
YouTube-8M Video Classification

Alexandre Gauthier and Haiyu Lu
Stanford University

450 Serra Mall
Stanford, CA 94305

agau@stanford.edu hylu@stanford.edu

Abstract

Convolutional Neural Networks (CNNs) have been
widely applied for image classification. Encouraged by
these results, we apply a CNN model to large scale video
classification using the recently published YouTube-8M
dataset, which contains more than 8 million videos labeled
with 4800 classes. We study models with different archi-
tectures, and find best performance on a 3-layer spatial-
temporal CNN ([CNN-BatchNormzliation-LeakyReLU]3-
FullyConnected). We propose that this is because this
model takes both feature and frame information into ac-
count. By optimizing hyperparameters including learning
rate, we achieve a Hit@1 of 79.1%, a significant improve-
ment over the 64.5% for the best model Google trained in
their initial analysis. Further improvements may be achiev-
able by incorporating audio information into our models.

1. Introduction
Online video sharing websites are a common way for

people to share their experiences with others, as well as
a popular source of both entertainment and education.
YouTube, the most popular online video sharing website,
hosts over one billion videos. With such a large database,
it can be difficult for users to find exactly the video they’re
looking for. Therefore, a highly efficient search mechanism
is essential in order to serve the most appropriate videos to
users.

It can be difficult to implement video search, as videos
have little inherent text-based data that can be used for in-
dexing. Most videos have only uploader-provided metadata
(title, category and labels). Labels can be extremely use-
ful for search indexing, but contributors cannot be counted
upon to provide every label appropriate for their videos.

In order to improve search quality on YouTube, it is de-
sirable to devise a way to automatically assign relevant la-
bels to each video, even ones with limited user-supplied

metadata. To this end, Google has released the YouTube-
8M dataset [1]. This set of over 8 million labeled videos al-
lows the public to train algorithms to learn how to associate
labels with YouTube videos, helping to solve the problem
of video classification.

We use multilayer convolutional neural networks to clas-
sify YouTube-8M videos. The input to our algorithm is
pre-processed video data taken from individual frames of
the videos. We then use a CNN to output a score for each
label in the vocabulary. We briefly tried LSTM and fully-
connected models, but found that convolutional models per-
form better.

2. Related Work
Large-scale datasets such as ImageNet [2] have played

a crucial role for the rapid progress of image recognition
[3, 4, 5] to near human level accuracy [6]. In a similar
vein, the amount and size of video classification is growing
[7]. Training data available ranges from small, well-labeled
datasets like KTH [8], Hollywood2 [9] and Weizmann [10],
with a few thousand video clips, to medium-scale datasets
such as UCF101 [11], HMDB51 [12] and Thumos14 [13],
which allow for classification into more than 50 action cat-
egories. The largest available dataset prior to the release of
YouTube-8M was Sport-1M, 1 million videos labelled with
487 sports related activities [14]. These datasets have been
extensively analyzed in the literature [15]

The main improvement provided by the YouTube-8M
dataset is its sheer size. It includes 4,800 classes, compared
to under 500 for other datasets; and it has more than 8 times
the number of videos than the Sport-1M dataset. Further-
more, the YouTube-8M classes aim to describe the topic
of a video (e.g. “gardening”), while older datasets merely
identify objects or activities found in videos (e.g. “flower”).
This was allowed by Google’s development of an efficient
video annotation system [16].

Making predictions from a larger number of potential
classes is desirable because, in the real world, there are far
more than 500 types of videos users could want to watch.

1



Figure 1. Schematic of preprocessing algorithm for YouTube-8M
dataset. Videos are compressed down to 1024 8-bit features per
second using a network pre-trained on ImageNet, followed by
PCA.

Larger datasets are necessary when expanding the number
of classes in order to provide a sufficient variety of training
examples so that the classifier will perform well on a larger
fraction of real-world videos.

3. YouTube-8M Dataset

The entire YouTube-8M dataset consists of 4,800 classes
and a total of 8,264,650 videos, representing over 500,000
hours. Each video is labeled with one or more class. On
average, each video has 1.8 labels. The entire dataset is
split into Training, Validation and Testing partitions, with
ratios of 70%, 20% and 10%.

3.1. Vocabulary Construction

Google generated labels in millions of classes with the
algorithmic YouTube video annotation system [16] based
on the contents and associated metadata of a selection of
well-annotated videos. Then, the labels were filtered down
to 4,800 classes through a combination of human raters and
automated curation strategies. There were two main tenets
when selecting the labels to include in the vocabulary for
the label. First, every label is identifiable using visual infor-
mation alone; second, each label has a sufficient number of
videos in the dataset for adequate training.

3.2. Frame-level and Video-level Features

The raw video dataset is hundreds of terabytes, which is
impractical to deal with. Therefore, the dataset has been
pre-processed using a publically available Inception net-
work trained on ImageNet. Entire video frame images, one
per second, up to 360 per video, are sent through this net-
work, reducing their dimensionality to 2048 features per
frame. PCA with whitening is then used to further reduce
the feature dimensions to 1024, which is finally compressed
from 32-bit to 8-bit data types. See Figure 1.

Full audio data is also provided in one second intervals.
Video-level data is computed by taking the average of the
frame-level visual and auditory data over the entire video.

Training on video-level features is computationally sim-
pler, because there are far fewer of these features per video.
Although this can speed up training, a lot of information is

lost in the frame-by-frame averaging process used to com-
pute video-level data. This is especially true if individual
frames in a video are dissimilar, and the label we need to
predict is contained in only a small fraction of the frames.
Therefore, we focus on training models which use frame-
based features.

3.3. Evaluation Metrics

Our goal is to predict the labels associated with each
video using image and audio data. However, because many
videos are associated with more than one label, there is no
single obvious way to quantify model quality. The primary
evaluation metrics we used with this dataset are “Hit@k”
and “PERR” (precision at equal recall rate).

To compute PERR, you first look at the ground truth la-
bels for each video. Then you compute scores for all 4,800
possible labels using your model. If there are n ground truth
labels for a particular video, then you will predict that the n
highest-scoring labels are associated with that video. PERR
is then the fraction of these predicted labels that are correct,
averaged over a large number of videos.

To compute Hit@k, you also compute scores for each
possible label for each video. You then say that the video
has been successfully classified if at least one of the k
highest-scoring labels is one of its ground truth labels. The
Hit@k metric is then the fraction of videos in your dataset
that have been successfully classified.

Two additional metrics are mean average precision
(mAP) and global average precision (gAP). These metrics
are a measure of the area under the precision-recall curve
for a given model.

4. Approach

Google already applied some simple models to the
YouTube-8M dataset in the paper they released along with
the data [1]: a fully-connected model, a deep bag of frames
(DBoF) model, and a multilayer LSTM. Google also trained
hinge loss, logistic, and mixture-of-2-experts models on the
video-level data. The performance of these models as re-
ported by Google is detailed in Table 2.

4.1. Working on frame level features

We created our models to work with frame-level fea-
tures. This allows our models to take into account how the
video changes throughout its length. Google’s frame-level
models exhibited slightly better performance than video-
level models, suggesting that the video-level data is missing
some important information.

The data for a video consists of a 1024×f matrix, where
f is the number of frames. Because f can vary between
videos, the data is padded with zeros up to the maximum of
360 frames. The other dimension contains the 1024 spatial

2



features extracted from each frame using the pre-processing
algorithm described earlier. For privacy purposes, we do not
know which YouTube videos we are classifying; nor do we
have access to the un-processed video data.

We tried training two variants of CNN models on our
data: a spatial-temporal model which convolves over fea-
tures and frames, and an early-fusion model which only
convolves over features.

4.2. Spatial-Temporal CNN model

We feed the frame-level data into a pair of deep convo-
lutional neural networks (CNNs). A 3-layer spatial CNN
performs 1D convolution over the 1024 single-frame fea-
tures, with filters equal in depth to the number of frames.
A second, 3-layer temporal CNN performs 1D convolution
over the frames of each video, with filters of depth 1024.

Each convolutional layer is followed by batch normaliza-
tion and a leaky ReLU activation function. Batch normal-
ization rescales our activations after each convolution layer
so that they have a mean of zero and a standard deviation of
one. This prevents the activations from getting too big after
passing through several layers. The leaky ReLU nonlinear-
ity outputs f(xin) = max(xin, αxin), where we set α to be
0.01. Compare this to a traditional ReLU layer, which sets
α to zero.

We chose to use CNNs because convolutional layers al-
low our model to learn relationships both between spatial
features and between adjacent frames. CNNs are also use-
ful because their filters, which slide along one dimension
of our data, are much smaller than fully-connected filters.
This lets us use a larger batch size without running out of
memory on our GPU.

Following the CNNs, we reshape the data into a 1D ma-
trix, and concatenate the output of the two networks. A
final fully-connected layer with sigmoid activation function
gives us scores for all 4,800 labels. The fully connected
layer works by providing a connection between each out-
put of the final convolutional layer, and each of the possible
scores. This allows for every possible connection between
inputs and outputs to be considered in a single layer.

See Figure 2 for a schematic of our model.

4.3. Early-Fusion CNN model

Unlike the Spatial-Temporal CNN model, the Early-
Fusion CNN model only contains a spatial CNN. In other
words, the Early-Fusion CNN model only convolves over
the features; it integrates over the frames of the videos.
We calculate the scores for all 4,800 labels with a fully-
connected layer in the same fashion as the the Spatial-
Temporal CNN model.

We found that the early-fusion CNN performed about 2
percentage points worse than the spatial-temporal model.
This suggests that looking at the time evolution of the video

Figure 2. Schematic of our best-performing model, with two 3-
layer CNNs in parallel followed by a single fully-connected layer.
After tuning hyperparameters, this model achieved a hit@1 of
0.795 and PERR of 0.658.

with temporal convolution results in the extraction of im-
portant information.

4.4. Training Process

We created our video classification model using the Ten-
sorflow [17] library. Training is carried out using the Adam
optimizer and a cross entropy loss function. We used mini-
batches of 128 videos; this is large enough to train at a rea-
sonable speed, yet small enough so that our GPUs don’t run
out of memory.

Google has provided a framework for accessing the
dataset through Google Cloud ML Engine [18]. This allows
us to submit classification models we have designed to be
trained and evaluated on Google’s servers without having
to download the entire dataset (over 1 TB) to our personal

3



Figure 3. Training process of the 3-layer spatial-temporal CNN
model we trained which achieved the highest validation accura-
cies.

Google Cloud instances. Having access to the framework
also freed us from having to figure out how to use the ML
Engine, allowing us to concentrate on developing models.

We used Tensorboard to evaluate the performance of our
models during the training process. While we were devel-
oping our initial techniques, we didn’t even take the time to
train for a full epoch, because the models achieved most of
their performance gains during the first 10% of an epoch.
For our final models, we trained for one full epoch over all
the training data, which took approximately 5.5 hours. By
this point the models had essentially converged - training
accuracy had stabilized.

Because we were able to converge after a single epoch,
overfitting was not much of a problem. Each training ex-
ample is only seen once, so the model was not overly ex-
posed to any one video. Nevertheless, we still implemented
L2 regularization. Because we only looked at each train-
ing example once, we were able to attain validation Hit@1
of 79.1%. Compare this to the training accuracy, plotted in
Figure 3. The Hit@1 obtained on the training set is essen-
tially the same as that obtained from the validation set.

5. Experiment
We evaluated the performance of CNN models with dif-

ferent architectures and hyperparameters by training several
models and comparing validation performance.

5.1. Selecting Model Architecture

Selecting the proper CNN architecture is critical for cre-
ating high-performance models. Beyond convolutional lay-
ers, proper usage of batch normalization and activation lay-
ers can be critical for optimizing performance.

We improved our model performance by adding batch
normalization layers after every convolutional layer, mak-
ing our loss less sensitive to small changes in input weights.
Following every batch normalization layer, we used a leaky
ReLU layer. We found that leaky ReLU activation layers
outperformed traditional ReLU (see Table 1). This is likely
due to their reduced susceptibility to the vanishing gradient
problem.

We also tried inserting dropout layers into our model,
which randomly set some activations to zero. We expected
dropout to help improve accuracy by adding additional reg-
ularization to our model, but performance decreased in
practice. This could be because we only trained our models
over a single epoch, so overfitting to the training data was
not too much of a concern.

We also evaluated the influence of adding additional con-
volutional layers to our model. We expected that the in-
creased complexity of 5-layer models could result in im-
proved performance over 3-layer models. However, we ac-
tually saw a small drop in performance on 5-layer models
after training for one full epoch.

Finally, we tried different filter widths and number of
filters for our convolutional layers. We achieved the highest
performance with 10 filters of size 5. Using 5 or 20 filters
of size 3 or 7 resulted in inferior performance.

5.2. Optimizing Hyperparameters

We used a learning rate that decayed in steps as training
progressed. This meant we had three key hyperparameters
to optimize related to the learning rate: the initial learning
rate (LR), the decay factor (LRD), and the number of exam-
ples after which you decrease the learning rate (LRDE).

We trained models with different LR, LRD, and LRDE
in order to optimize performance of our model. We got the
best validation performance with a learning rate of 0.001,
and learning rate decay of 0.95 every 100,000 training
examples.

3-Layer Spatial-Temporal (CNN-BN-ReLU)-Dense

LR LRD LRDE Hit@1 PERR mAP
0.1 0.9 100,000 17.7 11.8 0
0.01 0.9 50,000 75.6 61.0 26.7
0.01 0.9 100,000 75.3 60.6 27.6
0.01 0.95 50,000 62.0 45.5 5.5

0.001 0.9 100,000 77.4 63.1 29.7

4



3-Layer Spatial-Temporal (CNN-BN-LeakyReLU)-Dense

LR LRD LRDE Hit@1 PERR mAP
0.01 0.9 100,000 78.9 64.9 34.4
0.01 0.95 100,000 79.1 65.2 36.1

0.005 0.9 100,000 79.1 65.3 34.5
0.001 0.9 100,000 77.4 63.1 29.7
0.001 0.95 100,000 79.5 65.8 35.0

5-Layer Spatial-Temporal (CNN-BN-leakyReLU)-Dense

LR LRD LRDE Hit@1 PERR mAP
0.01 0.9 100,000 77.4 63.1 31.9

0.001 0.9 100,000 77.2 63.0 30.0
0.001 0.95 100,000 78.9 65.0 34.5

TABLE 1. Optimizing Structure and Hyperparameters

5.3. Comparing our best models with Google’s

Model Hit@1 PERR mAP
Google’s Frame-Level Models
Fully-Connected Logistic 50.8 42.2 11.0
Deep Bag of Frames 62.7 55.1 26.9
LSTM 64.5 57.3 26.6
Google’s Video-Level Models
Hinge Loss 56.3 47.9 17.0
Logistic Regression 60.5 53.0 28.1
Mixture of 2 Experts 62.3 54.9 29.6
Our Frame-Level Models
3-Layer Early-Fusion CNN 73.7 59.0 24.6
3-Layer Spatial-Temporal CNN 79.1 65.2 36.1
5-Layer Spatial-Temporal CNN 78.9 65.0 34.5

TABLE 2. Model Comparison

Table 2 demonstrates that our CNN models performed
significantly better than Google’s models in their initial
YouTube-8M paper. Our best model, the 3 layer spatial-
temporal CNN, achieved Hit@1 of 79.1% and PERR of
65.2%.

The increased complexity of the 5-layer model did not
result in higher accuracy. The spatial-temporal CNN out-
performed the early-fusion CNN. We attribute this to the
face that the spatial-temporal model’s temporal convolution
allows it to take into account how the frames in the video
change over time. For example, perhaps a video tagged
“mediation” shows less change from frame to frame, but
a video tagged “monster truck rally” shows a lot of change
between frames.

6. Conclusion
We were able to improve upon the performance of

Google’s initially published video classification models by

taking into consideration the differences between individual
frames in a video, and by switching from fully-connected to
convolutional layers. We achieved a Hit@1 of 79.1% and
PERR of 65.2% on our best model, compared to 64.5% and
57.3% on Google’s LSTM model, the best of their initial
models.

Google created a public Kaggle contest [19] for classify-
ing YouTube-8M data. The winners of this contest achieved
84.9% on the “Google Global Average Precision” metric.
In comparison, we had a global average precision of 72.3%
for our best model. Google did not publish a global aver-
age precision for their models, so we cannot make a direct
comparison there. The top scorers in the contest eventually
have to publish their results, so it will be interesting to look
at how their models compare to ours.

We could potentially improve our performance by
adding the provided audio data to our model. For instance,
we could create two additional 1D CNNs which convolve
the audio data in the time and frequency domains. The
output of these CNNs could then be concatenated with the
output of the visual CNNs before the final fully-connected
layer.

There are also a lot of less-radical changes that we didn’t
explore, but could potentially improve our models. For ex-
ample, we could add additional fully-connected layers at
the end of our dataflow. Or, we could train over multiple
epochs to see if there is a slow increase in performance for
additional training.

When it comes to video classification, ∼80% is a rea-
sonably good accuracy. If 80% of the videos you see in re-
sponse to a YouTube search are relevant to your query, you
will probably be able to find a video that satisfies you. How-
ever, if you’re searching for one specific video, there’s still
a ∼20% change that it will be miscategorized, and you’ll
never be able to find it. For these situations, it is important
to keep pushing the frontiers of video and image recognition
algorithms to further improve classification accuracy.

References

[1] S. Abu-El-Haija et al. YouTube-8M: A Large-Scale
Video Classification Benchmark. arXiv:1609.08675be,
2016

[2] J. Deng, W. Dong, R. Socher, L. Jia Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2009

[3] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hin-
ton. Imagenet classification with deep convolutional neu-
ral networks. In Advances in neural information process-
ing systems, 2012.

5



[4] S. Ioffe and C. Szegedy. Batch normalization: Acceler-
ating deep network training by reducing internal covari-
ate shift. arXiv:1502.03167, 2015

[5] He, Kaiming, et al. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[6] Russakovsky, Olga, et al. Imagenet large scale visual
recognition challenge. In International Journal of Com-
puter Vision 115.3: 211-252, 2015

[7] Karpathy, Andrej, et al. Large-scale video classification
with convolutional neural networks. In Proceedings of
the IEEE conference on Computer Vision and Pattern
Recognition, 2014.

[8] I. Laptev and T. Lindeberg. Space-time interest points.
In Proceedings of the International Conference on Com-
puter Vision (ICCV), 2003

[9] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2008

[10] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and
R. Basri. Actions as space-time shapes. In Proceed-
ings of the International Conference on Computer Vision
(ICCV), 2005

[11] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A
dataset of 101 human actions classes from videos in the
wild. In CRCV-TR-12-01, 2012

[12] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T.
Serre. Hmdb: a large video database for human motion
recognition. In Proceedings of the International Confer-
ence on Computer Vision (ICCV), 2011

[13] Y. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I.
Laptev, M. Shah, and R. Sukthankar. THUMOS chal-
lenge: Action recognition with a large number of
classes.http://crcv.ucf.edu/THUMOS14, 2014

[14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Suk-
thankar, and L. Fei-Fei. Large-scale video classification
with convolutional neural networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 17251732, Columbus, Ohio, USA, 2014

[15] Z. Wu et al. Deep Learning for Video Classification
and Captioning. arXiv:1609.06782v, 2016

[16] Google I/O 2013 - Semantic Video Annotations
in the Youtube Topics API: Theory and applications.
youtube.com/watch?v=wf 77z1H-vQ.

[17] Tensorflow: Image recognition.
tensorflow.org/tutorials/image recognition

[18] Google GitHub YouTube-8M Library,
github.com/google/youtube-8m

[19] Kaggle “Google Cloud & YouTube-8M Video Under-
standing Challenge”, kaggle.com/c/youtube8m

6


