTS), Japan (Toyota Lexus, Prius and other models), and         
Europe (recent announcement from VW) [10], [11] and        
[12]. These deployments allow vehicles to share 300-400        
bytes of messages, at a periodic 10 Hz rate with a           
transmission range of 300-500m. Additionally, Cellular      
industry is getting ready for deploying 5G technologies        
with automotive as one of the main use cases. 5G-based          
V2V communications will enable vehicles to share huge        
amounts of data (Gbps and higher), with ultra-low latency         
(10 msec and below) and high reliability (Packet Error         
Ratio of 5% and below) [6], [13], and [14]. This would           
allow vehicles to share raw camera images which could be          
used for deep learning applications. Specifically, in this        
project we have created a virtual vehicle that is moving          
two-seconds ahead of the ego vehicle (Note, ego vehicle in          
this report refers to self-driving vehicle for which we are          
predicting steering wheel angle) and sharing raw camera        
images. We show that by using these future images from          
the vehicle ahead, we are able to reduce the validation loss           
by almost five times. To the best of our knowledge, this is            
the first time when raw image sharing between vehicles is          
used for deep learning based self-driving car systems. 

The rest of the report is organized as follows. In Section           
2, we provide details on related work. We present our data           
processing, augmentation and proposal for using future       
image data in Section 3. Deep learning network        
architecture is presented in Section 4. Evaluation and        
visualization of both baseline and network using future        
images is provided in Section 5. Finally, the conclusions         
and discussion on future work is presented in Section 6. 

 



 

2. Related Work 
Bojarski et al. [1] (NVIDIA team) have used CNNs to           

train input camera images to predict the steering wheel         
angle. They have formulated the steering wheel prediction        
as a regression problem and have used three cameras         
(center, left and right) to augment the data set during          
training, and thus generalize learning. The center camera        
sees the middle of the road, left and right cameras are           
tilted sideways. Correction factor is added to the steering         
angles corresponding to images collected from left and        
right cameras. Data augmentation techniques such as       
adding random rotations to the steering angle have also         
been applied. Deep network architecture uses five       
convolutional layers followed by five fully-connected      
layers. 

Udacity launched a similar self-driving car challenge [3]         
for using camera data to predict steering wheel angle.         
Udacity has open-sourced driving dataset collected for this        
challenge. Data-sets has images from 3 cameras (as in [1])          
and steering wheel, torque and brake data. Many solutions         
by teams participating in this challenge used CNN        
architectures similar to the one used by Bojarski et al. [1].           
They report that deeper architectures (such as ResNet,        
VGGNet) perform worse for this regression problem than        
relatively shallower CNN architecture in [1]. The final        
leaderboard and achieved validation accuracies are      
available at [9]. The winning team [8] used a combination          
of 3D CNNs and LSTMs to achieve mean error of 2.6           
degrees error. While this approach is accurate, it is         
computationally quite expensive. The second position      
team [7] used a relatively simpler approach while        
achieving impressive performance of 3.3 degrees. They       
propose using CNNs similar to the ones used by Bojarski          
et al. [1] but instead of using raw images as input, they            
pass in the delta between consecutive images in the         
dataset. This is based on the intuition that the displacement          
of image features is more valuable than the image itself.          
But they strictly use past images in the dataset. Our sensor           
data sharing is inspired from this approach, but we take the           
delta between images in the future rather than the past. 

Currently around 100 people die every day in car          
accidents in US. Automotive industry believes that V2V        
communications, which allows vehicles to share data       
among each other can prevent more than 80% of vehicle          
related crashes. In this regard, V2V deployments are        
already undergoing in US and Japan [10], [11], and [12].          
Research in 5G technologies, holds great promise for        
enabling high data rate and ultra low latency for V2V          
communications. Recently, many 5G demonstrations have      
been conducted by Nokia, Ericsson, Intel [13] etc.        
Self-Driving cars are frequently mentioned as one of the         

prominent use cases for 5G [14]. 

3. Dataset and Features 
Udacity has released data sets from 5 trips with a total           

drive time of 1694 seconds (28.23 minutes) [2]. Test         
vehicle has 3 cameras mounted as in [1]. Camera images          
are collected at a rate of around 20 Hz. Steering wheel           
angle, brake, acceleration, GPS data was also recorded in         
the experiments. The image size is 480 X 640 X 3 pixels            
and total data set is 3.63 GBytes.  

Figure 1 plots the time series of recorded steering         
angles across the 5 trips. The trips were taken at different           
locations with the following attributes: 
Trip#1: ​Direct sunlight, moderate turns in the beginning. 
Trip#2: ​Shadows, tight turns, curvy roads. 
Trip#3: ​Moderate turns, shadows. 
Trip#4: ​Tight turns, elevation. 
Trip#5: ​Traffic, fairly straight road, multiple lanes.      

Figure 1: ​Time Series of Steering Angles across 5 trips. 
 

It should be noted that although the training set has 33.8k            
images, there are only few images in the dataset with very           
steep turns. This will be a challenge during training         
because most examples have low to moderate steering        
angles, making it hard to learn and predict steep left and           
right turns. 

The dataset is a series of images and there is high            
correlation between adjacent samples, thus it is important        
during training to shuffle the training images. Moreover        
the validation strategy has to be chosen carefully. For e.g.          
if we choose the last part of the dataset as validation (Trip            
5), the images are from a fairly straight road and does not            
have any steep turns. If we randomize the whole dataset          
and choose a validation set, we might get very similar          
images in the validation and training sets. Thus it will get           
harder to detect if the network starts overfitting. Thus we          
choose the last 20% of each trip for cross validation. This           

 



 

allows us to check how well the model generalizes to          
unseen images and also helps us capture some steep turns          
from Trip 2 and Trip 4. 

3.1 Data Processing and Normalization 

We normalized and zero-centered image data (x /         
255.0-0.5). We carefully analyzed the image dataset and        
cropped top 1/2 (240 pixels) of the images as it does not            
have the information on the road (mostly consists of trees,          
sky etc.). Figure 2 shows two example images from the          
dataset (top portion above blue line has been cropped). 
  

Figure 2: ​Cropped Images in the original datasets  
 
We also removed images with steering angle values        

below a certain threshold (.05 radians). This removes        
noise in the data collection process and helps balance the          
dataset better because a large part of the data involves          
straight driving. Figure 3 shows the original distribution        
(using images from center camera) of steering wheel        
angles. The distribution is not normal and hence we would          
not expect mean squared error (MSE) loss to work well in           
this situation. In Figure 4, we removed images with         
corresponding steering angle value below 0.05 radians and        
it shows a much balanced distribution. 

 

 
Figure 3: Distribution of Steering Angles in the original         
data-set 
 

3.2  Data Augmentation 
We have used data from left and right cameras to           

augment the data collected by center camera. We adjust         
the steering angle by a fixed threshold to account for the           
positioning difference between these cameras. These      
off-center cameras enable training for recovery paths for        
situations when car might weave from center of the road.          
Specifically, we adjust the steering angles for images        
from left and right cameras as: 
steering_left = steering_center + STEER_CORRECTION 
steering_right = steering_left - STEER_CORRECTION 
 

 
Figure 4: Distribution of Steering Angles after removing        
images corresponding to low steering angles  
 

We do not have the ground truth for this correction           
factor and have treated it as a hyperparameter. For the          
baseline network we set STEER_CORRECTION to a       
value of 0.1 radians after cross validation.  
 

Figure 5: Distribution of Steering Angles using images        
from all three cameras and after applying       
STEER_CORRECTION for Left and Right Cameras. 
 

 



 

 ​3.3  Future Images 
In this project, we use a novel idea of sensor data sharing            
between vehicles. There has been lot of progress in new          
5G standardization by the cellular industry [6].       
Specifically, wireless technologies have been designed      
that can enable sharing Gbps data between vehicles at very          
low latency (10 msec and below). These developments        
enable the use of raw images from lead vehicle for end to            
end self-driving applications. 

Note, we do not propose using steering wheel angle from           
vehicle ahead for end-to-end self driving applications.       
Lead vehicle can easily share steering angle data (requires         
very low bandwidth) and theoretically same steering angle        
can be used by ego vehicle when it arrives at the exact            
same location. However, state-of-art GPS receivers have       
significant errors in localization. Thus precise location of        
the lead and the ego vehicle is unknown. Recently,         
LiDARs are used for precise localization, however LiDAR        
can be an expensive sensor and not able to provide          
localization in bad weather (rain, snow etc.) conditions.        
Hence in this work we focus on image sharing, which can           
be used by CNN architecture without the knowledge of         
exact location of the lead and the ego vehicle.  

For this work we did not have access to data-sets where            
two vehicles were driving on the road at the same time.           
We created a virtual vehicle trace by shifting the data set           
of the original vehicle in time. We followed the         
Two-Second driving principle used by various states in        
US, which recommends drivers to maintain two second        
gap between vehicles for safe driving [16]. The camera         
data in Udacity data-sets was recorded at roughly 20 Hz.          
Hence, we created a new virtual vehicle by shifting the          
original vehicle 2 seconds ahead in time. 

By using this technique, at any time t, ego vehicle can            
receive Image(t+40) from the virtual vehicle. Note, that        
ego vehicle can store images received from the virtual         
vehicle and use them at a later time. We are assuming that            
only images from center camera are being shared. We did          
not use flipped images data augmentation for images        
received from the virtual vehicle. 

Figure 6 and 7 below shows two images at time t as seen              
by the host vehicle and virtual vehicle (2-second ahead)         
respectively. As we can see from these figures, by         
obtaining future image from the virtual vehicle, the ego         
vehicle can know about the upcoming turn earlier. Future         
images can be given as input to CNN and enable improved           
steering angle prediction.  

 

 
Figure 6:​ Center Image seen by ego vehicle at time t  

 

 
Figure 7: Center Image seen by virtual vehicle        
(Two-second ahead) at time t. 
  
4. Methods 

We currently use the CNN architecture as in [1], while           
formulating steering angle prediction as a regression       
problem. Network has ten layers, and we have extensively         
used Batch Normalization and Dropout (which was not        
used in [1]). The 10-layer network architecture is: 

 

Layer Type Size 

1 Conv 5 x 5, 24 

2 Conv 5 x 5, 36 

3 Conv 5 x 5, 48 

4 Conv 3 x 3, 64 

5 Conv 3 x 3, 64 

6 FC 1164 

7 FC 100 

 



 

8 FC 50 

9 FC 10 

10 FC 1 

Table 1: CNN architecture used for steering angle        
prediction 
 

The CNN architecture is also illustrated in the figure          
below: 

 
Figure 8:​ CNN architecture used for steering angle 

prediction 
 

We are using Batch Normalization after all the 5 Conv           
Layers and Dropout after first four fully connected layers.         
We identify setting Dropout layer Keep_probability      
parameter to 0.2 provides the best performance for our         
model. We have used ReLu nonlinearity after all the layers          
(except the last one). We uses a mean squared error          
(MSE) loss without any regularization. All these design        
choices were derived using extensive experimentation      
with a cross validation set consisting of 20% of the data.           
As few examples, we have tried placing Batch        
Normalization layer before the ReLU activations, but the        
configuration performs significantly worse. Hence, we      
decided to use Batch Normalization after the ReLU        
activations. Dropout with probability 0.5 also performs       
worse than probability of 0.2. We also experimented with         
different number of convolutional and fully-connected      
layers. Our results show that best performance is achieved         
by using 5-Conv and 5-FC layer architecture. 

For baseline we provide the current image as input to the            
network. For the case with future images, we provide the          
differential input at time t: Image(t) - Image (t+x). Here,          
Image (t+x) is coming from a virtual vehicle two seconds          
ahead of the ego vehicle. Images from the vehicle ahead          
can be stored and x can have any value between 1 and 40             
(40 is calculated using 20 Hz camera rate). 
 
5​. Evaluation 

In this section, we first present evaluation and         
visualization for our baseline network. We will then        

present evaluation while using future image data as input         
to the network. 

 
5.1 Baseline Network 

We simulated the baseline network described in Section         
4. We use Keras [4] for all our experiments with a Tensor            
Flow backend. The network is trained using the MSE Loss          
function. We used the Adam Optimizer with a learning         
rate of 1e-3 and no decay rate. Our minibatch size is 64.  

We train the network for 20 epochs and used early           
stopping to choose the model at 18th epoch. We achieved          
a validation loss of 0.0179, which is equivalent to 7.6          
degrees mean error in the steering angle prediction. We         
have plotted the validation and training loss for baseline         
network in Figure 9. It should be noted that the training           
loss is higher than the validation loss. The reason for this           
is that the training data has a lot more steep turns and we             
do not predict well for such steep turns. Thus the training           
loss is skewed by these turns. Validation loss has         
relatively fewer steep turns. 

 
Figure 9:​ Loss function for the baseline network 
 
5.2 Visualization 

We plot the learned weights of 24 filters in the first            
convolutional layer of the baseline network in Figure 10.         
We can see that each filter is learning to detect a different            
pattern in the input image. 
 

 
 ​Figure 10:​ Visualizations of the First Layer Weights 
  

 



 

We plot the activations at the first convolutional layer for           
each of the 24 filters in Figure 11. We plot two images,            
one with the road turning (left image) and one with a           
straight road (right image). We can see that for both the           
images, different filters get activated which is in-line with         
the expectation from a network learning to predict steering         
angle from driving data. We also found that some of the           
filters were not detecting an obvious pattern, we did not          
have the time to evaluate this and leave it as future work.            
It is also interesting that the network learns to detect the           
lane markers. This is because most of the dataset has clear           
lane markings. This means that in areas without well         
defined lanes the predictions may be quite off. 

 

 
Figure 11:​ Activation Maps For 1st Convolutional Layer 

 
In Figure 12, we plot the predicted and measured (as used            

by the human driver) steering angle across the whole         
dataset (training and validation). We can see that the         
baseline network tracks the measured steering angle quite        
well for moderate turns, but for steep turns it is not able to             
predict the huge turn (i.e. large steering angle). Trip 2 and           
Trip 4 specifically have some very tight turns and the          
highest errors in the prediction come from these trips.  

 
Figure 12​: Measured and predicted angles across the        

whole dataset. 
We show various example images from the validation set          

with values of true and predicted steering angle (in red text           
in the top left corner of images) in Figure 13. It can be             
seen from these various scenarios that our baseline        
network is able to learn from the dataset and able to           
predict steering angles close to the true angle used by          
human driver. Figure 14 shows challenging scenarios with        
images having very steep turns. As we can see the          
predictions with baseline network are not very accurate for         
these turns. 
 

 

 

 
Figure 13:​ Example images from the validation set 

 

 

 
Figure 14:​ Examples images of sharp turns. 

 

 



 

 
 
5.3 Future Images 

​In this section, we used the images coming from the           
vehicle ahead using V2V communications. As described       
in Section 4, at time t ego vehicle will have access to            
images from t+1 to t+40 which were received from virtual          
vehicle in previous two seconds of driving. We did a          
cross-validation and found x = 20 (i.e., the location when          
lead vehicle was 1 second ahead) to give the best          
performance. In Figure 15, we plot the training and         
validation loss for the case with future images. At end of           
epoch 7, we are able to obtain a validation loss of .0038            
(corresponds to mean steering angle error of 3.5 degrees).   
 

 
Figure 15:​ Loss function for the network using future 
images 
  We have provided the predicted steering angles with the 
future image technique in Figure 16 for the same example 
images with sharp turns as in Figure 14. We can see that 
the prediction of steering angles in sharp turns is 
significantly improved by using future image technique. 
 

 
Figure 16:​ Visualization of sharp turn scenarios  

 
 
6. Conclusions and Future Work 

In this project, we have used CNN-based 10 layer          
architecture to train camera data for predicting steering        
wheel angle for self-driving car applications. We have        
used various techniques for data-processing (image      
cropping, removing of low steering angles) and data        
augmentation (flipping images, using data from left and        
right cameras). We have extensively used Batch       
Normalization and Dropout layers in the CNN       
architecture. Our baseline network is able to train well and          
achieves a validation loss of .0179 (7.6 degree of mean          
error in steering angle). We have provided various        
visualization plots showing the performance and insights       
of our baseline network. 

We have proposed a novel technique of using future          
images by using recent advances in 5G V2V        
communications. To the best of our knowledge, this is the          
first time V2V data has been used in deep learning          
architecture for self-driving cars. Using future images, we        
are able to obtain a validation loss of .0038 (3.5 degree of            
mean error in steering angle). Even though this accuracy is          
quite far from accuracies that would be required from         
deployment self-driving systems. However, we think that       
given the driving data-set is only of 28.33 minutes, our          
proposed technique of using future images with deep        
learning architecture shows potential of being used in        
practice.  
Our main focus in the project has been to run the baseline             

network and conduct first experiments with future images.        
We realize that both the baseline network and future image          
input can be significantly optimized, and performance can        
be further improved. Optical flow has been used in the          
Udacity challenges to input previous images to the        
network [5]. Optical flow while using future images could         
be an interesting area of research. In Udacity challenges,         
CNN-LSTM network seem to improve performance over       
the CNN-based network used in this project. Future        
images with CNN-LSTM architecture could also be a        
good avenue for research.  

Finally, we opensource all our scripts used in this project           
[15]. The dataset are not part of this repository and we           
refer the reader to [2] for the datasets. 
 
References 
[1] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B.           

Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J.           
Zhang, X. Zhang, J. Zhao, and K. Zieba “End to end           
Learning for Self-Driving Cars”, CoRR, vol.      
arXiv:1604.07316, 2016. 

[2]   Udacity Open-source Data sets: 
https://github.com/udacity/self-driving-car 

[3]   Udacity Self-Driving Car Challenge#2: 

 

https://github.com/udacity/self-driving-car


 

https://medium.com/udacity/challenge-2-using-deep-learnin
g-to-predict-steering-angles-f42004a36ff3 

[4]   Keras Documentation: ​https://keras.io/ 
[5] ​P. Weinzaepfel, J. Revaud, Z. Harchaoui, C. Schmid,         

“DeepFlow: Large Displacement Optical Flow with Deep       
Matching”, 2013 IEEE International Conference on      
Computer Vision (ICCV '13). 

[6] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A.            
Soong, J. Zhang, “What will 5G be?”, IEEE Journal on          
Selected Areas in Communications, Vol. 32, Issue 6, June         
2014.  

[7] 2nd Rank in Udacity Challenge, Team rambo.        
https://github.com/udacity/self-driving-car/tree/master/steeri
ng-models/community-models/rambo 

[8] 1st Rank in Udacity Challenge, Team komanda.        
https://github.com/udacity/self-driving-car/tree/master/steeri
ng-models/community-models/komanda 

[9] Udacity Challenge Final Ranking and Leaderboard       
https://github.com/udacity/self-driving-car/tree/master/chall
enges/challenge-2 

[10] V2V Safety Technology Now Standard on Cadillac CTS         
Sedans 
http://media.cadillac.com/media/us/en/cadillac/news.detail.h
tml/content/Pages/news/us/en/2017/mar/0309-v2v.html 

[11] In Japan, Priuses can talk to other Priuses 
https://techcrunch.com/2016/08/16/in-japan-priuses-can-talk
-to-other-priuses/ 

[12] First Toyota cars to include V2V and V2I communication 
by the end of 2015 
http://sites.ieee.org/connected-vehicles/2015/09/30/first-toy
ota-cars-to-include-v2v-and-v2i-communication-by-the-end
-of-2015/ 

[13] Intel showed how 5G networking will power VR and 
self-driving cars 
http://www.pcworld.com/article/3175745/internet-of-things/
intel-showed-how-5g-networking-will-power-vr-and-self-dr
iving-cars.html 

[14] BMW: 5G is key to self-driving car deployment 
http://www.computerworlduk.com/it-vendors/bmw-5g-coul
d-be-key-self-driving-car-deployment-3501253/ 

[15] ​https://github.com/choudharydhruv/cs231n_project 
[16] ​https://en.wikipedia.org/wiki/Two-second_rule 
 
 
 

 
 

 

 

https://techcrunch.com/2016/08/16/in-japan-priuses-can-talk-to-other-priuses/
https://techcrunch.com/2016/08/16/in-japan-priuses-can-talk-to-other-priuses/
https://medium.com/udacity/challenge-2-using-deep-learning-to-predict-steering-angles-f42004a36ff3
https://github.com/choudharydhruv/cs231n_project
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
http://media.cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/mar/0309-v2v.html
http://www.pcworld.com/article/3175745/internet-of-things/intel-showed-how-5g-networking-will-power-vr-and-self-driving-cars.html
https://en.wikipedia.org/wiki/Two-second_rule
http://sites.ieee.org/connected-vehicles/2015/09/30/first-toyota-cars-to-include-v2v-and-v2i-communication-by-the-end-of-2015/
http://media.cadillac.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/mar/0309-v2v.html
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://keras.io/
http://www.pcworld.com/article/3175745/internet-of-things/intel-showed-how-5g-networking-will-power-vr-and-self-driving-cars.html
http://www.computerworlduk.com/it-vendors/bmw-5g-could-be-key-self-driving-car-deployment-3501253/
https://medium.com/udacity/challenge-2-using-deep-learning-to-predict-steering-angles-f42004a36ff3
http://www.computerworlduk.com/it-vendors/bmw-5g-could-be-key-self-driving-car-deployment-3501253/
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo
http://sites.ieee.org/connected-vehicles/2015/09/30/first-toyota-cars-to-include-v2v-and-v2i-communication-by-the-end-of-2015/
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo
http://www.pcworld.com/article/3175745/internet-of-things/intel-showed-how-5g-networking-will-power-vr-and-self-driving-cars.html
http://sites.ieee.org/connected-vehicles/2015/09/30/first-toyota-cars-to-include-v2v-and-v2i-communication-by-the-end-of-2015/

