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Abstract 

 

Aggregation of geo-specific real-estate databases 
results in duplicate entries for properties located near 
geographical boundaries. The lack of nation-wide listing 
identifiers makes it hard to weed out the duplicates. This 
paper presents an approach of identifying duplicate 
entries via the analysis of images that accompany real-
estate listing leveraging transfer learning Siamese 
architecture based on VGG-16 CNN topology 
 

1. Introduction 

1.1. Real estate databases are geo-specific (eg. East Bay, 
North Bay, South Bay, etc). If a house to be put up 
for sale is located close to the geo boundary, a real 
estate listing agent will often list it in both 
databases. For example, a house located in Milpitas 
would often be listed in both East Bay and South 
Bay databases. The content of both database entries 
could be different to appeal to different 
demographics of each area. Real estate brokerage 
firms do enter in cross-area sharing agreements and 
there are efforts underway to create a nation-wide 
sharing framework as well. Herein lies the problem: 
when data feeds from EastBay and SouthBay 
databases are aggregated, this results in two 
duplicate listings. The purpose of the project is to 
provide means to identify and flag these duplicates 
for future removal.  

1.2. Contrary to what one might think, property’s street  
address by itself is not enough to identify the 
duplicate entries as it is often misspelled or even 
misrepresented to make the house appear to belong 
to a more desirable city (eg: Almaden vs San Jose 
or Antelope vs Sacramento). Some of the most 
reliable indicators of duplicate listings are jpeg 
images uploaded by agents, but these can’t always 
be simply binary-compared since they may contain 

broker watermarks, be cropped, flipped or have 
post-processing visual effects such as color 
modifications. 

2. Previous work.  

Most of the inspiration for this approach was drawn 
from Chopra et.al [1] where the Siamese architecture 
involving CNNs was first described. The structure of 
CNNs, introduction of the last fully-connected layer 
and loss function definitiontion were leveraged from 
subsequent works [2] and [3]. We also considered 
Triplet architecture described in [4], but decided 
against using it because it did not seem to offer 
higher accuracy for the application at hand. 

  

3. Technical approach 

3.1. We are re-using the Siamese architecture described in 
[1] and [3] 

 
 
 
 

 

Using Siamese CNNs for Removing Duplicate Entries From Real-Estate Listing 
Databases 

 

Sergey Ermolin 
Stanford University, Stanford, CA 

sermolin@stanford.edu 
 

Olivier Moindrot, Stanford University , CA ** 

Olga Ermolin 
MLS Listings, Inc, Sunnyvale, CA 

oermolin@mlslistings.com 
 

Rishi Bedi, Stanford University , CA ** 
Boya (Emma) Peng, Stanford University , CA ** 

 
 



 

2 
 

 

 

In the original paper [1], the authors described the 
outputs Gw(X) as “two points in a low-dimentional 
space”. For our implementation, we chose to use 
vgg-16 convolutional network, but modified its 
topology following the suggestion in [3] by 
removing the last layer and softmax loss and 
instead adding an extra fully-connected “FC_extra” 
layer. The conceptual implementation is shown on 
Figure 2. 

 

 
 
Figure 2. Conceptual implementation of VGG-16-based 
Siamese architecture. 
 
The additional “FC_extra” layer combines 4096-dim 
difference between feature outputs of two branches of 
Siamese networks into a single-value output which is then 
classified using a logistics regression.  
 

3.2. Convolutional Network Topology. While initially 
we were planning on using Inception_v3 topology, 
it proved to be difficult to overcome Tensorflow 
syntax when importing it. Fortunately, Olivier 
Moindrot provided an excellent example of doing a 
transfer learning with vgg-16 network [8]. Based on 
advisor’s feedback that for the problem at hand 
both vgg-16 and Inception should provide similar 
accuracy, we switched to vgg-16 topology. The last 

fully-connected layer of vgg-16 network [vgg-
16/fc8] was reducing 4096-wide feature vector to a 
scalar output. Since we needed to preserve a wide 
feature vector, we removed [vgg-16/fc8] layer and 
fed outputs of two [vgg-16/fc7] layers to 
“difference” function implemented as a fully-
connected layer. This last layer essentially 
implements the formula below as suggested in [3] 
(shown here for L1 (absolute value) difference 
norm). 

 

3.3. TensorFlow model implementation. On advice of 
Olivier Moindrot, we simplified the code and 
computational complexity by implementing just 
one VGG-16 network instead of two while feeding 
it twice as many images. The actual implementation 
is shown on Figure 3 

 
Figure 3. Actual implementation of VGG-16-based 
Siamese architecture in TensorFlow rev1.2rc0 
 

3.4. Loss function and “difference” norm. Chopra et. al 
strongly argued in [1] against using a square norm 
and in favor of using an L1-norm (abs[h1-h2]). We 
tried both L1 and a square norm (L2) and found L2 
to result in better accuracy and precision. Thus, in 
the end, we decided to use L2 even though [3] used 
an L1 norm (absolute value of the difference). The 
accuracy and precision difference are summarized 
in Table 

 
Table 1. Accuracy and Precsition for L1 and L2 feature 
difference norms. 
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3.5. Activation function. After experimenting with 
softmax cross-entropy function which seemed to be 
an over-kill for this 2-class logistics regression 
problem, we finally settled on using a sigmoid 
function. 

3.6. Optimization. The original skeleton code provided by 
Olivier Moindrot enabled us to first train just 
newly-added layers and only then train the entire 
network starting with pre-trained VGG-16 
checkpoint weights. We reused and extended this 
approach by adding precision/recall measurements 
as well as test_data scoring run. We started with a 
plain SGD and were able to achieve accuracy on 
the order of 70%. We have also tried Adam 
optimization which took a while to get working in 
tensorflow because it required initializing local 
variables, but found that it did not perform 
significantly better than traditional SGD, so we 
revered back to SGD and were able to achieve 
good results by lowering the learning rate and 
adjusting dropout which was used for the published 
results. As expected, the majority of the time for 
this project was spent debugging TensorFlow code, 
preparing dataset, but mostly optimizing 
hyperparameters. In particular, since we needed to 
deal with two different learning rates (one for 
training the newly-added layers and one for overall 
model training), we found ourselves spending three 
times as much effort on this task as we expected to. 
Other challenging optimization task was 
experimenting with different image sizes, random 
flipping and cropping of training and validation 
images which was also affecting training accuracy. 
Perhaps somewhat surprisingly, weight decay and 
dropout rate did not seem to significantly affect 
loss and accuracy values. Perhaps if we spent more 
time adjusting the learning rates, we would have 
reached a point where the effects of other 
hyperparameters became more pronounced. 

 

4. Dataset. 

4.1. We obtained a curated image dataset provided by 
MLS Listings which contains entries (sets of jpeg 
images) that are a-priory known to belong to 
duplicate real estate listings as well as those which 
were distinct. We started debugging on a micro-
dataset (~100 images), then proceeded to a larger 
one (~500 images) and did the final evaluation on a 
dataset containing a total of ~3500 images, both 

identical and duplicates. Below are some of the 
examples of images from the dataset that would be 
considered “Duplicates” 

                  

                     

                

Figure 3. Sample images from the dataset provided 
by MLS Listings. 

4.2. For duplicate pairs, we used both identical images as 
well as those that real estate agents altered by 
changing size, resolution, color correction or 
watermarking. We did exclude from the dataset the 
images of the same object (eg. front of the house), 
but photographed from different angles. An 
example of the excluded pair of duplicate images is 
shown below in Fig. 4 

 
 
Figure 4. Example of two images of the same house 
feature which were excluded from the dataset. 
 
While some broker watermarking was large and 
prominent (see Fig 3, upper right image), other 
watermarking was tucked in a corner of the image 
and barely noticeable. See Fig 5 below. 
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Figure 5. Image with minimal watermarking added in 
the upper left corner. 
 
All images were of various resolution. As part of 
image preparation stage of the pipeline, we wrote a 
simple python PIL script that resized all images to 
244x244. 
 

4.3. Dataset Structure. Along with a directory containing 
images, MLS Listings provided us two types of 
datasets:“Duplicates” and “NoDuplicates”. Each 
dataset contained a directory of images and a CSV 
file of the following format: 

            ‘image_filename_1, image_filename_2, label’  

“Duplicates.csv” file would contain only labels = 1, 
indicating duplicate files, and have N lines, eg: 

            15192704-1.jpeg,   81600251-1.jpeg,  1 
            15193792-1.jpeg,   81595903-1.jpeg,  1 
            ………………………………………… 

“NoDuplicates.csv” file would contain both ‘0’ and 
‘1’ labels, with ‘1’ appearing only for the identical 
filenames. The file would have C(N, 2) lines, eg: 

           15419889-1.jpeg,   81639585-1.jpeg,  0 
           15508107-1.jpeg,   15508107-1.jpeg,  1  
 
To construct the training dataset, we would merge the 
‘NoDuplicates’ and ‘Duplicates’ directories together and 
concatenate their respective .csv files. We would then 
randomly shuffle lines in .csv files and sequentially draw 
the desired number of filename pairs and corresponding 
for training set starting from the top of the .csv file, while 
drawing validation set starting from the end of the file. We 
would make validation set size  = 20% of training set size. 
 
 

4.4. To avoid having a large dis-balance of similar and 
dissimilar items in the dataset, we would also 
randomly remove entries with label=0 until the 
ratio of 0/1 labels would be somewhere between 
30% and 70%. 

4.5. We also constructed a small (50 images) holdout test 
dataset that was not used during model training. 
After every model run, it was used for the final 
scoring. 

 

5. Experiments/Results/Discussion 

5.1. As a primary success metric we used Accuracy which 
is defined as (TP+TN)/Total, where TP – “true 
positive” and TN – “true negative”. In addition, for 
the test dataset, we also calculated Precision = 
TP/(TP + FP) and Recall = TP/(TP + FN), where 
FP – “false positive” and FN – “false negative”. 
We would also monitor the loss function during 
training. 

Table 2: Metrics definition  

 
 
Table 3: Metrics definition  

 

5.2. Baseline. Before embarking on building a 
convolutional neural network, we attempted a 
brute-force approach using a 1-Nearest Neighbor 
algorithm borrowed from CS231N assignment-1. 
We had to slightly modify our definition of the 
“labels” in order to make it work in the following 
way. Each image in our dataset of K images was 
assigned a label corresponding to its “similar” twin. 
Those without a twin, we assigned label ‘K+1’. For 
example, the array of labels for 7 images would 
look like this: 
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[1,0,3,2,8,8,8]  
which would mean that in the array of images: 
- Images 0 and 1 are twins 
- Images 2 and 3 are twins 
- Images 4, 5, 6 are unique. 
 
For a test subset of 33 images, the distance matrix 
would look like Fig , where the darker shade 
indicates similarity. Not surprisingly, diagonal 
squares are black indicating distance=0. 
 
 
 

When training, we would first run our network with all 
VGG-16 weights “frozen” except for FC7 and the added 
FC_distance layer for several epoch (~5 epoch turned out 
to be sufficient as the loss function would stop improving 
afterwards). Then we would continue the run allowing all 
layers to be trained for 5-20 epochs, depending on the size 
of the training dataset. 

 
Figure 6. Distance matrix representation for 1-
Nearest Neighbor implementation. 

 
By eye-balling the matrix, one can see that images 2/3 
and 4/5 are very close together, while images 6/7 and 
10/11 are far apart. The actual image pairs are shown on 
Fig 7 and Fig 8. 

  
Fig 7. Images 2 and Image 3 
 
 

  
Fig 8. Images 10 and Image 11 
 
One can see (perhaps not surprisingly), that while 
nearest neighbor approach could cope to some extent 
with watermarking and color editing, it completely 
failed when images were flipped or significantly 
cropped. 
On a larger dataset, overall precision of Nearest 
Neighbor approach was found to be 24.4% which is in 
line with previous work on KNN algorithms. 
 

5.3. VGG-16 CNNs. As a sanity-check, we periodically 
run our model on a very small dataset (80/20 
train/val) and making sure that it would overfit the 
data. Typical results of the sanity-check run would 
look like this (table 4) 

 

 
Table 4. Overfitting a small training set. 
 
For the full dataset, both training and validation 
accuracy would increase with the number of epochs. 
Here are our final results in table 5 
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Table 5. Final training and testing results. 

5.4. After 10 days of parameter optimization and trying 
two algorithm, this is a typical shape of our loss 
function (fig 9) 

 

 

Fig 9. Typical loss function 

5.5. We found the fact that the precision between different 
runs was 85-95%, indicating that there were very 
few false positives, i.e. the model would rarely 
mark two different test images as being the same 
(FP). It would, however, more often make a 
mistake of classifying two identical images as being 
different (FN), which is probably due to the fact 
that the images were cropped to 224x224 prior to 
being presented to the network. 

5.6. Validation approach. Since we enjoyed having 
access to a large dataset (far larger than we could 
process in a reasonable time on a single GPU 
available to us), we chose not to do K-fold 
validation, but instead drew data randomly from 
available dataset and for both training and 
validation. 

5.7. Test data approach. For testing holdout dataset, we 
selected a 50 images which we carefully reviewed 

to make sure they represented a reasonable 
approximation to real estate photo listings found in 
practice.  

 

5.8. Test data analysis. We carefully analyzed True 
Positives and False Positives responses of our 
network. We found that the network not only 
correctly recognized images on Fig 7 and 8 above 
(just like a Nearest-Neighbor network), but could 
also identify flipped image as being identical – 
something that the Nearest-Neighbor approach 
failed to do. Somewhat surprisingly, Siamese 
network consistently identified the two test images 
shown on Figure 10 as different, while Nearest-
Neighbor network did not have such difficulties. 
Trying to figure out the reason for it could be a 
topic for future work. 

  
Figure 10. Image_5 and Image_6. 



 

7 
 

 

6. Conclusion/Future work 

6.1. Our implementation of Siamese network was able to 
achieve a respectable validation accuracy of 65% 
with precision of close to 100%. This was about 
40% higher than the brute-force Nearest Neighbor 
approach and allowed to correctly classify heavily 
cropped or flipped images.  In [3], the authors 
quoted accuracy of about 90% with training sets of 
30k – 150k. Our training set was under 5k, so a 
lower accuracy was not all that surprising.  

6.2. As far as future work is concerned, we would like to 
spend more time optimizing the network a bit 
further, as well as rewriting the code to map it to a 
large Apache Spark cluster in order to speed up the 
computation. This would allow us to do 
performance benchmarking of single-node GPU vs 
a cluster of CPUs. 

Careful analysis of prior work also revealed that some 
authors often use RoC (True positive rate plotted vs True 
netagive rate) as a quality metric for such work. Given 
enough time, we would like to add such a metric to our 
analysis 
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