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Abstract

Convolutional Neural Networks (CNNs) have achieved
state-of-art in image classification and have been progress-
ing rapidly in the field of video classification and audio un-
derstanding in recent years. Encouraged by these results,
we propose jointly using video and audio features in order
to provide a promising classifier for the Youtube-8M Kaggle
challenge - a video classification task for a dataset of 7 mil-
lion YouTube videos belonging to 4716 classes[2]. In this
paper, we explore several models of different combination of
video-level visual and audio features. Our best model uses
the mixture of experts (MoE) to receive three inputs. They
are video level visual feature only, audio feature only and a
concatenation of visual and audio feature. Then we apply a
dense layer followed by a ReLu activation layer. The gating
network we applied in MoE uses softmax function. We train
our model with Tensorflow using 1 GPU on Google Cloud
Platform. The average training time is 1 hour 15 minutes.
As a result, we achieve Avg Hit@1 of 0.84, Avg PERR (aver-
age precision at equal recall rate) of 0.709, and mAP (mean
average precision) of 0.415 compared to the best perform-
ing baseline proposed in [2] with Avg Hit@1 0.645, Avg
PERR of 0.573, mAP of 0.266.

1. Introduction

Video has become an indispensable form of media in the
modern society. According to YouTube company statistics
[1], every minute there are 300 hours of video uploaded to
YouTube and every day there are nearly 5 billion videos
being watched. Not only the amount of videos we are deal-
ing with is immense, but also the themes of the video has
become extremely diverse. The types of videos we en-
counter in daily life range from entertainment use such as
music videos, movies and games, educational use of lec-
tures and experiments, to the many newly emerging tech-
nologies such as drones and autonomous cars. Under such
background, an efficient method to solve large-scale video

classification is desired, which could in turn be applied to
content discovery and filtering.

Video classification is an inherently difficult task for
mainly three reasons. First, the dataset for video classi-
fication are usually limited to a particular scene and sep-
arate for video and audio features. The most well stud-
ied video datasets, such as Sports-1M [10], ActivityNet[7],
UCF-101[20] are all confined to a certain theme of videos.
Thus, their models are more suitable in very specific classi-
fication task in that theme than generic classification with a
large number of classes. There are also some audio datasets
that have been extensively explored such as NOISET-92
[22] and AENet [21]. These datasets also have the same
limitation as the video datasets.

Second, the trade-off between computational cost and
with the accuracy of the model inherently exist. On top
of the challenges of classifying images, the additional tem-
poral dimension is critical in understanding the theme of
a video. Having a model capture the temporal informa-
tion across frames may provide a more accurate model at
the cost of computational time to a degree where process-
ing time becomes infeasible. For example, temporal fusion
frame stacks [10] have proved its success in high mAP but
its training time is extremely long (over a month).

Third, the labeling of videos are very subjective. User-
generated content is inherently noisy, and we note that the
labels applied to a video may also be a source of noise.
In some instances, the video may jump erratically between
scenes, have odd occlusions of objects, or other such arti-
facts expected of amateur content. Moreover, the labels can
describe specific objects found in the video while excluding
others, while labels may wish to capture the overall topic the
video while ignoring specific objects or scenes. As a result,
creating and classifying a large video dataset with relatively
stable and object labeling style is very difficult - which is
challenging when attempting to produce a reasonable video
classifier.

In this paper, we test our video classifier against
YouTube-8M, the largest video dataset, having been estab-
lished in September 27, 2016. This dataset contains 7 mil-

1



lion video URLs, 450 000 hours of video, 3.2 billion au-
dio/visual features, and approximately 5000 labels, contain-
ing both video-level, frame-level visual and audio features.
The labels were created by the YouTube video annotation
system. The use of human rated labels were not used across
the dataset, which is explained away by Abu El-Hajia et. al
[2] by running the same models on a smaller, human-rated
dataset.

Our contributions can be summarized as follows:

• We provide several models of using both audio and vi-
sual features to classify YouTube videos. We demon-
strate that the additional audio information in the train-
ing process significantly improves the model perfor-
mance.

• We analyze specific examples of our training model
to demonstrate successful, non-obvious examples, and
failure examples.

• We compare the performance of different models
against the classification benchmarks originally set by
[2]

• We propose additional models given additional time
and resources, and even beyond the features provided
by the YouTube-8M dataset

2. Related Papers
Various but surprisingly limited amount of research has

been done in video classification. Most of research up until
recent research is based on state of art image classification
techniques [12][11] and use only visual information.

However, they generally differ in that video classifica-
tion models naturally include temporal information. For ex-
ample, multiple temporal information fusion architectures
were experimented on the Sports-1M dataset[10], where
the first convolutional layer in conventional image clas-
sification CNN was modified to extend through several
frames instead of a single frame. As a result, this model
was demonstrated to have significant accuracy improve-
ment compared to strong feature-based baselines (55.3% to
63.9%) on Sport-1M dataset.

Recurrent neural network (RNN) [8] using Long Short
Term Memory (LSTM) [19], having been used rather suc-
cessfully in the language domain, has also been proved to
be an effective way to utilize the sequential information
in videos, [14], including the UCF-101 [20]and Sport 1-
M[10]. In the RNN structure using LSTM, by using inter-
nal memory cells to store information of frames in a certain
temporal window, parameters can be shared and transferred
overtime. Using such a structure allows us to discover long-
term temporal relationships which is critical in video un-
derstanding. Very similar to LSTM, Gated Recurrent Unit

(GRU) [5][4] also have gating options to process sequen-
tial information. Compared to LSTM, GRU use of 2 gates
instead of 3 and does not possess internal memory which
makes the computation using GRU faster than LSTM with
comparable performance.

Spatial-temporal words [16] is another approach proved
to be effective in human activity categorization. The idea
of spatial-temporal words resembles Bag of Words (BoG)
[17] in the field of language processing, in which we view a
video as a collection of words. In this method, spatial tem-
poral interest points are extracted from local video patches
and are then used to predicted local labels. Then, a vo-
cabulary book is constructed by clustering using k-means
or Euclidean distance. Finally, the category of the video
is decided based on probabilistic Latent Semantic Analysis
(pLSA) graphical model [9].

However, as mentioned before, these approaches are
studied on different datasets and have very different pur-
poses. For example, in the Sports-1M dataset, the target
classes are 487 sports. All the videos share similarities of
background of stadium, audience, players and most of the
information comes from the sequence of motion and the
speed of these motions. In this context, temporal fusion
would be a very effective model. By contrast, in under-
standing activities, the sequence of behaviors are usually
more complicated. In this case, spending more effort in un-
derstanding the topic of video by combining frame informa-
tion in explicit ways, seems more reasonable.

However, in the YouTube-8M dataset, the topics of video
are much more diverse. Beside sports videos and human ac-
tivities, there are many other videos containing video game-
play with commentary, music videos with static images,
speeches, clips of TV shows, etc. With such diversity in
content, we can imagine that understanding the sequence
of scenes may not help with understanding the topic of the
video. Additional features, including from an independent
data structure, such as audio information should be jointly
studied to complement this loss. Also, the research based on
understanding discrete frames are always extremely compu-
tationally expensive. Some of the models requires training
time of more than a month to train[10]. Adding audio fea-
tures and simplifying visual features can reduce the training
time significantly.

Moreover, there is also extensive research in under-
standing audio, particularly in speech recognition. In
the field of speech recognition, many low level features
such as short-time energy, frequency-pitch, frequency-
centroid Mel Frequency Cepstral Coefficients (MFCC)
were investigated[26]. However, these features were not de-
signed for generic video classification. Recently, there are
more researches exploring fusing audio information with vi-
sual information for video classification [24][21].

However, these studies were done in small datasets that
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are not as generic as YouTube-8M.
In this paper, we propose and compare different models

using video-level visual and audio features on YouTube-8M
datasets. The methods and models we use will be explained
in detail in the following section.

3. Methods
In this section, we describe the methods behind the mod-

els used in our video classfication model, including some
methods that we believe held promise, but however had in-
sufficient time or resources to complete.

3.1. Logistic Regression

Logistic Regression [13] is regarded as our baseline for
consuming video-level features. Given averaged RGB value
for all frames as video-level feature xi of the testing video
i and the probability of the entity j as σ(wTj xi), we trained
this model by minimizing the total log loss of the training
data with deterministic parameter weights w:

λ||wj ||22 +
N∑
i=1

L(yi, σ(w
T
j xi))

where the sigmoid function σ(x) is given as :

σ(x) = 1/(1 + exp(−x))

and the cross entropy loss function is :

1

N

N∑
i=0

yi log(ŷi + ε) + (1− yi) log(1− (ŷi + ε))

In general, it is a linear projection of the video-level fea-
tures into the label space, followed by a sigmoid function to
convert log values to probabilities.

3.2. Dense Layer

As each dense layer indicates a matrix multiplication and
to cooperate with different needs of models, we use dense
layer to change the dimensions of the vector. It can achieve
mathematical transformation to vector input using:

outputs = activation(inputs.kernel + bias)

where kernel is trainable parameter and bias is provided
by the layer. More specifically, suppose u ∈ Rnandw ∈
Rn∗m, and if we apply dense layer on u with kernel w, then
we have u.Tw ∈ Rm, which is now a m-dimensional vector
output.

3.3. Mixture of Experts

The mixture of experts(MoE) [3] is a binary classi-
fier,consisting of a number of experts, each a simple feed-
forward neural network E1, E2, ..., En, and a trainable gat-
ing network G which selects a sparse combination of the

experts to process each input, and outputs a sparse n-
dimensional vector [18], as shown in the figure below.

Fig 1. Mixture of Experts. Each expert takes in same input
and processes independently. A gating network is then

applied to make the final prediction.

Each experts (neural network Ei) has its own trainable
parameters, therefore we only require them to output the
vectors with same dimensions, and this is the place where
dense layer would be applied. If we denote the output of
gating network as G(x) and the output of i-th expert net-
work as Ei(x), then the output of MoE model is:

y =

n∑
i=1

Gi(x)Ei(x)

Thus the computation result from Ei(x) is chosen based on
the sparsity of the output G(x). i.e. if Gi(x) = 0 then
there is no need to calculate Ei(x). We chose the softmax
function and sigmoid as the gating network, where softmax
is used to model the probability of choosing i-th expert and
sigmoid function to model the existence of the entity:

p(xj |x) = s(xj) =
esj∑n
i=1 e

s
i

Pσ(x) =
∑
j

p(xj |x)σ(wTj x)

Here, Wj is also a trainable weight matrix and we use final
probabilities to make the prediction. In our project, we used
audio and visual features as input and the corresponding ex-
perts are simple weight matrices, which is similar to the pa-
rameterized weight matrix but surprisingly works well.

3.4. Ensemble Model

Ensemble model takes a number of related but different
analytical model and synthesizes the results into one sin-
gle output in order to achieve improvement on accuracy of
single predicting algorithms.
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According to the comparison of different models, three
models are selected as experts in MoE model. Details are
shown below.

Fig 2. Customized MoE Model. Two ”experts” are logistic
regression models of audio features and visual features

respectively. The third expert takes in concatenated audio
and visual features, followed by dense layer and activation

function.

3.5. Long Short Term Memory

Long Short Term Memory (LSTM) unit was initially in-
troduced in 1997 and it was designed to save vanishing gra-
dients through gating network as seen in a more basic recur-
rent neural network. It has forget gate f, input gate i, gate
gate g, output gate o and internal memory unit c. Among
above, three gates i, f, o have same dimensions but dif-
ferent parameters, and they are squashed between 0 and 1.
More specifically, the input gate i defines the percentage of
current input used in the newly computed state. The for-
get f gate defines percentage of the previous state to be let
through. The output gate o defines the percentage of the
internal state to be exposed to the external network. ”Gate
gate” g is a candidate hidden state that is computed based
on the current input and the previous hidden state.

Fig 3. LSTM gating mechanism. It modulates the gradient
flow with saved memory content

The memory unit and hidden state are updated as below

(Here, * indicates point-wise multiplication):

ct = f ∗ ct−1 + i ∗ g

ht = o ∗ tanh(ct)

3.6. Gated Recurrent Units

Gated Recurrent Units, known as GRU, has similar
structure as a LSTM layer. Its gating units modulate the
flow of information inside the unit, but without memory
cells as LSTM does.[4]

A GRU has two gates, a reset gate r, and an update gate z.
the reset gate determines how to combine the new input with
the previous memory, and the update gate defines how much
of the previous memory to keep around. If reset gate is set to
all 1’s and update gate is set to all 0’s, it now changes back
to basic RNN model. The equations are given as below:

z = σ(xtU
z + st−1W

z)

r = σ(xtU
r + st−1W

r)

h = tanh(xtU
h + st−1rW

h

st = (1− z)h+ zst−1

To better explain the responsibility of reset and update
gates, the figure below shows how to compute the output.

Fig 4. GRU Gating. The combination of r and z has the
same performance as the reset gate in LSTM.

GRU controls the information flow from the previous acti-
vation when computing the new, candidate activation, but
does not independently control the amount of the candidate
activation being added (the control is tied via the update
gate).
Since GRUs have fewer parameters (U and W are smaller)
and thus may train a bit faster or need less data to general-
ize. It is more reasonable to use GRU instead of LSTM due
to the large capacity of dataset and time limitations. How-
ever,the greater expressive power of LSTMs may lead to
better results given enough resource.
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4. Dataset and Features
YouTube-8M is the so far the largest multi-label video

classification dataset. It is composed of 7 million videos,
with a vocabulary of 4716 visual entities. Each video was
tagged on an average of 3.2 labels. It should be noted that
the distribution of 4716 classes are rather uneven.

Fig 5. Distribution of YouTube-8M classes. The top 24
popular classes are shown in this image. We can see the

distribution of labels is very uneven.

All the videos in this dataset are clipped into 6 minutes
length, with frames captured at one second intervals. The
labels were obtained through feeding frames into the Incep-
tion network and fetching the ReLu activation of the last
hidden layer followed by the classification layer, producing
a feature vector of size 2048. Afterwards, PCA, whiten-
ing and quantization are applied to reduce the dimension to
256. It is validated that such downsizing would not affect
the training performance much since training on full-size
data only increases the evaluation metrics by less than 1%
[2].

At the same time, task-independent fixed-length video-
level feature vectors are also derived from the frame-level
features. Its compactness can help reduce the training data
size and independence of video labels can generalize better
to new tasks or video domains. In this paper, we use video-
level visual and audio feature vectors to train our network.

5. Experiments and Results
In this section, we’ll describe the metrics that are used to

measure the performance of the models, the baseline results
found in [2], the results of our models, and an analysis of
both successful and failure cases.

5.1. Implementation

Initially we attempted to build a pipeline to extract fea-
tures from raw video, in which a Python script would down-

load each YouTube video, extract frames at one frame per
second with the appropriate vector representation (i.e. RGB
images). However we soon found this to be prohibitively
time-consuming and rather focused on developing mod-
els on the existing features provided by the YouTube-8M
dataset, which unfortunately limited our approach to the
problem.

Our models were developed using the Tensorflow frame-
work, based off of the template code provided by Google
Research in their own development of baseline models. All
models were run on the Google Cloud Machine Learning
API. The partition for training, evaluation, and test sets were
divided into 70/20/10 respectively as defined by the Kaggle
challenge.

5.2. Evaluation Metrics

There are a number of metrics that we used to measure
the performance of each model, which are described in [2].

5.3. Results on YouTube-8M

Our results on the YouTube-8M dataset readily surpassed
the baseline models provided by [2], having been provided
the addition of audio features.

Table 1. Results for Hit@1, PERR, mAP, and GAP
performance for each tested model. LSTM is the baseline

provided by the YouTube-8M paper.

Due to time and monetary constraints, only video-level
features were trained, as frame-level features were deemed
to be too costly to train for marginal value. However, frame-
level features would have been necessary to achieve the top
scoring model as part of the Kaggle challenge.

5.4. Examples

We extracted a number of examples to observe how our
models were performing, and we found that even with a
fairly simple model, and on the video-level features alone,
the models were surprisingly accurate, even providing la-
bels that were even more agreeable than those provided by
the YouTube-8M dataset.
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Fig 6. Successful predictions on videos from the
Youtube-8M dataset. Length of the bars represent

confidence level of the model for the given label. Green
presents matching ground-truth, while red represents a

mismatch. Ordering of the labels is defined by the
confidence scoring of the model rather than the order of

the ground-truth labels.

Details such as the specific game, or particular objects
in the video, were largely labeled despite not being in the
set of ground-truth labels, while high-level labels of videos
were generally accurately applied. The classifier appeared
to perform well on coherent videos with longer sequences
and focusing on a single topic.

Fig 7. Failed predictions on videos from the Youtube-8M
dataset.

However, we noted that for videos with a large number of
scenes across a range of topics, or for static videos with au-
dio, the classifier did not perform very well, with the model
falling back on the distribution of high level topics. Regard-
less, we found that the behavior of the model was explain-
able in both the successful and failure modes.

6. Future Work

Given a larger amount of time and resources, there would
be a number of techniques that we could attempt to use to
improve the accuracy of our models.

The use of frame-level features in recurrent neural net-
work architectures to encode additional video-level features
would have likely provided our models with additional ac-
curacy. This was attempted without success - we found
that the training of these neural networks were prohibitively
expensive for the marginal gain that they would have pro-
duced. However given additional time and resources, this
can be readily attempted. We would also extend beyond the
RNN architectures proposed by prior papers in video classi-
fication that have otherwise been used successfully in other
domains, including bidirectional LSTM [6].

In addition, the information from the hierarchical na-
ture of the labels, defined by the Google Knowledge Graph,
would have perhaps provided a more accurate model. Using
hierarchical multilabel classification techniques [25] [23],
at minimum, we expect to see a reduction in training time
if not an additional gain in accuracy. The application of
data augmentation, specifically through a (denoising) mul-
timodal autoencoder [15] or randomizing sequences, could
have also perhaps led to higher-level representations that
would have been more suitable than those provided by the
YouTube-8M dataset.

Moving beyond the scope YouTube-8M dataset features,
we would have also liked to use the individual frame in-
formation to extract features such as text, optical flow [2],
and scene segmentation that we found inaccessible using
the PCA and whitened video-level and frame-level features.
While the processing time may be prohibitive for a compe-
tition, we believe that this information would have led to a
much more accurate model and additional flexibility in our
architecture.
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