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Abstract

During the past few years, we have witnessed an un-
precedented growth of user-generated videos (UGV). Being
able to efficiently and effectively process unedited videos
has become increasingly important. In this project, we aim
to improve video understanding by extracting the funda-
mental and most interesting parts out of videos.

The model we propose consists of two layers: 1) feature
extraction, where we turn windows of frames into feature
vectors and 2) highlight classification, where we catego-
rize feature vectors as highlights or non-highlights of the
video. For each layer, we experiment with various main-
stream computer vision algorithms. We obtain a dataset
of 3,700 UGVs including manually-labeled highlight inter-
vals. Our best-performing model achieves an F1 score of
0.433. Our model also performs well in a real-world set-
ting with human users, who give positive feedback on our
model output.

1. Introduction
With the increasing popularity of content-sharing web-

sites and live-streaming platforms such as YouTube, Vimeo
and Livestream, video has become the most common form
of Internet traffic. We are constantly immersed in videos
from all kinds of sources. However, the amount of informa-
tion we receive everyday makes it impossible for anyone to
process all of them. Despite the amazing progress we have
made in classifying and describing images, we cannot yet
achieve the same with videos. Motivated to help people un-
derstand videos in the most efficient and effective manner,
we want to extract the fundamental components of videos.
In this project, we propose a deep learning model that auto-
matically identifies the important highlights of videos.

The focus of this project is on user-generated videos
(UGV), videos that are created and shared by users through

∗This co-author contributed the dataset for this project.

on-line video-sharing communities. Therefore, the videos
we work with are not domain-specific, but are very diverse,
featuring a wide range of topics and styles. This makes our
project particularly interesting but also challenging.

In order to identify highlights in a video, we use a
window-based classification model. First, we split a video
into windows of 64 frames. Then, for each window, we use
our model to classify whether it is a highlight or not. The
reason why we use a window-based model, as oppose to
a frame-based model (classifying frame by frame), is that it
gives us access to both the temporal information of consecu-
tive frames within the window and the relationship between
windows in a video.

The main goal of this project is to experiment with differ-
ent algorithms for the substructures in our model and com-
pare their performances on this specific task of highlight
classification. First, we will explore different ways to en-
code the windows of a video. Then, we will compare mod-
els that capture temporal information with models that do
not. Finally, we will look at different regularization meth-
ods and see whether they improve the performance.

2. Related Work
2.1. Feature Extraction

The first part of our model generates feature vectors us-
ing features extracted from videos. One popular feature-
learning algorithm is Convolutional 3D, or C3D, developed
by Tran el al. [1]. C3D learns spatio-temporal features
using deep 3-dimensional convolutional networks trained
on video datasets such as the UCF-101 dataset. Tradi-
tional image-based deep-learning frameworks are also able
to achieve this task. Improving on previous Google Incep-
tion models, Szegedy el al. [2] propose the Inception-v3
model, which is both computationally efficient and utilizes
very few parameters. It Iandola el al. [3] use smaller DNN
architectures that achieves AlexNet-level [14] accuracy on
traditional image classification tasks. Both these models
are pre-trained on ImageNet. However, they do not capture
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temporal information in the video.

2.2. Highlight Classification

Many early highlight detection works focus on specific
categories of sport videos, including basketball, baseball
and cricket. [4, 5, 6, 7] These models mostly rely on low-
level visual features. Recently, a few methods have been
proposed to find highlights in generic personal videos. Sun
et al. [8] train a model to identify domain-specific high-
lights through harvesting user preference. There have also
been a few attempts to use fully unsupervised learning.
Zhao and Xing [9] propose a quasi-real time method to gen-
erate short video summaries. Yang et al. [10] propose a re-
current auto-encoder to extract video highlights. Our model
adopts a supervised learning approach. Previously, Zeng et
al. [11] build a model that generates title for UGVs. For
the highlight detection part of their model, they train a bidi-
rectional RNN highlight detector. This framework is able
to capture temporal information, which is very important to
videos. It accomplishes outstanding results for subsequent
tasks in their model. Yeung el al. [13] introduce a reinforce-
ment learning algorithm for efficient video processing that
could speed up training time by 5 times. Ma el al. [15] de-
velop a viewer attention model specifically for video sum-
marization task. We plan to incorporate these newer meth-
ods in our model as future works.

3. Dataset
We use the same dataset consisting of user-generated

videos as used by Zeng el al. [11] in the paper ”Title Gen-
eration for User Generated Videos”, in which they train a
highlight detector as an intermediate step for their video
captioning task. In the dataset, each video comes with a
hand-labeled interval of the start and end frame of the high-
light in this video. For example, a video with 1000 frames
may have a highlight interval of (200, 800).

We pre-process the dataset by filtering out unusually
long or short videos and videos with corrupted data. Our fi-
nal dataset contains 3687 videos (around 3900000 frames).
Overall, the median video length is around 800 frames, or
30 seconds, and the median highlight length is around 100
frames, or 3 seconds.

Next, we break each video into windows of 64 frames,
as shown in Figure 1. A window is considered a highlight
if more than 75% of the frames in this window is within the
highlight interval, i.e., more than 48 frames of the window
is within the highlight interval. In the end, we have around
180000 windows in total.

Ideally, we would like to store all the windows of a video
as a single unit and classify the windows all at once. How-
ever, due to the limitation of the length of an RNN structure,
we decide to split long videos into shorter clips. We define
a clip to be 32 consecutive windows. Since the number of

Figure 1. Each window is a tensor that represents 64 consecutive
frames

windows of a video usually is not divisible by 32, for a clip
that has less than 32 windows, we zero-pad it to 32 windows
and use a boolean mask to indicate valid length.

In total, we generate 5616 clips, which are further split
into train/val/test sets of 4491/562/563 clips.

In summary, our dataset consists of 5616 clips. Each clip
consists of 32 consecutive windows from a single video,
and each window is 64 consecutive frames of that video.
Each window is also labeled 0 or 1, indicating whether it’s
a highlight or not.

4. Methods
The model we are proposing is built using a two-layer

structure2 3. The first layer transforms each window into a
one-dimensional vector. The second layer takes this vector
and classifies it as highlight or non-highlight. In this paper,
we will refer to the first layer as the base model, the one-
dimensional vector as a feature vector, and the second layer
as the top model.

Figure 2 and figure 3 illustrate the two-layer structure of
our model. Each Xi is a window that consists of 64 frames.
Our model outputs two class scores for highlight and non-
highlight for each window.

Our entire model is basically a transfer learning model,
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Figure 2. Two-Layer Model with Fully Connected Top Layer

Figure 3. Two-Layer Model with Recurrent Neural Network Top
Layer

where we take the last layer of a pre-trained model as our
feature vector, and add layers on top for a binary classifica-
tion. During training, we do not fine-tune the base model.

4.1. Base model

Our base model transforms each window into a one-
dimensional vector. We experiment with 4 different
base models: Inception, C3D, C3D-normalized, and
SqueezeNet.

4.1.1 Inception-v3

Since a window consists of 64 frames, we evenly sam-
ple 8 frames and feed them into a pre-trained Inception-v3

model.[2][1] Then, we extract the final layer of Inception,
which is a 2048-dimensional vector. Thus, we have eight
2048-dimensional vectors for each window. Finally, we av-
erage these eight vectors to form our feature vector. Since
we average the vectors, we lose the temporal information of
the frames in a window.

4.1.2 C3D

A pre-trained C3D model [1] takes in 16 frames at a time,
and it’s final layer (fc7) is a 4096-dimensional vector. Thus,
we divide each window into 4 segments of 16 frames, feed
them into the C3D model [16], which gives us back 4 vec-
tors. Then, we average these 4 vectors to get our feature
vector. This model is able to capture the temporal informa-
tion of frames in a window.

4.1.3 C3D-normalized

This model is similar to the C3D we describe in 4.1.2, but
is slightly more complicated. We split each window into 16
frame long segments with an 8-frame overlap between two
consecutive segments. Thus, we have 7 segments for each
window. Then, we extract the fc6 activations from the C3D
model and average them to form a 4069-dimensional vector.
Finally, we normalize it using L2 normalization to get our
final feature vector.

This method is suggested by Tran et al. [1] for using
C3D as a feature extractor for video analysis tasks. Similar
to the C3D model, this model is able to capture the temporal
information of frames in a window.

4.1.4 SqueezeNet

Iandola et al. [3] have shown that SqueezeNet has AlexNet-
level accuracy with much smaller size and fewer parame-
ters. Similar to the Inception-v3 model, we evenly sample
8 frames from each window and extract the last layer vec-
tor of SqueezeNet, which is 512-dimensional. We average
them to form our feature vector. Similar to the Inception-v3
model, we lose the temporal information of the frames in a
window.

4.2. Top model

The inputs of the top model are the vectors generated by
the base model. The top model outputs two class scores
(non-highlight, highlight) for each window, which are sub-
sequently used to calculate loss and make predictions. We
experiment with 2 top models: fully-connected and bidi-
rectional LSTM. We will refer to these models as FC and
LSTM hereafter.
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4.2.1 FC

We use 3 fully-connected layers with output sizes of 2048,
2048 and 2, respectively. The first two layers are followed
by ReLU activations. Even though our dataset consists of
clips with consecutive windows, this model treats all win-
dows independently, which means we do not capture the
relationship between windows.

4.2.2 LSTM

Since our clips are 32 windows long, the base model will
output 32 feature vectors for each video clip. We feed these
into a bidirectional LSTM of length 32. Then, we add 2
fully-connected layers on top of the hidden states, with the
first followed by ReLU activation. The hidden size of the
LSTM is 512, and the output sizes of the linear layers are
256 and 2. Unlike the previous model, the LSTM captures
the relationship between windows.

4.3. Training

The top model generates two class scores for each win-
dow. We try two different types of loss function: cross-
entropy loss and hinge loss. For parameter updates, we
use the Adam optimizer to update the top model variables,
and we go through hyperparameter search to fine-tune the
learning rate. For regularization, we try adding dropout and
batch normalization between fully-connected layers in our
top model.

4.4. Evaluation

To evaluate our model performance, we look at the F1
score, which is the harmonic mean of the precision and re-
call. More specifically, precision is the fraction of correct
predictions among the positive predictions (windows pre-
dicted to be highlight), and recall is the fraction of ground-
truth positive (highlight) windows that are successfully re-
trieved. Since both are meaningful and relevant to this task,
the F1 score is a good metric to evaluate our model.

On the other hand, we do not look at accuracy, which
is the fraction of correct predictions among all predictions.
This is because most windows in our dataset are non-
highlights, and a model that always predicts windows as
non-highlights will have a good accuracy. We are more in-
terested in the highlight windows, so the F1 score is a better
metric.

During each training session, we calculate the F1 score
on the validation set after every epoch. We save the check-
point which achieves the highest F1 score on the validation
set, and then use this checkpoint to calculate the F1 score
on the test set.

5. Experiments and Analysis
As discussed above, we select 4 algorithms for our base

model and 2 algorithms for our top model. For each pair of
base-top model pair, we run experiments with the following
settings:

• Adam optimizer with 6 different learning rates:
10−3.5, 10−4, 10−4.5, 10−5, 10−5.5, 10−6.

• 2 different loss functions: cross-entropy loss, hinge
loss.

• With or without the regularizations including:

– Dropout with rate 0.5

– Batch normalization between fully-connected
layers (only for the FC top model).

5.1. Overall

We have 8 combinations of the base and top model. We
run all the experiments and record the F1 score on the test
set (as described in section 4.4). Table 1 shows the best F1
scores and the hyperparameters that produce the result for
each combination.

Our best model is Inception-v3, LSTM, which achieves
an F1 score of 0.433.

5.2. Base model

For base model, Inception-v3 is the best among the 4
base models we try. Originally, we expect that C3D and
C3D-normalized would perform the best, since C3D is able
to capture the temporal information of frames within a win-
dow, i.e., the trajectory of the video. However, there are
several other factors that must be taken into account. Most
importantly, Inception-v3 is pre-trained on ImageNet, while
C3D is pre-trained on the UCF-101 dataset. These are two
totally different datasets, and it turns out that the pre-trained
feature extractor for ImageNet performs slightly better for
our specific video highlighting task.

5.3. Top model

With the same base model, LSTM performs better than
FC in most cases. This is the same as we expected, since
it captures the relationship between the feature vectors gen-
erated from the base model. In other words, our bidirec-
tional LSTM is able to learn from the relationship between
consecutive windows, which corresponds to the large-scale
motion of the video.

5.4. Learning rate

We found that the learning rates 10−4 and 10−4.5 (for
Adam optimizer) generally give the best results. Figure 4
shows the validation F1 scores after each epoch of training
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Base, top model F1 score Learning rate Loss function Regularization
Inception-v3, FC 0.370 10−4.5 Cross-entropy 0.5 dropout

Inception-v3, LSTM 0.433 10−4.5 Cross-entropy None
C3D, FC 0.325 10−4 Cross-entropy None

C3D, LSTM 0.370 10−3.5 Cross-entropy None
C3D-normalized, FC 0.393 10−3.5 Cross-entropy Batch normalization

C3D-normalized, LSTM 0.362 10−4 Cross-entropy None
SqueezeNet, FC 0.338 10−5 Cross-entropy None

SqueezeNet, LSTM 0.371 10−4 Cross-entropy None

Table 1. Best test F1 scores overall and the hyperparameters that produce the result

Figure 4. Inception-v3, LSTM. Validation F1 scores after every
epoch during training, using different learning rates. Here we left
out the curve for learning rates 10−3.5 and 10−6 since they have
even worse F1 scores.

using different learning rates. From the graph we can see
that the curve for learning rate 10−4.5, which is our best
model, has the highest validation F1 score.

As shown in Figure 4, the validation F1 scores for the
higher learning rates fluctuate a lot, while the curve for
learning rate 10−5.5 is relatively smooth. This indicates that
our loss landscape requires a smaller learning rate. Thus,
we tried learning rate decay, but we did not see an improve-
ment. This will be discussed in section 5.7.

5.5. Loss function

Using cross-entropy loss performs better than using
hinge loss for all combinations. Hinge loss also seems to
take longer to train and harder to converge.

5.6. Regularization

As shown in Figure 5, our model’s training F1 score is
much higher than the validation or test F1 score. We tried
to use dropout with a dropout rate of 0.5 to alleviate over-
fitting. However, the result is less than satisfactory. While

Figure 5. Inception-v3, LSTM. Training F1 score v.s. validation
F1 score with dropout (dropout rate is 0.5) and without dropout.

dropout helps stabilize the training process, it does not help
close the gap very much. Moreover, it even lowers the vali-
dation and test F1 scores.

We also tried adding batch normalization between fully-
connected layers. We only added batch normalization be-
tween the fully-connected layers of the FC top model. Sim-
ilarly, we did not see an improvement for our model.

The results of our experiments with different regulariza-
tions are shown in Table 2. In most cases, adding dropout
or batch normalization does not increase or even decreases
our F1 scores.

5.7. Learning rate decay

We tried to decay the learning rate every 20 epochs by
0.5 in the logarithmic scale. Our hope is that by decaying
learning rate, we can bring down the loss even further after
it plateaus. However, although our F1 score curve is slightly
smoother, we achieved worse results after deploying learn-
ing rate decay.

Figure 6 shows the train and validation F1 scores with
and without learning rate decay for Inception-v3, LSTM.
We see that the curves with decay are smoother, but the
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Base, top model No regularization Dropout Batch Normalization
Inception-v3, FC 0.355 0.370 0.361

Inception-v3, LSTM 0.433 0.386 N/A
C3D, FC 0.325 0.282 0.323

C3D, LSTM 0.370 0.336 N/A
C3D-normalized, FC 0.386 0.356 0.393

C3D-normalized, LSTM 0.362 0.347 N/A
SqueezeNet, FC 0.338 0.334 0.329

SqueezeNet, LSTM 0.371 0.319 N/A

Table 2. Best test F1 scores for different regularization methods. We did not add batch normalization in our LSTM top model.

Figure 6. Inception-v3, LSTM. Training F1 score v.s. validation
F1 score with and without learning rate decay

model without decay reaches a higher validation F1 score.
Our hypothesis is that even though the F1 scores fluctu-

ate a lot for higher learning rates, the fluctuations might ran-
domly push the model to a good validation F1 score, which
then result in a good test F1 score.

6. Conclusion and Future Work

Through extensive hyperparameter search, we achieve
decent performance on our video highlight classification
task using the Inception-v3 and LSTM model. Consid-
ering the diversity of topics and styles of user-generated
videos and the subjectivity of video highlights, we believe
our model has achieved satisfactory results.

For our base model, even though C3D is expected to per-
form better because it is able to capture the temporal infor-
mation between frames, we find that Inception-v3 actually
performs better. We suggest that this is because the pre-
trained weights of C3D are trained on the UCF-101 dataset
and its feature vectors either do not generalize to our video
highlighting task or not as well as the feature vectors from
Inception-v3.

For our top model, we find that a bidirectional LSTM
performs better than fully-connected layers on the same
base model. This shows that understanding the relation-
ship between consecutive windows in a video does boost
the performance, as is expected.

In addition, we try several regularization methods to re-
duce over-fitting. However, it turns out that adding dropout
or batch normalization does not improve our performance.
Moreover, while decaying learning rate during training re-
duces the F1 score fluctuations, it lowers test F1 scores as a
consequence.

In conclusion, the best model we build uses Inception-v3
for our base model and LSTM for our top model. It achieves
0.433 test F1 score. We think that this project has a lot of ac-
tual use cases. Therefore we also build a mobile application
on top of it, which we bring to actual human users. We get a
lot of positive feedback on the model outputs, which shows
that it does have potential to help people better understand
videos.

We have quite a few ideas in mind in terms of future
work. First, we can use state-of-the-art traditional CV fea-
ture extractor such as dense trajectory developed by Wang
el al. [11] and then build fully-connected or LSTM lay-
ers on top of it. We also want to experiment with attention
model both across image pixel dimension and across time
dimension. Inspired by Yeung el al [13], we would love
to incorporate reinforcement learning and non-uniform and
hence efficient video processing in our model as well.
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