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Abstract

Dempster-Shafer theory provides a sensor fusion frame-
work that autonomously accounts for obstacle occlusion in
dynamic, urban environments. However, to discern static
and moving obstacles, the Dempster-Shafer approach re-
quires manual tuning of parameters dependent on the sit-
uation and sensor types. The proposed methodology uti-
lizes a deep fully convolutional neural network to improve
the robust performance of the information fusion algorithm
in distinguishing static and moving obstacles from naviga-
ble space. The image-like spatial structure of probabilis-
tic occupancy allows a semantic segmentation framework
to discern classes for individual grid cells. A subset of the
KITTI LIDAR tracking dataset in combination with seman-
tic map data was used for the information fusion task. The
probabilistic occupancy grid output of the Dempster-Shafer
information fusion algorithm was provided as input to the
neural network. The network then learned an offset from
the original DST result to improve semantic labeling perfor-
mance. The proposed framework outperformed the baseline
approach in the mean intersection over union metric reach-
ing 0.546 and 0.531 in the validation and test sets respec-
tively. However, little improvement was achieved in discern-
ing moving and static cells due to the limited dataset size.
To improve model performance in future work, the dataset
will be expanded to facilitate more effective learning, and
temporal data will be fed through individual convolutional
networks prior to being merged in channels as input to the
main network.

1. Introduction
Autonomously accounting for obstacle occlusion is an

open problem for self-driving cars. Human drivers can an-
ticipate possible hazards in blind spots caused by lack of
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Figure 1: Example of LIDAR HDL-64E scan (top-down view)
prior to pre-processing into an occupancy grid [6].

visibility. A human driver can infer that a person standing
by the road may begin moving or that a parked car may
pull out onto the road. An autonomous vehicle should have
the capability for similar logic and reactions. Dempster-
Shafer Theory (DST) provides a decision-making strategy
that addresses occlusion by modeling both lack of infor-
mation and conflicting information directly [14]. DST can
combine sensor information subject to uncertainty with se-
mantic scene information obtained from a street-level digi-
tal map as in [14]. Sensor and digital map occupancy grids
are fused to discern grid cells that contain potential haz-
ards (both mobile and stationary) from cells that are navi-
gable by the vehicle. This information is stored in a holistic
perception grid, which allows for the perception system to
anticipate areas where occluded hazards may appear. How-
ever, the approach heavily relies on several parameters that
require manual tuning specific to the situation in order to
achieve desired behavior in detecting static and moving ob-
stacles [14].

The proposed approach merges the semantic segmenta-
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tion framework in [15] using a fully convolutional neural
network (FCN) with the DST information fusion algorithm
presented in [14] to increase the latter’s robustness in dis-
cerning occupancy grid cells containing static and moving
objects from navigable space. The inputs to the baseline
DST algorithm in [14] are a LIDAR sensor grid containing
LIDAR data, a geographic information system (GIS) grid
containing semantic map data, and probabilistic occupancy
grids which form the perception grid outputted by DST at
the previous time-step. The input to the FCN is the set of
probabilistic perception grids generated by the DST algo-
rithm at the current and previous time-steps stacked in chan-
nels. The network outputs the updated perception grid for
the current time-step, which is a cell-by-cell classification
of the local grid according to its semantic segmentation as
described in Section 4.

2. Related Work
A perception framework commonly depends on an occu-

pancy grid built in 2-D, 2.5-D, or 3-D space [14, 21, 2]. This
paper will focus on approaches dealing with 2-D occupancy
grids due to their similarity in spatial structure to images,
allowing for direct applicability of existing deep learning
algorithms. One approach to scene understanding and sen-
sor fusion employs DST as proposed in [14]. Kurdej et al.
focus on the benefits of combining evidence in the form of
an existing digital street-level maps and sensor data to natu-
rally handle occlusion. A digital map occupancy grid and a
sensor occupancy grid are combined to make decisions us-
ing DST as to which class a grid cell belongs to in a set of
hypotheses (e.g. static, moving, infrastructure, etc.) thus
forming a perception grid [14]. Kurdej et al do not cluster
the grid cells into objects, in contrast to some Bayesian ap-
proaches as in [8], but rather facilitate perception based on
classified grid cell information. The drawback to the algo-
rithm proposed in [14] is that the approach relies on several
parameters that require manual tuning to achieve desired be-
havior. For instance, the discounting factor determines how
quickly information is discarded. The algorithm also relies
on gains and increment/decrement step sizes that determine
the speed with which a decision is made that an object is
categorized as moving or static [14]. Manually tuning these
parameters is not a robust solution since better optimization
performance could be achieved algorithmically. Similarly
to [14], [23] utilizes DST to fuse information from several
sensors in order to perform obstacle detection. In [23], sen-
sor information is discounted based on associations to ob-
stacles from different sensor types, which leads to a biasing
of the obstacle detections to more accurate sensor data. The
requirements are also loosened on occupancy grid cell inde-
pendence in [23] as compared to [14].

Recently, several works have investigated convolutional
neural networks (CNN) as a direct means to perform sensor

fusion. In [18], the authors fuse data from stereo cameras
with a 6-layer FCN framework to predict a disparity map
utilizing the KITTI [6] dataset for training. The resulting
algorithm is robust to obstacle occlusion. In [5], RGB and
depth information was passed through a two-stream CNN
separately to successfully perform object recognition. The
two streams were unified with fully connected layers. DST
has previously been used in perception as a pre-processing
information fusion step to a CNN to achieve both semantic
image labeling as in [25] and object detection and classi-
fication as in [16]. [25] presents a custom, 4-layer CNN,
while [16] utilizes a pre-trained VGG-16 network for each
sensor.

There have also been some recent work in scene seg-
mentation utilizing LIDAR occupancy grids and deep learn-
ing. Since LIDAR datasets have started to emerge for pub-
lic use only recently, utilizing deep learning techniques on
LIDAR data is an active area of research. LIDAR 2-D occu-
pancy grids provide a parallel with pixel-image data, since
both are a 2-D representation of spatial information that
can be stacked into channels. [22] investigates some com-
mon CNN architectures pre-trained on the ImageNet dataset
such as AlexNet, GoogLeNet, VGG-16 to classify cells into
road types. [22] determined that using networks pre-trained
on images was advantageous as compared to training cus-
tom architectures from scratch. [7] utilizes LIDAR occu-
pancy grids to discern hallways from rooms in a building
with a 5-layer CNN architecture. [3] uses a deep FCN with
12 convolutional layers to provide semantic labels for the
grid cells discerning the road from the rest of the environ-
ment. This algorithm outperforms the state-of-the-art on the
KITTI dataset. The advantage of FCNs is the minimized
number of parameters required and the ability to maintain
the spatial representation of the input throughout training.
[3] utilizes dilation to achieve a larger receptive field within
the network, aiding in the segmentation task.

In this paper, the classical FCN image semantic segmen-
tation approach proposed in [15] is merged with the infor-
mation fusion algorithm presented in [14] to improve the
performance of the DST algorithm in discerning occupancy
grid cells containing both static and moving objects from
navigable space. The generation and pre-processing of the
dataset used to train and test the network is described in
Section 3. The algorithmic approach to information fusion
and segmentation utilizing DST and FCN is outlined in de-
tail in Section 4, including the specific architecture of the
FCN. The experimental results are presented and discussed
in Sections 5 and 6.

3. Dataset and Features
The KITTI tracking dataset [6] was augmented for use in

information fusion as per Kurdej’s framework in [14]. Four
driving sequences were chosen for training (140 examples),
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two for validation (48 examples) and two for testing (64 ex-
amples). The augmented dataset consists of a GIS grid con-
taining the semantic map information, a sensor grid con-
taining HDL-64E Velodyne LIDAR data, and the labeled
perception grid segmentation. A sample of the raw LIDAR
data prior to processing into an occupancy grid is shown in
Figure 1. Each grid is created for a single ego vehicle GPS
coordinate which is obtained either every 1 s or 2 s depend-
ing on the driving sequence [6]. The grids have dimensions
of 85.4m×85.4m, with the ego vehicle in the center. Given
a discretization of 0.33m per grid cell, each grid is of size
256× 256 cells.

The data for the GIS grids was obtained from the Open-
StreetMap database and processed with the QGIS software
[17, 19]. Each grid cell is categorized into the classes:
building, road, or intermediate space. The map is assumed
to have high accuracy, although there is evidence that local-
izing with OpenStreetMap and GPS alone is not sufficient
[24].

The data from the HDL-64E Velodyne LIDAR obtained
as part of the KITTI tracking dataset was used to create the
sensor occupancy grids [6]. The grids are categorized into
free, occupied, and unknown space. A simple form of ray-
tracing is performed where all space between a measure-
ment and the physical sensor is considered free. In order to
classify road measurements as ‘free space’, the RANSAC
algorithm was used to segment out the estimation to the
ground plane as part of data pre-prossessing 1.

The perception grid classifies each grid cell into five
classes: navigable, non-navigable, moving, stopped, or
building. Objects within the KITTI tracking dataset were
classified as ‘moving’ if their global location with respect to
the first obtained GPS point in a driving sequence changed
from one measurement to the next by a distance of more
than 10cm 2.

Examples of GIS and sensor grids, as well as their cor-
responding perception grid is shown in Figures 2, 3, and 4.
The dataset contains an imbalanced class distribution with
only 0.09% static cells and 0.26% moving cells within the
training set.

4. Methods

This section is organized as follows: the DST framework
is briefly described in Section 4.1 followed by the outline of
the FCN architecture and the loss for optimization in Sec-
tion 4.2.

1The RANSAC algorithm used: https://github.com/falcondai/py-
ransac.

2Conversion to global coordinates from GPS coordinates:
https://github.com/utiasSTARS/pykitti.
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Figure 2: Training data example of a GIS occupancy grid plotted
as a contour plot.
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Figure 3: Training data example of a lidar occupancy grid plotted
as a contour plot.
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Figure 4: Training data example label of a perception grid plotted
as a contour plot. The figure shows a moving truck approaching
an intersection.

4.1. DST Information Fusion

The algorithm proposed in [13, 14] is chosen as the base-
line comparison for the proposed FCN-DST information fu-
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sion approach. DST takes as input the current sensor grid
and GIS grid as well as the perception grid at the previous
time-step. The algorithm combines the information utiliz-
ing a Dempster-Shafer combination rule to produce an up-
dated perception grid. DST works with belief masses as-
sociated with sets of events rather than probabilities of sin-
gleton events. DST can directly model lack of information
by assigning mass to the set of all possible events. These
masses can then be converted to traditional probabilities us-
ing the concept of pignistic probability. Further details on
the information fusion procedure are provided in the Ap-
pendix.

Figure 5: FCN architecture presented in [15].

4.2. FCN-DST Information Fusion

The grid sensitivity of the DST framework is optimized
for segmentation performance by passing its output through
an FCN. The architecture of the FCN 3 is based on the
model presented in [15] as shown in Figure 5. An FCN con-
sists of only convolutional layers, maintaining the spatial in-
formation for segmentation. In [15], the architecture begins
with the 16 convolutional layers and ReLU activations of a
VGG-19 network pre-trained on images, interspersed with
pooling layers. These are followed by 3 de-convolutional
layers separated by dropout for regularization, and then 2
more convolutional layers, ending in a softmax layer. Due
to the small dataset size, it was imperative to initialize the
VGG layers with pre-trained weights. Nevertheless, the en-
tire architecture was trained on the dataset as the nature of
LIDAR data is substantially different from that of RGB im-
ages.

To create compatibility between the occupancy grid
dataset considered in this paper and the FCN architecture,
several minor adjustments were made. The depth of the last
set of layers was changed from 21 to 5 to accommodate
the number of classes in the perception grid labels. The in-
put to the FCN is the set of probabilistic perception grids
generated by the DST algorithm at the current and previous

3Starter code for the FCN was obtained from:
https://github.com/shelhamer/fcn.berkeleyvision.org.

time-step stacked in channels (10 channels in total). The
perception grid updates within DST are accumulated over
time; hence, the previous time-step output contains the ac-
cumulated time-history data. By providing the current and
previous DST perception grids as inputs, the FCN should
have sufficient information to learn the temporal and spa-
tial information necessary to classify moving and static cells
effectively. To make the 10-channel DST occupancy grids
compatible with the VGG network, which expects RGB im-
ages as inputs, an additional convolutional layer was added
at the start of the architecture to reduce the input channel
number to three.

The objective of a deep neural network is commonly
taken as the cross-entropy loss. Since the segmentation
output is of occupancy grid dimension, a modified cross-
entropy loss is used, where the loss is averaged over all the
cells in a grid. The loss is also weighted to resolve the class
imbalance. The loss equation is as follows [15, 9]:

loss =
1

N × 256× 256

∑
k

∑
i

∑
j

−log
(efyk,i,j∑

l e
fl

)
w[yk,i,j ],

(1)
where N is the batch size (k is the corresponding iterator),
i, j sum over the spatial dimensions, f represents the soft-
max scores, and y is the correct class label. The weights w
for each class are computed according to the formula intro-
duced in [4]:

wc = median freq/freq[c] (2)

where freq is the number of times a class appears divided by
the total number of pixels in images that contain the class
within the training set.

5. Results
The FCN architecture described in Section 4.2 was im-

plemented in the TensorFlow open-source framework [1].
The effectiveness of the approach is measured in reference
to the DST baseline using the mean intersection over union
(IU) metric over each of the classes. IU is often used for
semantic segmentation to directly account for class imbal-
ance. The IU metric is computed as follows:

IU =
TP

FP + TP + FN
. (3)

The neural network parameters were tuned to optimize
the IU metric. The batch size was chosen to be 32 to balance
noise reduction in the loss update with reasonable compu-
tation time for each iteration (300 iterations took approxi-
mately 45 minutes to run on an NVIDIA GPU). The learn-
ing rate was optimized such that the loss was not decreasing
too quickly at the start and not too slowly across iterations.
The training loss curve is shown in Figure 6, which indi-
cates that an appropriate learning rate was selected. In an
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Figure 6: (a) Loss profile over iterations. (b) IU metric profile
over iterations.

attempt to prevent overfitting, the keep probability in the
dropout layers during training was set to 0.1. Figure 6 de-
picts that overfitting was nevertheless still present, since the
validation loss curve diverges from the training loss curve
due to the limited dataset size. Table 1 summarizes the
tuned hyper-parameters for the FCN.

learning rate keep probability batch size filter size

1e-4 0.1 32 7

Table 1: Tuned model hyper-parameters based on IU metric.

To optimize the parameters within the FCN, the com-
monly used Adam algorithm is chosen [10]. Adam adapts
learning rates to each parameter in the optimization, while
employing the concept of momentum to arrive at a solution
more efficiently [11]. The recommended hyper-parameters
for the Adam optimizer were used: β1 = 0.9, β2 = 0.999,
and ε = 1e− 8 [10].

Table 2 presents the results obtained for the IU metric
on the validation and test sets. The tuned FCN architecture

achieved a slightly higher mean IU than DST alone in both
the test and validations sets of 0.546 and 0.531 respectively.
Although the individual class IU values were higher (ex-
cept for the ‘building’ class), the network still showed poor
static and moving object detection performance. Figure 7
shows the confusion matrices for the classification task on
the training, validation, and test sets. Although the training
set confusion matrix shows favorable performance in pre-
dicting the static and moving classes (high values on the
diagonal), the FCN does not generalize well in these cate-
gories on the validation and test sets. This is further shown
in Table 3 in the accuracy, prediction, and recall metrics.
Note that despite the high accuracy, overfitting is indicated
by the lower precision and recall results in the validation
and test sets. Figure 8 portrays the moving category prob-
abilistic DST occupancy grid (a channel in the input to the
FCN) alongside the predictions made by the network and
the expected labels for an example within the validation set.

FCN-DST val DST val FCN-DST test DST test

Navigable 0.895 0.854 0.839 0.775
Non-Navigable 0.931 0.904 0.923 0.786

Building 0.882 1.00 0.903 1.00
Static 0.00928 0.00135 0.000701 0.000558

Moving 0.0108 0.0140 0.00787 0.00120

Mean 0.546 0.539 0.531 0.512

Table 2: Results table: IU metric values for each class in the vali-
dation and test sets.

Accuracy Precision Recall

FCN-DST train 0.944 0.616 0.943
DST train 0.888 0.599 0.598

FCN-DST val 0.950 0.569 0.592
DST val 0.851 0.603 0.593

FCN-DST test 0.934 0.433 0.471
DST test 0.827 0.599 0.618

Table 3: Average accuracy, precision, and recall values for the five
classes in the training, validation, and test sets.

6. Discussion
The small dataset size of 140 training examples con-

tributed to the relatively poor generalization performance
in the ‘static’ and ‘moving’ classes observed in Table 2 and
Figure 6. The deep FCN was able to overfit the training set,
but the learned model was not sufficient to make effective
predictions on the validation and test sets. The measure-
ment frequency of 1 or 0.5 Hz may have been too low to ef-
fectively discern dynamic obstacles. Expanding the dataset
to include higher frequency measurements would likely re-
sult in better generalization and classification performance.

Prior to utilizing RANSAC plane fitting to filter out LI-
DAR points that returned occupancy measurements from
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Figure 7: Confusion matrices for (a) the training set (batch of
32), (b) the validation set, and (c) the test set output of the FCN.
The definition of the symbol labels on the axes is provided in the
Appendix.
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Figure 8: Examples from the validation set showing: (a) the mov-
ing occupancy grid generated by DST, (b) the predicted labels
from the FCN, and (c) the expected labels.
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the ground, hand annotated labels from [26] were used. The
latter was not a robust solution as the labels were not ex-
haustive and left considerable free space marked as occu-
pied. The labels also limited the dataset size. The RANSAC
algorithm slightly increased the capability of the network to
discern moving and static objects, and improved the over-
all network performance enough to allow for more intensive
dropout to decrease overfitting, while not sacrificing on the
IU metric. This approach also loosens the limitation on the
dataset set size allowing for future work to increase the fre-
quency of received measurements to 10 Hz [6].

The general trend in the overfit region of the network
was to lose performance in the classification of ‘static’ and
‘moving’ cells. From Table 3, the predictions decreased in
both recall and precision. Nevertheless, due to the weighted
cross-entropy loss formulation, the network does not as-
sume that these classes do not exist, but rather makes in-
correct predictions of occupied space in labeled free space.
It is reasonable to expect that as the number of training ex-
amples with ‘static’ and ‘moving’ objects labels increases,
the network will have more success in discerning these two
classes.

The plots in Figure 8 show that in this validation set
example, the FCN expected moving objects near the road,
and static objects in the parking lot space matching the la-
beled obstacles. Hence, the network did learn some ele-
ments of the temporal and spatial structure of the data, de-
spite the overfitting, showing merit for the proposed ap-
proach. Figure 8 also portrays some of the inaccuracies
within the dataset itself. The DST moving occupancy grid
shows a higher probability of moving objects in the right
portion of the image, where none exist in the expected la-
bels. The KITTI tracking dataset contains obstacle labels
referred to as ‘DontCare’ regions which are ignored in the
labeling process due to insufficient information for the hu-
man annotators to generate 3-D bounding boxes surround-
ing these obstacles [6]. Therefore, the plot of the ‘moving’
class DST occupancy grid conveys a relatively high prob-
ability of moving obstacles in the top right region of the
grid, which corresponds to the ignored obstacles. It is inter-
esting to note, that the network smoothes the edges of the
‘building’ regions in the grid due to dropout regularization,
possibly accounting for any irregularities in the boundaries.

Furthermore, despite the loss curves in Figure 6 showing
overfitting, the mean validation set IU continued to increase,
suggesting that the cross-entropy loss is not representative
of the IU metric. A method to utilize IU directly as a loss in
a binary classification problem has been proposed in [20].
Extending this formulation to multi-class segmentation may
improve the performance of the proposed approach. An at-
tempt was made to use the negative of the IU metric as a loss
directly by parallelizing the approximation to IU in [20] to
the number of classes. However, this novel loss behaved in

an unstable manor, requiring very precise parameter tuning
which will be pursued in future work.

7. Conclusion

A method was introduced for optimizing the perfor-
mance of a DST information fusion procedure for urban
scene understanding with the use of a deep FCN. Despite
the observed overfitting of the dataset, the FCN-DST frame-
work outperformed the DST baseline in the mean IU metric
reaching 0.546 and 0.531 in the validation and test sets re-
spectively. However, little improvement was achieved in
discerning moving and static cells due to insufficient data
and a loss that was not representative of the evaluation met-
ric.

To improve model performance in future work, the
dataset will be expanded to include measurements at a fre-
quency of 10 Hz increasing the number of examples to ap-
proximately 3200, facilitating more effective learning [6].
Additionally, further investigation into the multi-class IU
loss will be performed such that the metric of interest is di-
rectly optimized. The approach may also benefit from pass-
ing the previous and current DST outputs through several
convolutional layers independently prior to merging them
into channels for input to the FCN.
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Appendix

The following is the Dempster Shafer information fusion
formulation used to obtain the perception grids, which are
then inputted into the FCN architecture. Only the outline
of the approach is presented here; it is described in more
detail in [14]. Dempster Shafer operates with masses on
sets of events as opposed to probabilities on single events.
The masses for all possible sets must add up to one, similar
to a probability distribution. To make the DST formulation
more efficient, we introduce the following notation:

F − free space (4)

O − occupied space (5)

B − building (6)

R− road (7)

T − intermediate space (8)

N − navigable space (9)

W − non-navigable space (10)

I − infrastructure (11)

S − static obstacle (12)

M − moving obstacle. (13)

The algorithm begins by defining a refinement of the sen-
sor and GIS grids. The masses associated with the possible
subsets of events in the sensor grid and in the GIS grid are
translated to the perception grid ‘frame of reference’ as fol-
lows:

mSG({F}) = mPG
SG ({N,W}) (14)

mSG({O}) = mPG
SG ({I, S,M}) (15)

mSG({F,O}) = mPG
SG ({N,W, I, S,M}) (16)

mGIS({B}) = mPG
GIS({I}) (17)

mGIS({R}) = mPG
GIS({N,S,M}) (18)

mGIS({T}) = mPG
GIS({W,S,M}) (19)

mGIS({B,R, T}) = mPG
GIS({N,W, I, S,M}). (20)

Note that it is assumed that if there is mass uncertainty re-
garding a GIS grid element, it all goes to the full uncertainty
{B,R, T} event, rather than to sets of pair events. For the
simplified occupancy grid framework used in this paper, it
is assumed that a LIDAR measurement has 0.8 confidence
mass, and 0.2 uncertainty mass. The map is given high con-
fidence at 0.995 mass and 0.005 uncertainty mass. Then
Dempster’s combination rule is applied on each cell:

m′
PG
SG = mPG

SG ⊕mPG
GIS , (21)

where,

K =
∑
∅=B∩C

m1(B) ·m2(C) (22)

(m1 ⊕m2)(A) =

∑
A=B∩C m1(B) ·m2(C)

1−K
(23)

(m1 ⊕m2)(∅) = 0. (24)

To determine the dynamics of the environment, conflict
masses for cells that have become free or that have become
occupied are defined as follows:

mPG,t(∅OF ) = mPG,t−1(O) ·mSG,t(F ) (25)
mPG,t(∅FO) = mPG,t−1(F ) ·mSG,t(O) (26)

where m(O) =
∑
A⊆{I,U,S,M} and m(F ) =

∑
A⊆{N,W}.

Classifying a grid cell as static or moving is dependent on
the accumulator ζ that stores temporal information. Four
parameters are defined for accumulation: incrementation
and decrementation steps δinc ∈ [0, 1], δdec ∈ [0, 1], and
threshold values γO, γempty . These parameters were set as
indicated in [14], [12] to: 2/3, 2/3, 6, 6 respectively. The
accumulator is computed according to:

ζ(t) = min(1, ζ(t−1) + δinc) (27)
if mPG(∅FO) ≥ γO and mPG(∅FO) +mPG(∅OF ) ≤ γ∅

(28)

ζ(t) = max(0, ζ(t−1) − δinc) (29)
if mPG(∅FO) +mPG(∅OF ) > γ∅ (30)

ζ(t) = ζ(t−1) (31)
otherwise. (32)

ζ provides a method for specializing the mass for M using
the equation:

m′PG,t(A) = S(A,B) ·mPG,t(B) (33)

where,

S(A\ {M} , A) = ζ ∀A ⊂ PG and {M} ∈ A (34)
S(A,A) = 1− ζ ∀A ⊂ PGand {M} ∈ A (35)
S(A,A) = 1 ∀A ⊂ PG and {M} /∈ A (36)
S(·, ·) = 0 otherwise. (37)

To model information aging, a discounting factor α is intro-
duced:

mα(A) = (1− α) ·m(A) ∀A ⊂ Ω (38)
mα(Ω) = (1− α) ·m(Ω) + α (39)

where Ω is the complete uncertainty set. In experiment, the
value of α was set to 0.9.
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The last step of the fusion algorithm is to combine the
previous perception grid with time discounting with the new
information:

mPG,t = mα,′

PG,t−1 ~m
′

SG,t. (40)

~ is a modified combination rule suited for moving object
detection, defined as:

(m1 ~m2)(A) =
∑

A=B∩C

m1(B) ·m2(C) ∀A ⊂ Ω ∧A 6= M

(41)

(m1 ~m2)(M) =
∑

M=B∩C

m1(B) ·m2(C) +
∑

∅FO=B∩C

m1(B) ·m2(C)

(42)

(m1 ~m2)(Ω) =
∑

Ω=B∩C

m1(B) ·m2(C) +
∑

∅OF =B∩C

m1(B) ·m2(C)

(43)

(m1 ~m2)(∅FO) = 0 (44)

(m1 ~m2)(∅OF ) = 0. (45)

Once the perception grid masses have been computed, a pig-
nistic probability is defined to convert the masses to proba-
bilistic values:

betP (B) =
∑
A∈Ω

m(A) · |B ∩A|
|A|

, (46)

where |A| is the cardinality of set A.
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