
CS231N Project Final Report
CNN-based Encoder-Decoder for Frame Interpolation

Yue Li
yulelee@stanford.edu

Sijun He
sijunhe@stanford.edu

Li Deng
dengl11@stanford.edu

Abstract

The ability to accurately interpolate intermediate frames
with two given frames has many applications, including
video compression and frame rate up-sampling. Tradi-
tional video processing techniques has always dominated
the field and tackles the challenge with optical flow esti-
mation. However, optical flow estimation has a trade-off
between speed and accuracy and estimating optical flow
robustly is difficult in real time. The application of Deep
Learning have been introduced to Frame Interpolation re-
cently. Our final model extends an CNN-based encoder-
decoder approach to Frame Interpolation. While the perfor-
mance of our model is sub-par to the current state-of-the-art
techniques, it outperforms the baseline of Linear Interpola-
tion and can be run in real time.

1. Introduction
Frame Interpolation is a computer vision task where in-

terpolation methods are applied to generate intermediate
frames between the previous and subsequent frames. The
main application of Frame Interpolation is video compres-
sion. Given that video sequence naturally contains tempo-
ral redundancy, frame interpolation can be used to reduce
this redundancy by storing only the key elements and infers
the rest. Frame interpolation could also be used to enhance
video quality by up-sampling the frame rate (HDTV) [1],
or even generate short video clips with a limited number of
frames.

The underlying challenge of Frame Interpolation is to
understand the motion between frames. Current state-of-
the-art algorithms are mostly traditional video processing
techniques, which model the motion between frames by es-
timating the optical flow. One of the key advantages of op-
tical flow based methods is that they are generalized meth-
ods and delivers similar performance regardless of the con-
text of the video. However, there are plenty of use cases
(sports games, security camera footages) where the back-
ground and the content of the video are consistent so that a
more specific approach could deliver superior performance.

Deep learning has been the main driving force behind
the breakthroughs in Computer Vision, but its application
in Frame Interpolation has only been introduced recently.
Convolutional Neural Network (CNN) are specifically suit-
able for extracting features and identifying contextual re-
lationships from images. Our project extends an approach
using a CNN-based encoder-decoder and compares its per-
formance against traditional video processing techniques.

2. Related Work
2.1. Motion-Compensated Interpolation

Motion-Compensated Interpolation (MCI) is a popular
optical flow based approach to Frame Interpolation and is
implemented on the hardware of many HDTVs [1]. A key
part of MCI is Motion Estimation (ME), which estimates
the optical flow. Optical flow is used to compute the motion
of the pixels of an image sequence and provides a dense
pixel-level correspondence [2]. The search strategy for Mo-
tion Estimation is generally broken into pixel-based meth-
ods and block-based methods.[3] Pixel-based methods are
rather exhaustive and seek to determine motion vectors for
every pixel in the image and delivers superior performance,
but is unsuitable for real time implementation due to exces-
sively large computation time[3]. The alternative and faster
methods are the block-based methods, which divide candi-
date frames into non-overlapping blocks and compute a sin-
gle motion vector for each block[3]. Block-based methods
can be implemented for real-time estimation and thus is the
standard method for Motion Estimation. After the Motion
Estimation step, the intermediate frame is generated with
the estimated optical flow with another step called Motion
Compensation. The work of Guo and Lu [4] provides a
detailed background and recent development of MFI. In our
work, we use the implementation of MFI in FFmpeg as a
benchmark to our own method.

2.2. Convolutional Neural Network

Given the MCI approach identifies contextual relation-
ships between images by estimating the optical flow, it is
natural to train a Neural Network architecture capable of

1



learning to identify the contextual relationships. There has
been some very recent development of applying CNN to
Frame Interpolation. A recent bachelor’s Thesis by Haitam
Ben Yahia [5] and a recent paper by Long et al. [6] both
adopted CNN based architectures and demonstrated that
CNN is a viable approach to Frame Interpolation. The ar-
chitecture is similar to the auto-encoder architecture by Hin-
ton et al. [7], where the two images are encoded by a se-
ries of downsampling convolutional block and decoded by
a series of upsampling deconvolutional block. Long et al.
and Yahia shared ”shortcut” technique allows the outputs of
convolutional block to be additional input to the deconvo-
lutional blocks and to skip part of the architecture. Similar
idea is also used in ResNet by He et al. [8] and Highway
Networks by Srivastava et al. [9]. Long et al. also carried
over techniques popular in optical flow based methods into
its work and adopted Charbonnier loss (x) =

√
x2 + ε2,

which is a differentiable and more robust variant of the L1
loss [10].

3. Approach
3.1. Linear Interpolation

The naive approach to Frame Interpolation is to average
the pixel values of the two input frames I and I ′.

Î =
I + I ′

2

This approach is simplistic and treats raw pixel values as
features for interpolation. The results are often a blurry
overlay of the two input frames.

Figure 1. Blurry Overlay of Linear Interpolation

3.2. CNN Based Encoder-Decoder

A logical step after using raw pixels as features is to ex-
tract features from the image for interpolation. Inspired by
the work of Yahia and Long et al, we adopt a CNN based
encoder-decoder architecture (Figure 2). Different from
Yahia and Long et al, who stack the input frames to 6 chan-
nel as the input to the encoder, we encode the two input
frames independently into latent representations, and then
decodes the concatenated latent presentations of the input
frames to generate the intermediate frames.

As shown in Table 1, our model is fully convolutional.
We used a series of convolutional layer as the encoder, a

single convolutional layer to combine the concatenated fea-
tures, and a series of convolution transpose layers as the
decoder. The intuition behind the varying kernel sizes and
strides was that we felt the need to first capture the large-
scale features and then small-scale features with the en-
coder. The same intuition also applies to the decoder, where
larger-scale structure are generated first with larger ker-
nel and strides and details/textures are generated later with
small kernels. The exact architecture is fine-tuned for each
dataset.

Figure 2. CNN Based Encoder-Decoder Architecture

3.3. Sequence-to-Sequence

One of the shortcomings of the CNN-based Encoder-
Decoder model is that it only takes into account the local
information of two input frames. In many cases, long-range
patterns are only observable if a more global view of the
motion is given. A good example would be a circular mo-
tion. If using the previous model, the motion would be
piecewise linear as opposed to the desired circular motion.

This idea led us to the Sequence-to-Sequence model
(Figure 3), where the input is a sequence of frames (Frame
1, 3, 5, 7, 9...) and the output is the sequence of subse-
quent frames (Frame 2, 4, 6, 8...). As 3.3 shows, a com-
bined loss of the sequence images generated is computed
and back-propagated to each step, so that global sequence
information can be encoded.

To drive the point home, we designed a circular motion
pattern in our toy moving box dataset. For this non-linear
motion, local piece-wise prediction can only predict lin-
ear movement, and we expected the Sequence-to-Sequence
model model to capture the global circular motion, and
present more accurate prediction. However, due to time
constraints, we weren’t able to fully explore this model on
other datasets. We also take inspirations from [11], where
LSTM is used to explicitly encode motions from a sequence
of frames.

4. Experiment
4.1. Datasets

Our datasets include the following parts:

2



Table 1. CNN Based Encoder-Decoder for Tennis Dataset
Layer Kernel Size Strides Filters Activation

Encoder
conv 8 2 48 ReLu
conv 5 2 48 ReLu
conv 4 2 48 ReLu
conv 3 1 48 ReLu
conv 2 1 48 ReLu
conv 2 1 128 Tanh

Decoder
conv 3 1 96 ReLu

conv transpose 5 2 48 ReLu
conv transpose 7 2 48 ReLu
conv transpose 4 2 48 ReLu
conv transpose 3 1 48 ReLu
conv transpose 2 1 24 ReLu
conv transpose 2 1 3 Tanh

Figure 3. Sequence-to-Sequence Model for Encoder-Decoder

• Moving Shapes
We hand-crafted a series of videos of moving shapes in
various colors, shapes, speeds and paths (as shown in
Figure 4). We captured the frames with FFmpeg and
have more than 500 triplets of data (before, ground-
truth middle and subsequent frames). This dataset was
used as a simplified toy example and it designed to be
overfitted. We experimented our network architecture
based on this dataset in order to get a better under-
standing of how the motion feature is being captured
and how each layer affects the result.

• Tennis
In addition to our toy dataset. We also experimented
our model on a small-scale real-life dataset (Figure 5).
We used a short video depicting a female player play-

Figure 4. Moving Box Dataset

ing tennis on a tennis court[12], within which the ten-
nis court background is fairly stable and the moving
objects (including the player, racket, or even the tennis
ball) have clear movements, and therefore is suitable
to serve as probe for testing our model’s motion cap-
turing ability.

Figure 5. Tennis Dataset

4.2. Data Preprocessing

• Data Augmentation
All moving box frames generated from keynote videos
are all white background and black objects, and they
were augmented by reversing the colors, or reversing
the moving directions. In this way, we were able to
obtain more than 3000 frames from the original 500
frames directly generated.

3



• Centering
Original pixel values range between [0, 255]. To feed
the network with balanced dataset, all data points are
first transformed by function f(x) = 2 · x/255 − 1.
Thus all images fed into the network have a range be-
tween [-1.0, 1.0].

4.3. Metrics

• Mean Squared Error (MSE)
The primary metric we use to assess the performance
of our model is the Mean Squared Error (MSE) be-
tween the generated frames and the ground-truth im-
ages. We also use the MSE as the loss function when
training our model.

MSE(y, ŷ) =
||y − ŷ||22
H ∗W ∗ C

where H,W,C are the height, width and depth of the
input frames y and ŷ.

• Peak-to-Noise Ratio (PSNR)
Peak-to-Noise Ratio (PSNR) is the log-scale ratio be-
tween the maximum possible power of a signal and the
power of corrupting noise [13]. It is commonly used
to measure the quality of reconstruction of lossy com-
pression and is a function of the MSE.

PSNR(y, ŷ) = 10 ∗ log10
max power2

MSE(y, ŷ)

= 10 ∗ log10
2552

MSE(y, ŷ)

• Structural Similarity Index (SSIM)
The structural similarity (SSIM) index is a method
for predicting the perceived quality of images and
videos.[14] It is a qualitative metric and a good sup-
plement to PSNR or MSE, which are robust quantita-
tive measurements but is inconsistent with human vi-
sual perception.

4.4. Benchmark

As described in Section 2.1, Motion-Compensated Inter-
polation (MCI) is one of the state-of-the-art Frame Interpo-
lation techniques at the moment. FFmpeg provides an im-
plementation of MCI through a filter called minterpolate,
which is used as a benchmark to our model. The technical
configurations of the MCI adopted is the following:

• Motion compensation mode: overlapped block mo-
tion compensation

• Motion estimation mode: bilateral motion estimation

• Motion estimation algorithm: uneven multi-hexagon
search algorithm

4.5. Results

• Moving Box
The toy dataset of moving-box serves as our explo-
ration and experiments to understand the problem.
With the initial feed-forward convolutional neural net-
work, we were able to generate relatively accurate
movement predictions, as Figure 6 shows. With our
encoder-decoder network, much more clear and accu-
rate predictions can be made, while nuance shapes and
edges can still not be accurately captured, as 7 shows.
The model is fairly robust to various types of back-
ground colors, moving paths, or motion pattens.

Figure 6. Moving Box 32x32 by Feed-Forward Network

Figure 7. Moving Box 64x64 by Encoder-Decoder

• Tennis
The encoder-decoder model is then applied to the ten-
nis dataset. During training time, the model can fairly
quickly output images that match with the ground-
truth in most cases, while may be vulnerable to some
failure cases, as Figure 9 shows.

For the test data, the model is able to generate approx-
imate configurations of the intermediate frames, but is
unable to generate sharp edges, as Figure 8 shows.

Table 2 shows a comparisons of the metrics evaluated
on the tennis dataset. Our model delivers a inferior
performance compared with the state-of-the-art MCI
technique. It is worth noting that the comparison of
our model against Linear Interpolation is consistent,

4



Figure 8. Tennis on Test Dataset

as our model outperforms in terms of the qualitative
metrics SSIM but under-performs in terms of the quan-
titative metric of MSE and PSNR. This is in line with
our own observation. The result of our model is less
blurry on the moving object, which results in a better
SSIM. But the model also introduces noise in the back-
ground, which lead to the under-performance in MSE
and PSNR.

Figure 9. Tennis on Training Dataset

Table 2. Metrics Comparisons for Tennis Dataset
Interpolation Technique MSE PSNR SSIM

Linear Interpolation 36.09 32.68 0.8319
MCI 29.43 33.53 0.9102

CNN-Based Interpolation 52.21 31.06 0.8721

5. Other Ideas Explored
5.1. Sequence Encoding Enhanced with LSTM

Figure 10. Architecture of LSTM for Sequence Prediction

Our Sequence-to-Sequence Approach described in Sec-
tion 3.3 was originally conceived as a LSTM approach (Fig-
ure 10). The idea is to encoder a sequence of input frames
individually into the feature space and to use the features
as the input to a LSTM/Bi-LSTM layer to model the contex-
tual relationship between the frame sequences. The decoder
decodes the output of the LSTM/Bi-LSTM layer into inter-
mediate frames. However, during implementation we find

5



Figure 11. Result of reproduction of the work of Long et al.[6]

that the O(n2) space complexity of LSTM is a memory bot-
tleneck of model and severely limits the size of the encoded
feature space. We were not able to overcome this issue and
didn’t get a good result.

5.2. Reproduction of the work of Long et al.[6]

One of initial our approaches is to reproduce the work
of Long et al.[6] in hope of further improvement. But we
underestimated the difficulty of reproducing a state-of-the-
art Deep CNN model. Long et al.’s model was trained
for 5 days on a multi-GPU cluster and we were not able
match with their resources or expertises. We experimented
a few iterations with the model on the kitti dataset [15]
and was able to get some promising results (Figure 11).
However, iterating on Long et al.’s model was too costly
in time and resources so we instead experimented with our
hand-crafted Moving-Box data, and came up with our own
encoder-decoder based models.

6. Conclusion & Future Work
Through our experiments, we are able to demonstrate

that the CNN-based encoder-decoder approach is capable
of learning the contextual relationship between two frames
and capturing the latent features of motions. The model

is also able to reconstruct the output frame from the con-
catenated latent features. From our experiments on the toy
Moving-Box dataset, we explored a variety of models and
ideas. When later trained on the tennis dataset, the model is
able to approximate and generate the intermediate frames,
with imperfections like noisy background or loss of sharp
edges within the output images. Our model may find poten-
tial application in video compression and video generation,
where the model can be trained for a certain context and
generate frames for inference. The sequence-to-sequence
approach which takes in a sequence of input images, and
generates a series of intermediate frames corresponding to
the input sequence, is also promising for enhancing the pre-
diction quality of stronger sequential pattern encoding.

For the next step, we plan to develop alternative ways of
utilizing LSTM in our sequence-to-sequence model, as our
current design was restricted by memory bottleneck. Fur-
thermore, we want to further experiment with our current
CNN-based model with Charbonnier loss and the ”short-
cut” technique mentioned in Section 2.2.

The reader is welcome to visit our web demo at https:
//dengl11.github.io/CS231N-Project/.

6

https://dengl11.github.io/CS231N-Project/
https://dengl11.github.io/CS231N-Project/


References
[1] Wikipedia. Motion interpolation — Wikipedia, the

free encyclopedia. https://en.wikipedia.
org/wiki/Motion_interpolation, 2017.
[Online; accessed 18-May-2017].

[2] Aleix M Martinez. Lecture slides: Optical flow. [On-
line; accessed 7-June-2017].

[3] Metkar and Talbar. Performance evaluation of block
matching algorithms for video coding. In Motion Es-
timation Techniques for Digital Video Coding, pages
pp 13–31. Springer.

[4] Dan Guo and Zhihong Lu. Motion-compensated
frame interpolation with weighted motion estimation
and hierarchical vector refinement. Neurocomput.,
181:76–85.

[5] Haitam Ben Yahia. Frame interpolation using convo-
lutional neural networks on 2d animation. Bachelor’s
Thesis from University of Amsterdam.

[6] Gucan Long, Laurent Kneip, Jose M. Alvarez, and
Hongdong Li. Learning image matching by simply
watching video. European Conference on Computer
Vision(ECCV), 2016.

[7] G.E. Hinton and R.R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504 – 507, 2006.

[8] S Ren K He, X Zhang and J Sun. Deep residual learn-
ing for image recognition. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2016.

[9] K Greff R.K. Srivastava and J Schmidhuber. Highway
networks. CoRR, abs/1505.00387, 2015.

[10] D. Sun, S. Roth, and M. J. Black. Secrets of optical
flow estimation and their principles. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR),
pages 2432–2439. IEEE, June 2010.

[11] Xunyu Lin, Victor Campos, Xavier Giro-i Nieto, Jordi
Torres, and Cristian Canton Ferrer. Disentangling mo-
tion, foreground and background features in videos.
2017.

[12] Tennis dataset. https://lmb.informatik.
uni-freiburg.de/resources/datasets/
sequences.en.html.

[13] Wikipedia. Peak signal-to-noise ratio — wikipedia,
the free encyclopedia. https://en.wikipedia.
org/wiki/Peak_signal-to-noise_ratio,
2017. [Online; accessed 8-June-2017].

[14] Wikipedia. Structural similarity — wikipedia, the free
encyclopedia. https://en.wikipedia.org/
wiki/Structural_similarity, 2017. [On-
line; accessed 8-June-2017].

[15] Andreas Geiger, Philip Lenz, Christoph Stiller, and
Raquel Urtasun. Vision meets robotics: The kitti
dataset. International Journal of Robotics Research
(IJRR), 2013.

7

https://en.wikipedia.org/wiki/Motion_interpolation
https://en.wikipedia.org/wiki/Motion_interpolation
https://lmb.informatik.uni-freiburg.de/resources/datasets/sequences.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/sequences.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/sequences.en.html
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity

