
Street View Segmentation using FCN models

Yen-Kai Huang
Department of Computer Science

Stanford University
nykh@stanford.edu

Vivian Yang
Department of Electrical Engineering

Stanford University
viviany@stanford.edu

Abstract

We fine-tune a Fully Convolutional Network model and
implemented a Dilated Convolution Network to evaluate
their performance on a novel street-level imagery dataset,
Mapillary Vistas Dataset, for street view images semantic
segmentation. The Mapillary Vista dataset is harder to seg-
ment than all the other dataset released before. However,
even dealing with the very complicated dataset, our perfor-
mance of FCN-32s model can still reach up to 80.9% over-
all accuracy and 23.4% per-class accuracy. Qualitatively
the FCN model was able to label objects occupying big ar-
eas on the street view image. However, more work needs to
be done to improve the recognition for smaller objects.

1. Introduction
Semantic Segmentation is an important task in the field

of computer vision. While similar to normal object recogni-
tion task, the goal of semantic segmentation is not to find a
bounding box of recognized objects but to label each pixel
according to which object or class it belongs to. Other
names that refer to the same or similar task include “scene
labeling” [5]. Semantic segmentation can come in many
different settings. When the requirement is only to label
each pixel according to class, it is very accurately described
by other names such as “pixel-level Labeling” [11], or “pix-
elwise classification” [8]. When only the category is not
enough and each object instance must also be identified (in
the case of objects that can appear together but are separate,
such as person, car, etc), the setting must also assign in-
stance number to each pixel. This setting is often called
instance-level segmentation or instance segmentation [6].
In this project we limit our scope to producing a class for
each of the pixel.

Street view segmentation is an application of the seman-
tic segmentation on street view images. Street view image
segmentation plays a very important role in the context of
autonomous driving. The use case often requires captioning
on a video stream, but this is not our focus in this project and

we will evaluate our system in an offline setting.
In this experiment we started with a Fully-Convolutional

Network model that was previously trained on the
VOC2011 image segmentation task and fine-tuned it for
a newly released street view dataset to explore the perfor-
mance of a widely-used model on the challenging posed by
a new, complex dataset. We used overall accuracy as well
as average accuracy across classes to benchmark the per-
formance because they are easy to compute and provides
an intuitive approximation of human perception of the per-
formance. We achieved 80.9% overall accuracy and 23.4%
average accuracy across class when trained using the full
Mapillary Vista dataset on a cloud GPU instance. The gap
between the overall and per-class accuracy is shown in qual-
itative assessment of output, the model is able to label pix-
els that belong to classes occupying majority area on an
street view image, such as road, vegetation, sky, and build-
ing. However the system often misclassify or outright ig-
nore smaller objects.

In order to overcome a problem of disappearing of fine
feature, we experimented with the Dilated Convolution
[16]. However, because each test image has a very large di-
mension, it became very time consuming to train the model
on.

2. Related Work
General semantic segmentation has been studied since

the beginning of computer vision as one of the setting
for object recognition and scene understanding. Among
the general semantic segmentation task specification and
datasets, there was the Pascal Visual Object Classes Chal-
lenge of 2011[4]. In this task each pixel of the 2501 training
images can be from 20 different classes (plus one “back-
ground” class). The challenge was well-accepted and in-
cluded such classes as “person”, “car”, and “train” which
are relevant to street view scene.

Street view segmentation is an application of the seman-
tic segmentation on street view images. This is an impor-
tant task when developing, for example, autonomous driv-
ing system, where the system must recognize and identify
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lane, other car, and static or moving objects on the road to
avoid. Cityscapes dataset [2] collected 20,000 images taken
in many cities of Germany with a fixed camera whose la-
beling included 30 classes total. Among the classes are flat
surfaces like “road” and “sidewalk”, vehicles subclassed as
“car”, “truck”, human pedestrians and riders, and objects
like “vegetation” and “pole”. Cityscapes provided a reason-
able common reference point for different street view seg-
mentation system to benchmark their performance. How-
ever due to the limited diversity in geographical locations,
camera size, and lighting conditions due to time of day and
weather, some raised questions to the ability to generalize
for a system trained on the dataset, which inspired the cre-
ation of Mapillary Vistas dataset used in our work [10].
The Mapillary Vistas dataset is described in more details
in Section-4.1.

Krizhevsky et al. re-introduced to the attention of aca-
demics for Deep Convolutional Networks as a viable solu-
tion to compute vision task [7]. One of the Convolutional
Network variant [15] developed by the Visual Geometry
Group, Oxford won the ImageNet [13] challenge in 2014.
However, VGG14 suffers from a time complexity problem
as the network repeatedly computes convolution over ad-
jacent windows that are highly redundant. For this reason
there has been many research to speed up the training and
prediction of the convolutional network. Girshick et al. pro-
posed combining an efficient region-proposal algorithm to
identify objects and compute convolution for the regions.
Girshick then achieved further speed-up by computing con-
volution of the whole image and then crop out the regions
of interest (ROI) [12]. The speed up in the convolution net-
work was very dramatic, until the region-proposal part of
the system became the bottleneck. Thus He et al. proposed
using another branch of neural network to compute the re-
gion proposal, which achieved good result on segmentation
on Cityscapes dataset and a 5 frame per second throughput
[6].

Another convolutional network that performed well
when applied to the semantic segmentation task was the
Fully Convolutional Network [14]. A FCN, designed by
Shelhamer et al. The key insight of the FCN was that by re-
placing the fully-connected layers in traditional neural net-
work with only convolution and transposed convolution lay-
ers, the network is able to achieve better performance with
much fewer parameters. One of the important part of archi-
tecture is a skip-architecture that allows “coarse feature” in
deep layers to propagate and combine with “fine features”
in a shallow layer, which produces more accurate segmen-
tation. Some of the extensions to FCN introduce variants to
convolution that allows this combination without the skip
layers. Chen et al. introduced “atrous convolution”, or
“convolution with upsampled filters” [1] to increase the re-
ceptive field of filter without introducing more parameters.

Similarly, Yu and Kolton introduced dilated convolution to
to aggressively increase the receptive field of kernel with-
out introducing parameters or subsampling [16]. Another
architecture that has proven to perform well on semantic
segmentation was the Conditional Random Fields as Re-
current Neural Networks, whose pairwise potential can be
computed to approximate a Recurrent Neural Network.

3. Method
In this project we apply the Fully-Convolutional Net-

work model on the semantic segmentation task. To over-
come some problem inherent to the FCN model, we then
introduced Dilated Convolution to the model.

3.1. Fully Convolutional Network

A Fully Convolution Network (FCN) [14] is an end-to-
end, pixels-to-pixels learning model, which can output a
pixel-wise prediction and has been widely used for vari-
ous segmentation tasks. The model differs from traditional
model because it excludes any fully-connected layer and in-
stead rely completely on convolution and transposed oper-
ation. As shown in Figure 1, the FCN model first perform
many layers of convolution on the image to extract a multi-
scale feature representation of the image, with the dimen-
sion (Hi,Wi, Ci), where Ci is the number of channels or
kernels. The layers are stacked from shallow layers to deep.
Shallower layers have dimension that are closer to origi-
nal image, while the deeper layers will be much smaller in
height and width but have many more channels. Finally, the
last layer performs a transposed convolution that increases
the dimensions to (H,W,C ′), whose height and width are
the same as the input image, yet the array on each pixel
represents a likelihood distribution that the pixel belongs
to each class. To be more precise, Figure 2 draws out the
actual number of convolutions and max-pooling that each
layer has.

Figure 1. Fully Convolutional Network

The particular architecture we used in this project is
FCN-32. The 32 indicates that in the pipeline it performs
five max-pooling to reduce the size of image by 1/32. This
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Figure 2. FCN-32s layers

architecture is very efficient to compute but can result in
losing fine-grained features.

3.2. Dilated Convolution Network

Yu and Kolton introduced dilated convolution [16]. This
variant of convolution supports exponentially expanding re-
ceptive fields without losing resolution or coverage, by “di-
lating” the kernel by l − 1 pixels, as shown in Figure 3.

Our Dilated Convolution Network architecture follows
the general architecture of Fully-Convolutional Network,
but introduced a context module. The context module con-
tains dilated convolutions to aggressively increase the re-
ceptive field of the kernel without down-sampling the im-
age. In the last layer, the network performs a transposed
convolution just like in FCN to generate pixel labelings, the
architecture parameters is summarized in Table 1.

Figure 3. Diagram of a Dilated Convolution with dilation factor
l = 2

4. Experiment
In this project we repurpose a Fully Connected Net-

work model pre-trained on a general semantic segmentation
task through fine tuning, and evaluate on the preprocessed
dataset.

In previous study, segmentation trained on VOC2011
FCN-32s model can successfully segment simple images.
The pretrained model reaches a high accuracy. However,
the segmentation images contain only a few main objects,
e.g. one or two animals, people or vehicles. The model has
not been experimented on complicated dataset, where one
image has about ten or more objects to segment.

4.1. Dataset

In our experiment, we used the Mapillary Vistas Dataset
[10]. Mapillary Vistas dataset is a very new street-

level imagery dataset, including images with correspond-
ing, instance-specific, and pixel-accurate annotations. This
dataset has much more diverse in geographical locations,
weather circumstances (sun, rain, snow, fog, haze), and day
times (dawn, daylight, dusk, and even night) than previous
datasets, such as VOC2011 and Cityscape Dataset. It con-
tains 25,000 high-resolution images (split into 18,000 train-
ing, 2,000 validation, and 5,000 testing images) and it has
100 object categories, 60 of those instance-specific.

As previously mentioned, this dataset was inspired by
the more widely-used Cityscapes street view dataset, while
addressing some of the problem of Cityscapes. The result
is a dataset that is much closer to the real-world applica-
tion. One difference between the two dataset is in the way
the images are collected. Cityscapes dataset collected its
images in 23 cities in Germany through a mounted cam-
era in a single car. This ensures the image resolution and
aspect-ratio are all identical, while the distribution of ob-
jects in the street can also be similar. Mapillary Vista, on
the other hand, collects images from user upload of its cell-
phone map application. The result is a very diverse set of
resolutions and aspect ratios. The Mapillary Vista images
are also taken all around the world, with only a few im-
ages belonging to the same location. Another significant
difference is in the granularity of labeling between the two
datasets. As shown in Figure 5, it can be seen that Mapillary
Vista labeling are much more fine-grained. It does not have
the black (unlabeled) pixels of Cityscapes, and the general
contour of objects are preserved much better. In this sense
Mapillary Vista has a much better labeling quality than the
Cityscapes. These differences can mean the system will
have to learn a more generalizeable set of model to account
for the fine-grained labeling and different image conditions.
Information of different datasets is summarized in Table 2.

Due to the novelty of the Mapillary Dataset, it has no
previous implementation. We repurposed a data loader for
the VOC task on the dataset to correctly arrange and load
the data. Because the size of the training images are very
large (averaging over 1000 pixels in height and width), we
first crop a 1024 × 1024 square from the center of image,
and then shrink it down to 256 × 256 pixels. The same is
done for the label but instead of shrinking we used down-
sampling. This ensures bilinear scaling doesn’t introduce
wrong label values. We also wrote a visualization script to
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Table 1. Dilated Convolution Network
Layer 1 2 3 4 5 6 7 Final

# of Convolution 2 2 3 3 3 1 1 1
Kernel Size 3 3 3 3 3 7 1 1

Dilation 1 1 1 1 2 4 1 1
Output Channel 64 128 256 512 512 4096 4096 N

Max Pool Yes Yes Yes No No No No No
Context Layer 1 2 3 4 5 6 7 8 Final

# of Convolution 2 1 1 1 1 1 1 1 1
Kernel Size 3 3 3 3 3 3 3 3 1

Padding 1 2 4 8 16 32 64 1 0
Dilation 1 2 4 8 16 32 64 1 1

Output Channel N
* At the end, need to do a ConvTranspose with Kernel Size = 16, Stride = 8, Padding = 4, Output Channel = N

* N = number of class

better print out the results.

Figure 4. Mapillary Vistas Dataset

Figure 5. The Labeling of Three Datasets

Table 2. Comparision of Three Datasets
VOC 2011 CityScapes Mapillary

Training set 1112 19,500 18,000
Validation set 1111 500 2,000

Class 20 30 65
Instance label Yes Yes Yes

Location N/A Limited Diverse
Size Varies Fixed Varies

4.2. Evaluation Measures

In our experiment, we used two popular evaluation mea-
sures [3] to judge the performance of our result: the Overall
Pixel (OP) accuracy measures the proportion of correctly la-
beled pixels; the Per-Class (PC) accuracy measures the pro-
portion of correctly labeled pixels for each class and then
averages over the classes.

To express the computation formula of OP and PC ac-
curacy, we assume that L is the number of classes, Cij is
the number of pixels having ground-truth label i and whose
prediction is j, and Gi =

∑L
j=1 Cij is the total number of

pixels labeled with i. Then:

OP =

∑L
i=1 Cii∑L
i=1 Gi

PC =
1

L

L∑
i=1

Cii

Gi

Intuitively, this measures diagonal of a confusion ma-
trix over the number of pixels. The overall pixel accuracy
in particular provides an intuitive approximation for qual-
itative perception when the image is viewed in its overall
shape and not its details. A system can achieve a high over-
all accuracy by learning to label objects occupying big areas
in the image, while ignoring objects that appear rarely and
are small. On the other hand, per-class accuracy requires
objects each class to be classified accurately, so such a sys-
tem will score low.

4.3. Result

4.3.1 Pretrained VOC2011 FCN-32s model

First, we ran the “model Caffe to Torch” script 1 provided by
K. Wada to transform the Caffe pretrained model into Torch

1Pytorch-FCN: https://github.com/wkentaro/pytorch-fcn
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usable document. Then, we evaluate the performance of this
pretrained model on VOC2011 validation set and get the
following result. This result shows the validity of the pre-
trained model, which allow us to attempt transfer learning
based on this model.

Table 3. Pretrained Model Evaluation
Learning Rate Epoch Accuracy Class Accuracy

1e-10 9 90.48537 76.47010

Figure 6. Best Performance on VOC2011 using FCN-32s Model

4.3.2 Finetuned FCN-32s model

To finetune the pretrained VOC2011 FCN-32s model on our
Mapillary Vistas Dataset, we read over the Finetune exam-
ple script 2 provided by J. Johnson and implement some of
the main concept into our own finetune script. In this part
we need to rewrite both training and evaluation script to fit
FCN-32s model with the Mapillary Dataset. The training
based on fine-tuning comes in two phases: in the first phase
only the last few layers are replaced and trained to account
for the new output shape (from 20 classes to 65 classes). In
the second phase the whole network is trained.

We experimented by growing the number of training im-
ages. For the training subset with 5000 images we varied
the hyperparameter to search for the best combination. In
the end we arrived at a batch size of 16, learning rate of

2Pytorch-finetune: https://gist.github.com/jcjohnson/
6e41e8512c17eae5da50aebef3378a4c

1 × 10−4 for the fine-tuning phase and 1 × 10−6 for the
second phase. After this we trained on the full training set
of 18,000 images. The results are shown in Table 4 and
5. The learning curve corresponding to the best hyperpa-
rameter when trained on 5000 is shown in Figure 8, while
the learning curve of full training data is shown in Figure
10. As shown in the learning curves, the training loss can
drop to the magnitude of 1×104. We can then visualize the
weights, as shown in Figure 7 and 9.

Table 4. 5000 Training Data
Entire Model Entire Model Accuracy Class

MaxIter LR Accuracy
6000 1e-07 72.5748 9.74099
6000 1e-08 68.7077 9.03626

10000 1e-04 79.8610 19.72758
10000 1e-05 78.9662 19.63397
10000 1e-06 76.8709 15.89977

* with Last Layer MaxIter = 1000, Last Layer LR = 1e-04,
Decay = 0.0005, Batch Size = 16

Figure 7. The Output of the Best Result (Learning Rate: 1e-4)

Table 5. 18000 Training Data
Entire Model Entire Model Accuracy Class

MaxIter LR Accuracy
23000 1e-04 80.8653 23.39519

* with Last Layer MaxIter = 1000, Last Layer LR = 1e-04,
Decay = 0.0005, Batch Size = 16
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Figure 8. The Learning Curve of the Best Result

Figure 9. The Output of 18000 Training Data

Figure 10. The Learning Curve of 18000 Training Data

4.3.3 Dilated Convolution model

Since comparing with CamVid, VOC2012 and KITTI
Dataset, Cityscapes shares more similarities with Mapillary
Vistas Dataset, we transformed the Caffe written Dilated
Convolution model for Cityscape 3 into Pytorch code and
implemented the model on Mapillary Vistas Dataset. How-
ever, because the images used for dilated convolutional net-
work is in its full size, plus the lack of a pre-trained model,

3Caffe-Dilation: https://github.com/fyu/dilation

the training time of this model is very long, denying us a
satisfactory converging result even after 6 hours of training.
The resulting accuracy is very law, and when visualized the
output labels are similar to gaussian noise, which indicates
the network has not fully converged

Figure 11. Dilated Convolution Failure Result

5. Conclusion
In the result achieved so far, our FCN model were able

to correctly label objects that occupy big areas in a common
street view image to achieve high overall accuracy. These
include sky, road, cars, buildings, and pedestrians. This
partially proves the feasibility of the task. However, the
boundaries are still not very cohesive, which can be seen as
a weakness of the FCN-32s model itself.

Another difficulty posed by the Mapillary Vistas seg-
mentation task is the fact that it labeled some objects with
very small or narrow dimensions, such as bird, street light,
and sign poles, which can disappear during the down-
sampling process. Some possible solutions to overcome
these shortcomings are FCN-8s, Mask R-CNN, and dilated
convolution network.

5.1. FCN-8s

The structure of FCN-8s is actually quite similar to FCN-
32s model we used. However, in FCN-8s, images only need
to go through three max-pooling layers, which will reduce
the size of image by 1/8. Therefore, it only need to back-
ward convolution with an output stride of 8, which will im-
prove segmentation detail and reach a better performance.
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5.2. Transfer Learning from Cityscapes

In this experiment we based our model on a FCN-32
model pre-trained on VOC 2012 segmentation task by sim-
ple availability, however intuitively it should be much better
to fine-tune a model that was pre-trained on the Cityscapes
dataset considering its similarity to the Mapillary. An ex-
periment worth conducting is to see if a fine-tuned model
based on Cityscapes dataset can outperform out model.

5.3. Dilated Convolutional Network

In our experiment we attempted training a dilated convo-
lutional network but was unable to make it converge. One
future direction would be to implement a more efficient Di-
lated Convolutional Network and train it on the dataset fully
to evaluate its result.

5.4. Mask R-CNN

Mask R-CNN [6] is a very new modification of the Faster
R-CNN model [12], which in terms extends on the R-CNN
approach. This architecture was developed for the instance
segmentation task, and has been applied on the Microsoft
COCO object classification task [9] as well as Cityscapes
Dataset [2] and has shown to outperform current state-of-
the-art. Therefore, we think this method would be worthy of
further testing on the very new and complicated Mapillary
Vistas Dataset to see if the method can still perform well.
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