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Abstract

Most of the recent successful methods in accurate object
detection utilized some variants of R-CNN style two stage
Convolutional Neural Networks (CNN) in which plausible
regions were proposed in the first stage followed by a second
stage for decision refinement. These methods are accurate
but hard and slow to train. Single stage detection methods,
on the other hand, enjoy the high speed of training and the
efficiency in deployment. But they have not been as compet-
itive as two stage methods in terms of accuracy such as mAP
for high IoU threshold. Recently, Recurrent Rolling Convo-
lution (RRC) architecture, a novel single stage end-to-end
object detection network over multi-scale feature maps to
construct object classifiers and bounding box regressors,
was proposed. The RRC model has achieved state-of-the-
art performance in some tasks. In our project, we introduce
Backward Recurrent Rolling Convolution (BRRC) based on
RRC, and show that BRRC is able to produce better re-
sults and meanwhile faster than original RRC. We also in-
vestigate SSD with more bounding boxes and introduce an
encoder-decoder structure, Detection SegNet, for object de-
tection. We evaluate and compare all these models based on
IoU scores.

1. Introduction
Object detection is a crucial task for computer vision.

In many vision applications, robustly detecting objects
with high localization accuracy is important to the quality
of service. For instance, in advanced driver assistance
systems(ADAS), accurately detecting cars and pedestrians
plays a crucial rule on the safety of the autonomous actions.

For objection detection, there are two types of meth-
ods applying convolutional neural nets(CNN) that are
popular in recent years. First type is two stage CNNs
where first stage is region proposal and second stage is
decision refinement. Some well-known methods include
the R-CNN[5], fast R-CNN[4] and faster R-CNN[16]
sequence and their variations. These models have relatively

high accuracy on detection accuracy but are slow. Even
for faster-RCNN, it can only process 7 frames per sec-
ond(FPS), which is not enough for real-time application.
The other type of methods is based on single stage neural
nets without the procedure of region proposal. Some
examples are SSD[12] and YOLO[13]. These methods are
faster than two stage methods but prone to low accuracy
when the requirement of Intersection over Union (IoU) is
high.

In order to create a model with both high accuracy
and high speed, it is important to analyze the reason behind
the low accuracy of single stage models. After experiments,
it is shown that most of the low quality bounding boxes
come from the failure localization of either small objects
or overlapping objects. The idea here is single model
usually use high resolution feature maps to detect small
objects. However, high resolution feature maps may
not be deep enough to include information needed for
detection. A recent paper by Ren et al. [14] applied a
method called ”Recurrent Rolling Convolution” (RRC) to
merge information from upper layer and lower layer feature
maps to current feature map based on SSD architecture and
achieved good performance, which is interesting.

In our project, we modify RRC with only backward
rolling, and show that our model achieves better accuracy
and runs moderately faster than original RRC model. We
also investigate SSD model with more bounding boxes
and introduce the encoder-decoder structure for object
detection. Although performance of the latter two is not as
good as BRRC, they are much more efficient than BRRC
in terms of computation speed.

2. Related Work

Convolutional neural network approaches with a region
proposal stage have recently been popular in the area of
object detection and have achieved very successful results.
R-CNN[5] used selective search[22] to generate object
proposals , and CNN to extract and feed features to the
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classifier. Fast R-CNN[4] and faster R-CNN[16] were later
proposed to accelerate R-CNN. In [4], RoI pooling was
used to efficiently generate features for object proposals,
whereas in [16], CNN was used to perform region proposal
instead of selective search. A number of variants of
[16] were proposed and performs well in benchmarks
considering mAP for high IoU threshold.

However, one problem with R-CNN based
methods[5, 23, 26] is the heavy computation in the
second stage due to the process of a large number of
proposals. Various single stage methods[17, 12, 13] which
do not rely on region proposals have been proposed to solve
this problem. For example, SSD[12] is a single stage model
in which the feature maps with different resolutions in the
feed-forward process were directly used to detect objects
with sizes of a specified range. It performed much faster
than [16] and achieved good results. YOLO[13] is another
fast single stage method which achieved promising results.

Though Recurrent Neural Networks (RNN) has been widely
adopted in many areas such as machine translation[20],
image captioning[8, 25] and multimedia[15, 2], the idea of
applying sequence modeling to improve object detection
accuracy has not been actively explored by researchers.
RRC architecture was one of the first models that explored
sequence modeling on object detection in which every
object was efficiently detected by a network which is deep
in context and achieved state-of-the-art performance under
a high IoU threshold. Our proposed model utilizes RRC
method but only considers backward rolling, and we can
show that our model is able to achieve comparable(better)
results and run reasonably faster.

3. Approaches
In this section we would like to introduce the three mod-

els we come up with to achieve high accuracy and speed
for image detection in advanced driver assistance systems
domain.

3.1. SSD with More Bounding Boxes

SSD[12] model is introduced by Liu et al in 2016. As
a detection model, the inputs are preprocessed images
and outputs are a set of purposed bounding boxes. Each
bounding box contains position of the bounding boxes(4)
and classification result for the bounding box(one-hot
coding, for KITTI dataset we only care Car class). The loss
function is the following:

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g))

Where N is the number of matched default boxes, x is a
indicator to match predicted bounding boxes with ground

truth boxes, c are classes confidences in classification,
l and g are predicted and ground truth bounding boxes
respectively. Lloc is L1 loss on bounding box regression
and Lconf is cross-entropy loss on classification. Figure1
shows the architecture of the SSD network. SSD contains a
reduced VGG-16[19] network, on top of which are several
added convolution layers. These newly added convolution
layers, as well as the last layer in VGG net are served as the
source of bounding box generation for object detection.

Labels and losses for SSD are generated in the following
manner: for a feature map in detection group, e.g. a
4 ∗ 4 map, we split the original image into 4 ∗ 4 cells and
for each cell we create a set of default bounding boxes
centered around the cell. This set of default bounding
boxes corresponds to one data point in the feature map.
Then we compare the default bounding boxes and ground
truth bounding boxes, if the Intersection over Union(IoU)
between them is larger than 0.7, we let the default box
be a positive example. For its labeling, the class of it
is Car and the 4 positions are the offset between it and
the corresponding ground truth box. The other bounding
boxes are negative examples, with class be Background.
In training, for the feature map, we apply 6*(num class +
4) 3*3 filters to convolve the feature map and get all the
outputs(dimension is 4(position offsets) + num classes) for
all bounding boxes and use these outputs to compute loss.
During testing, we use the trained set of detection feature
maps to detect bounding boxes.

One straightforward idea to improve detection accu-
racy with less sacrifice on speed is to add more default
bounding boxes on original SSD model. The intuition is
with more default bounding boxes, the probability that one
of them being closer to a ground truth bounding box is
larger, making the positive examples easier to train. The
default number of bounding boxes per feature map in SSD
is 4 or 6. We decide to expand the number to 8 for our new
model.

3.2. Backward Recurrent Rolling Convolution

Backward Recurrent Rolling Convolution (BRRC) is
based on RRC model. First we would like to give a brief
introduction of the original RRC model and then highlight
the difference between our model and RRC.

Ren et al’s RRC model is based on SSD[12] with the
input, output and loss function setting are all the same.
Following SSD, the backbone of RRC network architecture
is reduced VGG-16[19] network. However, different from
SSD, on top of the VGG net is a set of layers for detec-
tion connected in the manner of ”The Recurrent Rolling
Convolution”. This set of feature maps are connected by
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Figure 1. A visualization of SSD network, figure from[12].

convolution and the resolutions are decreasing. During
training, for each feature map in the ”Recurrent Rolling
Convolution” set, the information of its previous and next
feature map will be conveyed to it using convolution plus
pooling (previous) or convolution plus deconvolution (next)
in a iterative manner. Through this mechanism lower
level feature maps are able to get information from higher
level feature maps, which is necessary for detection small
objects. Each feature map is in charge of detecting objects
of a certain scale range. Figure2 shows the visualization of
the ”Recurrent Rolling Convolution” set and information
convey mechanism.

RRC used bi-directional rolling convolution, namely
padding lower layers to upper layers and vice versa. Its
idea of backward padding is to add ”abstract” information
to lower level feature maps to solve the problem that SSD
is not able to provide good detection on small objects. The
idea for forward padding is to add ”context” info from
lower level feature maps to upper level maps. We argue
that backward padding is useful but the forward padding
is redundant because the context information should be
conveyed to upper layer from lower layers in the normal
forward convolution path if we correctly train the model.
The forward padding also makes the net harder and slower
to train. Thus we introduce Backward Recurrent Rolling
Convolution, only keep the backward path and throw away
the forward path. Figure 3 shows the net structure of
BRRC.

3.3. Encoder-Decoder Structure for Image Detec-
tion

After finishing the BRRC experiment, we find although
it is faster than the original RRC, the speed is still a lot
slower than SSD. In order to further speed up the network
and keep relative high accuracy in detection, we come up
with the idea to refer to some works in image segmentation.
As mentioned in previous sections, one important problem

of SSD we would like to solve is the lack of abstraction
information when using lower level feature maps to detect
small objects. The encoder-decoder structure in image
segmentation structures can provide a solution for this. The
reason is that the deeper the layer, the larger the resolution
and more abstracted the information, making it suitable for
detecting small objects.

One of the state of art works in image segmentation
with encoder-decoder system is SegNet[1]. SegNet was
introduced by Badrinarayanan et al in 2015 and achieved
state of art results in image segmentation. Figure4 is
a visualization of SegNet, the encoder part of SegNet
architecture is based on VGG-16[19] network and the
decoder part is the mirror of encoder.

For our project, we created Detection SegNet by changing
the decoding part of original SegNet to have 3 feature map
sizes instead of 5 and applied the last feature map for each
map size to perform detection task. The setting for input,
output and detection part is similar to SSD and RRC.

4. Experiments

4.1. Datasets

We use the challenging KITTI Object Detection Evalua-
tion dataset [3] to evaluate our model. The dataset consists
of 7,481 training images and 7,518 test images, comprising
a total of 80,256 labeled objects. All images are colored
with png format. They are taken in various real world road
settings with multiple objects of different sizes and scales,
occlusions and different lighting conditions. The training
images are labeled out as images with cars, pedestrians, cy-
clists or just background with bounding boxes. The dataset
and benchmarks is widely used in autonomous driving ob-
ject detection researches.
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Figure 2. Visualization of Recurrent Rolling Convolution mechanism and detection feature maps. Figure from Ren et al’s paper

Figure 3. Visualization of Backward Recurrent Rolling Convolu-
tion net structure

Figure 4. A visualization of SegNet, figure from[1].

4.2. Training and Testing

We implemented the three models in Caffe framework[7]
based on the structures and source code in the SSD[11],
RRC[24] and SegNet[9] papers. We applied a pre-
trained model of the fully convolutional reduced (atrous)
VGGNet[10] in order to make the whole networks easier to
train and converge. First we over-fit each model on a small
training dataset for about 250 iterations to achieve a detec-
tion IoU score of more than 0.7 to show the correctness

of models, followed by formal training and testing. The
KITTI dataset images are of resolution 2560 by 768 which
can take a lot of computation time and memory to train (For
reference, the dataset images used in the SSD[12] paper
are 300 by 300). Due to hardware limitation of only one
Nviadia Tesla K80 GPU with around 12 GB of memory,
we trained each of our models and the RRC baseline
model with a training set of 200 images, validation set of
50 images for 1000 iterations and batch size of 1. After
training we generate bounding boxes on a test image set of
size 500. Training with a larger dataset for more iterations
is likely to result in better test results. However, given the
available computation resources and budget it will take
more than a week to train the whole KITTI dataset of
more than 7000 images for 60000 iterations as the original
RRC[14] paper did. We believe our experiments with
smaller dataset and less iterations is enough to demonstrate
the characteristics of each models and make comparisons
with the RRC model under the same training and testing
conditions as presented in the next section.

The following settings are used throughout the exper-
iments. For BRRC network architecture, we do BRRC
for 5 times in training and assign 5 separate regressors for
each corresponding feature map. For learning, stochastic
gradient descent (SGD) with momentum of 0.9 is used for
optimization. Weight decay is set to 0.0005 and we set
the initial learning rate to 0.0005. For evaluation, we use
Intersection over Union (IoU) to evaluate the performance
of each model:

IoU =
SI

SU

where SI is the area of overlap between ground truth bound-
ing box and predicted bounding box and SU is the area of
union between ground truth bounding box and predicted
bounding box.
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Model IoU Speed(Sec/iter)
SSD+Box 0.186 8

SegNet 0.349 18
RRC 0.510 68

BRRC 0.548 62
Table 1. Performance of different models

4.3. Results and Analysis

We evaluate performance of SSD, Detection SegNet,
original RRC and BRRC models in terms of IoU scores
and speed. The results are shown in Table 1.

As we can see from Table 1, there is in general a
trade-off between speed and performance. However as we
expected, the speed and accuracy for BRRC are both better
than RRC. This proves our hypothesis that the forward path
of recurrent rolling convolution is redundant to some extent.

Figure 5 shows two set of results from testing set.
From top to bottom are results of SSD+bounding box, De-
tection SegNet, RRC and BRRC. These are typical results
we get after we checked all testing results. For SSD results,
we find that it is hard for the net to learn positions and sizes
of the ground truth bounding boxes. The boxes it generated
are similar to default bounding boxes. In addition, it cannot
detect relatively small objects, which support the claim
that it is hard for lower level feature maps to have enough
abstarct information to detect small objects. For Detection
SegNet results, as we can see, the net is able to fairly and
precisely locate the position of both small and large objects.
This shows the addition of decoder layers does solve the
problem of ”lower level features maps cannot provide good
detection results of small objects” to some extent. But the
network seems to have some difficulties learning the correct
sizes of the objects. This might due to the fact that we
changed the default setting to delete all batch normalization
layers in the network in order to be comparable to the
architectures of SSD, RRC and BRRC. It could be the case
that the lack of batch normalization prevents the network
from good convergence. We are interested to see the results
after adding batch normalization in this setting. For RRC
and BRRC results, both the two networks are able to locate
the objects and predict the sizes of the objects. In general
BRRC is able to predict more accurate bounding box sizes
than original RRC. There exists possibility that the lower
accuracy is due to the fact that RRC converges slower
because of more complex network structure and more
parameters. However, the more than three percentage of
advantage in accuracy and faster in speed do show that the
BRRC model is a competitive model for image detection
and at least comparable to some state of art models.

5. Conclusion
In this project, we designed three models, namely

SSD+bounding boxes, BRRC and Detection SegNet for
object detection, especially in the domain of advanced
driver assistance systems(ADAS). We find that RRC based
model outperforms SSD and Detection SegNet methods
in terms of IoU accuracy but is computationally more
expensive. The BRRC model proposed by us is able to
beat the original RRC model, a state of art model in object
detection, in both detection accuracy and speed.

There are several things we would like to do in fu-
ture. Firstly, since all three of our models use pretrained
VGGNet[18] as the base model, we would like to try
other base architectures, for example GoogLeNet[21] and
ResNet[6]. Secondly, the computational capacity limitation
and the high resolution of KITTI dataset for now restricts
us for running large iterations on whole dataset. We really
want to have a chance to run our models on whole datasets
for around 60,000 iterations(the number of iterations in
RRC paper) with more GPUS(4) to see the complete
results. In addition, for speeding up network and keep
all nets with the same setting, we have not include batch
normalization in all three models, especially Detection
SegNet. In future we would like to add batch normalization
and compare the difference in training procedure and
testing results.
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