
** CS231N TA

Abstract

Aggregation of geo-specific real-estate databases
results in duplicate entries for properties located near
geographical boundaries. The lack of nation-wide listing
identifiers makes it hard to weed out the duplicates. This
paper presents an approach of identifying duplicate
entries via the analysis of images that accompany real-
estate listing leveraging transfer learning Siamese
architecture based on VGG-16 CNN topology

1. Introduction

1.1. Real estate databases are geo-specific (eg. East Bay,
North Bay, South Bay, etc). If a house to be put up
for sale is located close to the geo boundary, a real
estate listing agent will often list it in both
databases. For example, a house located in Milpitas
would often be listed in both East Bay and South
Bay databases. The content of both database entries
could be different to appeal to different
demographics of each area. Real estate brokerage
firms do enter in cross-area sharing agreements and
there are efforts underway to create a nation-wide
sharing framework as well. Herein lies the problem:
when data feeds from EastBay and SouthBay
databases are aggregated, this results in two
duplicate listings. The purpose of the project is to
provide means to identify and flag these duplicates
for future removal.

1.2. Contrary to what one might think, property’s street
address by itself is not enough to identify the
duplicate entries as it is often misspelled or even
misrepresented to make the house appear to belong
to a more desirable city (eg: Almaden vs San Jose
or Antelope vs Sacramento). Some of the most
reliable indicators of duplicate listings are jpeg
images uploaded by agents, but these can’t always
be simply binary-compared since they may contain

broker watermarks, be cropped, flipped or have
post-processing visual effects such as color
modifications.

2. Previous work.

Most of the inspiration for this approach was drawn
from Chopra et.al [1] where the Siamese architecture
involving CNNs was first described. The structure of
CNNs, introduction of the last fully-connected layer
and loss function definitiontion were leveraged from
subsequent works [2] and [3]. We also considered
Triplet architecture described in [4], but decided
against using it because it did not seem to offer
higher accuracy for the application at hand.

3. Technical approach

3.1. We are re-using the Siamese architecture described in
[1] and [3]

Using Siamese CNNs for Removing Duplicate Entries From Real-Estate Listing
Databases

Sergey Ermolin
Stanford University, Stanford, CA

sermolin@stanford.edu

Olivier Moindrot, Stanford University , CA **

Olga Ermolin
MLS Listings, Inc, Sunnyvale, CA

oermolin@mlslistings.com

Rishi Bedi, Stanford University , CA **
Boya (Emma) Peng, Stanford University , CA **

2

In the original paper [1], the authors described the
outputs Gw(X) as “two points in a low-dimentional
space”. For our implementation, we chose to use
vgg-16 convolutional network, but modified its
topology following the suggestion in [3] by
removing the last layer and softmax loss and
instead adding an extra fully-connected “FC_extra”
layer. The conceptual implementation is shown on
Figure 2.

Figure 2. Conceptual implementation of VGG-16-based
Siamese architecture.

The additional “FC_extra” layer combines 4096-dim
difference between feature outputs of two branches of
Siamese networks into a single-value output which is then
classified using a logistics regression.

3.2. Convolutional Network Topology. While initially
we were planning on using Inception_v3 topology,
it proved to be difficult to overcome Tensorflow
syntax when importing it. Fortunately, Olivier
Moindrot provided an excellent example of doing a
transfer learning with vgg-16 network [8]. Based on
advisor’s feedback that for the problem at hand
both vgg-16 and Inception should provide similar
accuracy, we switched to vgg-16 topology. The last

fully-connected layer of vgg-16 network [vgg-
16/fc8] was reducing 4096-wide feature vector to a
scalar output. Since we needed to preserve a wide
feature vector, we removed [vgg-16/fc8] layer and
fed outputs of two [vgg-16/fc7] layers to
“difference” function implemented as a fully-
connected layer. This last layer essentially
implements the formula below as suggested in [3]
(shown here for L1 (absolute value) difference
norm).

3.3. TensorFlow model implementation. On advice of
Olivier Moindrot, we simplified the code and
computational complexity by implementing just
one VGG-16 network instead of two while feeding
it twice as many images. The actual implementation
is shown on Figure 3

Figure 3. Actual implementation of VGG-16-based
Siamese architecture in TensorFlow rev1.2rc0

3.4. Loss function and “difference” norm. Chopra et. al
strongly argued in [1] against using a square norm
and in favor of using an L1-norm (abs[h1-h2]). We
tried both L1 and a square norm (L2) and found L2
to result in better accuracy and precision. Thus, in
the end, we decided to use L2 even though [3] used
an L1 norm (absolute value of the difference). The
accuracy and precision difference are summarized
in Table

Table 1. Accuracy and Precsition for L1 and L2 feature
difference norms.

3

3.5. Activation function. After experimenting with
softmax cross-entropy function which seemed to be
an over-kill for this 2-class logistics regression
problem, we finally settled on using a sigmoid
function.

3.6. Optimization. The original skeleton code provided by
Olivier Moindrot enabled us to first train just
newly-added layers and only then train the entire
network starting with pre-trained VGG-16
checkpoint weights. We reused and extended this
approach by adding precision/recall measurements
as well as test_data scoring run. We started with a
plain SGD and were able to achieve accuracy on
the order of 70%. We have also tried Adam
optimization which took a while to get working in
tensorflow because it required initializing local
variables, but found that it did not perform
significantly better than traditional SGD, so we
revered back to SGD and were able to achieve
good results by lowering the learning rate and
adjusting dropout which was used for the published
results. As expected, the majority of the time for
this project was spent debugging TensorFlow code,
preparing dataset, but mostly optimizing
hyperparameters. In particular, since we needed to
deal with two different learning rates (one for
training the newly-added layers and one for overall
model training), we found ourselves spending three
times as much effort on this task as we expected to.
Other challenging optimization task was
experimenting with different image sizes, random
flipping and cropping of training and validation
images which was also affecting training accuracy.
Perhaps somewhat surprisingly, weight decay and
dropout rate did not seem to significantly affect
loss and accuracy values. Perhaps if we spent more
time adjusting the learning rates, we would have
reached a point where the effects of other
hyperparameters became more pronounced.

4. Dataset.

4.1. We obtained a curated image dataset provided by
MLS Listings which contains entries (sets of jpeg
images) that are a-priory known to belong to
duplicate real estate listings as well as those which
were distinct. We started debugging on a micro-
dataset (~100 images), then proceeded to a larger
one (~500 images) and did the final evaluation on a
dataset containing a total of ~3500 images, both

identical and duplicates. Below are some of the
examples of images from the dataset that would be
considered “Duplicates”

Figure 3. Sample images from the dataset provided
by MLS Listings.

4.2. For duplicate pairs, we used both identical images as
well as those that real estate agents altered by
changing size, resolution, color correction or
watermarking. We did exclude from the dataset the
images of the same object (eg. front of the house),
but photographed from different angles. An
example of the excluded pair of duplicate images is
shown below in Fig. 4

Figure 4. Example of two images of the same house
feature which were excluded from the dataset.

While some broker watermarking was large and
prominent (see Fig 3, upper right image), other
watermarking was tucked in a corner of the image
and barely noticeable. See Fig 5 below.

4

Figure 5. Image with minimal watermarking added in
the upper left corner.

All images were of various resolution. As part of
image preparation stage of the pipeline, we wrote a
simple python PIL script that resized all images to
244x244.

4.3. Dataset Structure. Along with a directory containing
images, MLS Listings provided us two types of
datasets:“Duplicates” and “NoDuplicates”. Each
dataset contained a directory of images and a CSV
file of the following format:

 ‘image_filename_1, image_filename_2, label’

“Duplicates.csv” file would contain only labels = 1,
indicating duplicate files, and have N lines, eg:

 15192704-1.jpeg, 81600251-1.jpeg, 1
 15193792-1.jpeg, 81595903-1.jpeg, 1
 …………………………………………

“NoDuplicates.csv” file would contain both ‘0’ and
‘1’ labels, with ‘1’ appearing only for the identical
filenames. The file would have C(N, 2) lines, eg:

 15419889-1.jpeg, 81639585-1.jpeg, 0
 15508107-1.jpeg, 15508107-1.jpeg, 1

To construct the training dataset, we would merge the
‘NoDuplicates’ and ‘Duplicates’ directories together and
concatenate their respective .csv files. We would then
randomly shuffle lines in .csv files and sequentially draw
the desired number of filename pairs and corresponding
for training set starting from the top of the .csv file, while
drawing validation set starting from the end of the file. We
would make validation set size = 20% of training set size.

4.4. To avoid having a large dis-balance of similar and
dissimilar items in the dataset, we would also
randomly remove entries with label=0 until the
ratio of 0/1 labels would be somewhere between
30% and 70%.

4.5. We also constructed a small (50 images) holdout test
dataset that was not used during model training.
After every model run, it was used for the final
scoring.

5. Experiments/Results/Discussion

5.1. As a primary success metric we used Accuracy which
is defined as (TP+TN)/Total, where TP – “true
positive” and TN – “true negative”. In addition, for
the test dataset, we also calculated Precision =
TP/(TP + FP) and Recall = TP/(TP + FN), where
FP – “false positive” and FN – “false negative”.
We would also monitor the loss function during
training.

Table 2: Metrics definition

Table 3: Metrics definition

5.2. Baseline. Before embarking on building a
convolutional neural network, we attempted a
brute-force approach using a 1-Nearest Neighbor
algorithm borrowed from CS231N assignment-1.
We had to slightly modify our definition of the
“labels” in order to make it work in the following
way. Each image in our dataset of K images was
assigned a label corresponding to its “similar” twin.
Those without a twin, we assigned label ‘K+1’. For
example, the array of labels for 7 images would
look like this:

5

[1,0,3,2,8,8,8]
which would mean that in the array of images:
- Images 0 and 1 are twins
- Images 2 and 3 are twins
- Images 4, 5, 6 are unique.

For a test subset of 33 images, the distance matrix
would look like Fig , where the darker shade
indicates similarity. Not surprisingly, diagonal
squares are black indicating distance=0.

When training, we would first run our network with all
VGG-16 weights “frozen” except for FC7 and the added
FC_distance layer for several epoch (~5 epoch turned out
to be sufficient as the loss function would stop improving
afterwards). Then we would continue the run allowing all
layers to be trained for 5-20 epochs, depending on the size
of the training dataset.

Figure 6. Distance matrix representation for 1-
Nearest Neighbor implementation.

By eye-balling the matrix, one can see that images 2/3
and 4/5 are very close together, while images 6/7 and
10/11 are far apart. The actual image pairs are shown on
Fig 7 and Fig 8.

Fig 7. Images 2 and Image 3

Fig 8. Images 10 and Image 11

One can see (perhaps not surprisingly), that while
nearest neighbor approach could cope to some extent
with watermarking and color editing, it completely
failed when images were flipped or significantly
cropped.
On a larger dataset, overall precision of Nearest
Neighbor approach was found to be 24.4% which is in
line with previous work on KNN algorithms.

5.3. VGG-16 CNNs. As a sanity-check, we periodically
run our model on a very small dataset (80/20
train/val) and making sure that it would overfit the
data. Typical results of the sanity-check run would
look like this (table 4)

Table 4. Overfitting a small training set.

For the full dataset, both training and validation
accuracy would increase with the number of epochs.
Here are our final results in table 5

6

Table 5. Final training and testing results.

5.4. After 10 days of parameter optimization and trying
two algorithm, this is a typical shape of our loss
function (fig 9)

Fig 9. Typical loss function

5.5. We found the fact that the precision between different
runs was 85-95%, indicating that there were very
few false positives, i.e. the model would rarely
mark two different test images as being the same
(FP). It would, however, more often make a
mistake of classifying two identical images as being
different (FN), which is probably due to the fact
that the images were cropped to 224x224 prior to
being presented to the network.

5.6. Validation approach. Since we enjoyed having
access to a large dataset (far larger than we could
process in a reasonable time on a single GPU
available to us), we chose not to do K-fold
validation, but instead drew data randomly from
available dataset and for both training and
validation.

5.7. Test data approach. For testing holdout dataset, we
selected a 50 images which we carefully reviewed

to make sure they represented a reasonable
approximation to real estate photo listings found in
practice.

5.8. Test data analysis. We carefully analyzed True
Positives and False Positives responses of our
network. We found that the network not only
correctly recognized images on Fig 7 and 8 above
(just like a Nearest-Neighbor network), but could
also identify flipped image as being identical –
something that the Nearest-Neighbor approach
failed to do. Somewhat surprisingly, Siamese
network consistently identified the two test images
shown on Figure 10 as different, while Nearest-
Neighbor network did not have such difficulties.
Trying to figure out the reason for it could be a
topic for future work.

Figure 10. Image_5 and Image_6.

7

6. Conclusion/Future work

6.1. Our implementation of Siamese network was able to
achieve a respectable validation accuracy of 65%
with precision of close to 100%. This was about
40% higher than the brute-force Nearest Neighbor
approach and allowed to correctly classify heavily
cropped or flipped images. In [3], the authors
quoted accuracy of about 90% with training sets of
30k – 150k. Our training set was under 5k, so a
lower accuracy was not all that surprising.

6.2. As far as future work is concerned, we would like to
spend more time optimizing the network a bit
further, as well as rewriting the code to map it to a
large Apache Spark cluster in order to speed up the
computation. This would allow us to do
performance benchmarking of single-node GPU vs
a cluster of CPUs.

Careful analysis of prior work also revealed that some
authors often use RoC (True positive rate plotted vs True
netagive rate) as a quality metric for such work. Given
enough time, we would like to add such a metric to our
analysis

References

[1] Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity
metric discriminatively, with application to face
verification. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. 539–546 (2005). ISBN 0769523722

[2] S. Bell, K. Bala: Learning visual similarity for product
design with convolutional neural networks. ACM Trans.
Graph. (TOG), 34 (4) (2015), p. 98

[3] Koch, G., Zemel, R. S., & Salakhutdinov, R. (2015).
Siamese neural networks for one-shot image recognition. In
ICML Deep Learning Workshop.

[4] E. Hoffer and N. Ailon. Deep metric learning using triplet
network. CoRR, /abs/1412.6622, 2015

[5] Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng
Wu, Jianke Zhu, Yongdong Zhang, and Jintao Li, “Deep
learning for content-based image retrieval: A
comprehensive study,” in ACM Multimedia, 2014, pp. 157–
166.

[6] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A
unified embedding for face recognition and clustering. In
Proc. CVPR, 2015.

[7] Hadsell, R., Chopra, S., and LeCun, Y. (2006).
Dimensionality reduction by learning an invariant mapping.

In Proc. Computer Vision and Pattern Recognition
Conference (CVPR’06). IEEE Press.

[8] tensorflow_finetune.py by Olivier Mondroid.
https://gist.github.com/omoindrot/dedc857cdc0e680dfb1be
99762990c9c

[9] KNN algorithm implementation of CS231N HW
assignment-1.
http://cs231n.github.io/assignments2017/assignment1/ ,
http://cs231n.stanford.edu/assignments/2017/spring1617_as
signment1.zip

[10] Fei-Fei, Li, Fergus, Robert, and Perona, Pietro. One-shot
learning of object categories. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 28(4):594– 611, 2006.

[11] Taigman, Yaniv, Yang, Ming, Ranzato, Marc’Aurelio, and
Wolf, Lior. Deepface: Closing the gap to human-level
performance in face verification. In Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on,
pp. 1701–1708. IEEE, 2014.

[12] Kumar, B., Carneiro, G., Reid, I.: Learning local image
descriptors with deep siamese and triplet convolutional
networks by minimising global loss functions. arXiv
preprint arXiv:1512.09272 (2015)

[13] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet
classification with deep convolutional neural networks. In:
Advances in neural information processing systems. (2012)
1097–1105

[14] E. Hoffer and N. Ailon. Deep metric learning using triplet
network. arXiv preprint arXiv:1412.6622, 2014.

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, pages 448–456, 2015

[16] J. Masci, D. Migliore, M. M. Bronstein, and J.
Schmidhuber. Descriptor learning for omnidirectional
image matching. In Registration and Recognition in Images
and Videos, pages 49–62. Springer, 2014

[17] VGG-16 Tensorflow model.
http://download.tensorflow.org/models/vgg_16_2016_08_2
8.tar.gz

[18] Tensorflow v1.2rc0. 1.2.0rc0
here: https://www.tensorflow.org/versions/r1.2/install/

8

https://www.cs.toronto.edu/~frossard/post/vgg16/vgg16.png

